
Clustered Embedding of Massive Social Networks

Han Hee Song§, Berkant Savas§∗, Tae Won Cho†, Vacha Dave§,
Zhengdong Lu‡, Inderjit S. Dhillon§, Yin Zhang§, Lili Qiu§

The University of Texas at Austin§ AT&T Labs† Microsoft Research Asia‡ Linköping University∗

Austin, TX, USA Florham Park, NJ, USA Beijing, P. R. China Linköping, Sweden
{hhsong,berkant,vacha,inderjit,yzhang,lili}@cs.utexas.edu, twcho@research.att.com, zhengdol@microsoft.com

Abstract �— The explosive growth of social networks has created
numerous exciting research opportunities. A central concept in the
analysis of social networks is a proximity measure, which captures
the closeness or similarity between nodes in the network. Despite
much research on proximity measures, there is a lack of techniques
to efciently and accurately compute proximity measures for large-
scale social networks. In this paper, we embed the original massive
social graph into a much smaller graph, using a novel dimension-
ality reduction technique termed Clustered Spectral Graph Embed-
ding. We show that the embedded graph captures the essential clus-
tering and spectral structure of the original graph and allow a wide
range of analysis to be performed on massive social graphs. Ap-
plying the clustered embedding to proximity measurement of so-
cial networks, we develop accurate, scalable, and exible solutions
to three important social network analysis tasks: proximity estima-
tion, missing link inference, and link prediction. We demonstrate
the effectiveness of our solutions to the tasks in the context of large
real-world social network datasets: Flickr, LiveJournal, and My-
Space with up to 2 million nodes and 90 million links.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services�—Web-based services; J.4 [Computer Applications]: So-
cial and Behavioral Sciences�—Sociology

General Terms
Algorithms, Human Factors, Measurement

Keywords
Social Network, Graph Clustering, Graph Embedding, Proximity
Estimation, Missing Link Inference, Link Prediction

1. INTRODUCTION
Motivation. Social networks have gained tremendous popularity
recently. Social networking sites, such as MySpace, Facebook,
YouTube, Twitter and LiveJournal have each attracted tens of mil-
lions of visitors each month [32] and are among the most popu-
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lar sites on today�’s Internet [3]. The explosive growth of social
networks creates exciting research opportunities in network secu-
rity (e.g., ghting spam [12], defending against Sybil attacks [43,
45]), systems research (e.g., constructing socially aware overlay
networks [33] and systems), information technology (e.g., improv-
ing Internet search [27] and content recommendation [5]), business
(e.g., fraud detection [8], viral marketing [15]), and social sciences
(e.g., modeling complex networks [4, 9]).

A central concept in the analysis of social networks is a proxim-
ity measure, which quanties the closeness or similarity between
nodes in a social network. Intuitively, socially �“close�” users are of-
ten more trustworthy (which is useful for fraud detection [8], spam
mitigation [12], and Sybil attack defense [43,45]), and tend to have
similar interests (which is useful for improving Internet search [27]
and content recommendation [5]). A variety of effective proxim-
ity measures have been proposed, such as the number of common
neighbors, the Katz measure [16], rooted PageRank [25], and es-
cape probability [42]. Despite their effectiveness, however, many
proximity measures have high computational complexity and are
considered prohibitive for large social networks [37, 42].

In our previous work [40], we made signicant progress on scal-
able proximity estimation in large social networks. Its key ob-
servation is that for certain proximity measures, such as the Katz
measure, while the complete proximity matrix (which species the
proximity between all node pairs) is massive (with millions of rows
and columns), it can be accurately approximated as the product
of two factor matrices with much smaller size. In other words,
the proximity matrix has a good low-rank approximation. Similar
ideas based on low-rank approximation have also been successfully
exploited in network coordinate systems to approximate delay be-
tween Internet hosts (e.g., [26, 31]), and in network compressive
sensing to infer missing elements of a network data matrix [46].

Challenges. Despite much progress in low-rank approximation of
massive network matrices, three signicant challenges remain: (i)
Accuracy. Existing low-rank approximation techniques are only ef-
fective when the matrix of interest has a comparatively low rank.
For example, the proximity estimation techniques in [40] use fac-
tor matrices with rank 60. Similarly, existing network coordinate
systems typically use low-rank approximation with rank below 20.
Unfortunately, given the massive scale and enormous complexity
of social networks, such few dimensions may not capture enough
information about the underlying social structure. Indeed, as shown
in [40], proximity measures, such as rooted PageRank [25] and
escape probability [42], have much higher intrinsic dimensional-
ity and thus cannot be approximated accurately by existing tech-
niques. (ii) Scalability. Existing techniques require computing a
large number of rows and columns within the proximity matrix
(also known as �“landmarks�”) in order to derive the low-rank ap-



proximation. Such preprocessing becomes increasingly expensive
as the size of the network grows. Our results in Section 5.2 suggest
that with just 2.5% of MySpace�’s user accounts, the preprocessing
already takes over 5 hours. Further scaling up the method poses sig-
nicant scalability challenges. (iii) Flexibility. As shown in [40],
no proximity measure performs consistently well across different
social networks. Their effectiveness is also sensitive to the choice
of control parameters, which is difcult to tune for unclear net-
work characteristics each social graph has. It is desirable to have a
exible technique that automatically learns the optimal parameter
conguration and performs consistently better than other measures.

Approach and contributions. To address the above challenges,
we develop a novel dimensionality reduction technique, called clus-
tered spectral graph embedding (CSGE), which embeds the origi-
nal highly sparse but massive social graph into a dense but much
smaller graph. In this paper we make the following contributions:
(1) We show that CSGE improves performance in a wide range of
social network analysis tasks. In particular, CSGE captures essen-
tial clustering and spectral structure of the original massive graph
and improves proximity measure estimates, performance of link
prediction, and missing link inference, even in cases when the con-
sidered matrix does not have a low-rank structure. (2) Social net-
work analysis often involves functions of the adjacency matrix of a
graph. We show that by incorporating CSGE into these functions,
we can analyze and work with functions of huge graphs in a com-
putationally efcient and scalable manner. In addition, the methods
are memory efcient and can easily be implemented on a parallel
computer. (3) We further generalize the CSGE approach by opti-
mizing for model parameters with supervised learning, by accom-
modating asymmetric link structure, and by coping with dynamic
networks that have incremental updates.

We use three large real-world social network datasets (Flickr,
LiveJournal, and MySpace with up to 2 million nodes and 90 mil-
lion links) to experimentally demonstrate the effectiveness of our
CSGE based proximity estimation. In particular, we evaluate its
accuracy, scalability and exibility in the context of three impor-
tant social network analysis tasks: (i) proximity estimation (i.e.,
approximating well-known proximity measures proposed in the lit-
erature), (ii) missing link inference (i.e., inferring the locations of
unobserved links based on observed links), and (iii) link prediction
(i.e., predicting which node pairs will become connected based on
past snapshots of the social network).

In the context of proximity estimation, our new technique re-
sults in nearly an order of magnitude speedup over the state-of-
the-art proximity estimation techniques [40]. More importantly,
with the same memory requirement, our technique is able to cre-
ate approximations when the rank is an order of magnitude higher
than previous methods. As a result, our technique results in dra-
matic improvement on the approximation accuracy of proximity
measures, such as rooted PageRank and escape probability, which
are not low-rank and thus cannot be approximated accurately by
previous methods. In the context of missing link inference, our
technique results in several-fold reduction in the false positive rate
subject to the same false negative rate. In the context of link pre-
diction, our technique yields a novel supervised proximity measure
that signicantly improves link prediction accuracy by learning op-
timal parameter congurations and consistently yielding better ac-
curacy than the previously proposed proximity measures across the
three social network datasets. These results clearly demonstrate the
effectiveness of our approach.

Organization. The remainder of the paper is organized as follows.
In Section 2, we provide background on proximity measures, spec-
tral embedding and clustering. In Section 3, we present details on

our clustered spectral graph embedding approach. In Section 4, we
explore three important applications: proximity estimation, miss-
ing link inference, and link prediction, and then evaluate the ef-
fectiveness of our methods on these applications in Section 5. In
Section 6, we survey the related work, and conclude in Section 7.

2. PRELIMINARIES
A social network can naturally model the explicit friendship or

trust relationship among users in a social networking site. A so-
cial network can also be dened implicitly to quantify the inter-
action levels among users. For example, one can construct a so-
cial network based on the past (non-spam) email exchanges be-
tween users [12], or the trafc volumes transmitted between Inter-
net hosts.

Formally, we denote a social network as a graph G = (V, E),
where V = {1, 2, . . . , |V|} is a set of vertices, and E = {eij | i, j ∈
V} is a set of edges. In particular, if there is an edge between vertex
i and vertex j, then eij denotes the weight of this edge. The adja-
cency matrix A of the graph G is an m × m matrix with m = |V|:

aij = A[i, j] =


eij , if there is an edge between i and j,
0, otherwise.

Below we dene some of the most commonly used proximity mea-
sures, all of which can benet from our new dimensionality re-
duction technique. We then introduce three important concepts �–
graph embedding, spectral graph embedding, and graph clustering
�– essential for understanding our graph embedding technique.

2.1 Proximity measures
Proximity measures are important for many social network ap-

plications. Most proximity measures can be divided into two broad
categories: (1) direct measures that are based on shortest graph dis-
tances or maximum information ow between two nodes or node
neighborhoods, e.g., common neighbors; and (2) more sophisti-
cated measures that include innite sums over ensembles of all
paths between two nodes, e.g., Katz measure [16], rooted Page-
Rank [25], and escape probability [42]. It has been shown that
the path-ensemble based proximity measures capture much more
information about the underlying network compared to the direct
measures and are generally more effective at performing various
tasks [25, 42]. The above measures are dened as follows:

Common neighbors. Let Ni be the neighbor set of vertex i. Then,
the common neighbors proximity measure is Pcn[i, j] = |Ni∩Nj |.
If the number of common neighbors is high between vertices i and
j, then it is more likely they will get connected. For an unweighted
graph (i.e., eij = 1 for all edges), the common neighbor matrix for
all vertex pairs is simply given by Pcn = A2.

Katz measure. Let p(k)
ij denote the number of paths of length k

between vertices i and j. Then, the Katz measure is

Pkz[i, j] =
∞X

k=1

βkp(k)
ij ,

where β is a damping parameter. A high value of the Katz measure
between two vertices signies a stronger relationship. Using the
adjacency matrix A, we may write the Katz measure for all vertex
pairs simultaneously as

Pkz =
∞X

k=1

βkAk = (I − βA)−1 − I,

where I is an identity matrix and β < 1/‖A‖.



Rooted PageRank. The rooted PageRank measure (rooted at ver-
tex i) is the probability of landing at vertex j in a random walk
with a probability α of jumping to vertex i in each step, and with a
probability 1 − α that the process continues to a random neighbor.
As an irreducible, nite, and aperiodic Markov chain, the probabil-
ities that rooted PageRank yield are stationary and converge to an
equilibrium distribution regardless of the starting distribution.

Let D be the diagonal degree matrix given by D[i, i] =
P

j A[i, j].

Let T = D−1/2AD−1/2 be the normalized adjacency matrix. The
stationary probability of the rooted PageRank for all vertex pairs is

Prpr = (1 − α)(I − αD−1A)−1

= (1 − α)D−1/2(I − αT )−1D1/2

= (1 − α)D−1/2
“ ∞X

k=0

αkT k
”
D1/2.

Escape probability. The escape probability Pep[i, j] from vertex
i to j is the probability that a random walker (who started from i)
will visit j before returning back to i. With α being the random
jump probability, the measure is derivable from rooted PageRank
by Pep[i, j] = f(Prpr, i, j), where the function f is dened as

f(P, i, j) =
(1 − α)P [i, j]

P [i, i]P [j, j] − P [i, j]P [j, i]
. (1)

2.2 Graph embedding
Let A be an m×m adjacency matrix of a graph. For simplicity,

we assume that A is symmetric. In section 3.2 we will demonstrate
how to extend the concepts to non-symmetric adjacency matrices.
A graph embedding can bemathematically formalized as the de-
composition

Am×m ≈ Um×rLr×rU
T
m×r = ULUT, (2)

where U is an m × r orthonormal matrix (i.e., UTU = Ir is an
identity matrix), and L is an r × r matrix. U represents a basis for
the embedding subspace and L represents the embedded adjacency
matrix of the original graph. Since U is orthonormal, Eq. (2) can
be applied to approximate any matrix power Ak by

Ak ≈ (ULUT)k = ULkUT. (3)

As a special case, with k = 2, we get the frequently used com-
mon neighbor proximity measure Pcn = A2 ≈ UL2UT. Many
functions of A can be approximated using a sum of matrix powers
through the Taylor series expansion. Using Eq. (3) we can approx-
imate these functions with corresponding functions on L. This can
signicantly reduce the computational cost as typically r ' m and
most of the calculations will involve the r × r matrix L instead of
the m × m matrix A. For example, using Eq. (2) and Eq. (3), we
can approximate the Katz measure as

Pkz ≈
∞X

k=1

βkULkUT = U
`
(Ir − βL)−1 − Ir

´
UT.

2.3 Spectral graph embedding
The best rank-r approximation of A, in terms of squared approx-

imation error, is given by the r-dimensional spectral graph embed-
ding (SGE):

A ≈ UΛUT, (4)

where Λ is a diagonal matrix with the r largest (in magnitude)
eigenvalues of A, and U contains the corresponding eigenvectors.
Figure 1(a) shows an illustration of SGE.

(a) Regular SGE (b) CSGE
Figure 1: Illustration of (a) regular SGE A ≈ UΛUT and (b)
CSGE A ≈ V SV T in Eq. (7) with c = 3 clusters.

Over the past several decades, eigendecomposition and spectral
graph embedding have been important research tools for achieving
dimensionality reduction on large matrices and graphs. Although
there are computationally efcient algorithms [20, 21] to compute
the spectral embedding of large sparse matrices, they are still quite
expensive on massive social networks with millions of nodes. As
a result, SGE can only afford to work with a relatively small r,
which may not capture sufcient social/network structure of very
large social networks and thus yields poor approximation accuracy
(see Section 5).

2.4 Graph clustering
Graph clustering in itself is not the focus of this paper, how-

ever, efcient clustering or partitioning algorithms are crucial to
the methods we are proposing. Given a graph G = (V, E) there
are various objective functions that measure the quality of the clus-
tering, e.g., ratio cut [14] and normalized cut [39]. Although these
graph clustering objectives are NP-hard to optimize [44], there are
several efcient clustering algorithms that often produce good qual-
ity results, e.g., Graclus [10], METIS [1], SPAR [34], and �“modu-
larity�” optimization [6].

Assume that we have a clustering of G(V, E) into c disjoint clus-
ters specied by the vertex sets Vi, i = 1, . . . , c, i.e.,

Sc
i=1 Vi = V

and Vi ∩ Vj = ∅ for all i )= j. Let mi = |Vi|. Without loss of
generality, we can assume that the vertices in V1, . . . ,Vc are in a
strictly increasing order. Then the adjacency matrix A will have the
following form

A =

2

64

A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

3

75 , (5)

where each diagonal block Aii is an mi × mi matrix, that can
be considered as a local adjacency matrix for cluster i. The off-
diagonal blocks Aij (i )= j) are mi × mj matrices that contain
the set of edges with vertices belonging to two different clusters.
In an ideal scenario with perfect clustering, the off-diagonal blocks
will not contain any edges, so Aij = 0, and the graph will have
c connected components. On the other hand, in the more gen-
eral scenario of A comprised of a single connected component
with a clear clustering structure, a naive approximation of the orig-
inal graph could be obtained through its diagonal blocks A ≈
diag(A11, . . . , Acc). By further introducing low-rank approxima-
tions Aii ≈ ViΛiV T

i , we have A ≈ diag(V1Λ1V T
1 , . . . , VcΛcV T

c ).

3. CLUSTERED SPECTRAL GRAPH
EMBEDDING

In this section, we describe the baseline clustered spectral graph
embedding (CSGE) and suggest extensions suitable for dealing with
large, dynamic social networks. Then we analyze advantages of
our proposed CSGE over regular spectral graph embedding (SGE)
in terms of computational efciency and accuracy.

3.1 Basic algorithm
Our baseline algorithm, clustered spectral graph embedding

(CSGE) improves the efciency and accuracy of approximating



Figure 2: Sparsity pattern of an adjacency matrix with c = 10
clusters; 80% of the edges are within the diagonal blocks.

various proximity measures by effectively combining clustering with
spectral graph embedding. Recall that A is the adjacency matrix of
a graph. We will assume that the graph has been partitioned into c
clusters and that the vertices are ordered so that the diagonal blocks
Aii, i = 1, · · · , c, correspond to the local adjacency matrices for
the different clusters as in Eq. (5). Since the block partitioning of A
is obtained through clustering of the graph, it follows that most of
the edges are within the diagonal blocks. Only a small fraction of
the edges are between clusters and are consequently located in the
off-diagonal blocks. Figure 2 shows the typical sparsity pattern of
an adjacency matrix after a clustering step. In this particular case,
we have clustered the graph into c = 10 clusters and 80% of the
edges are within the diagonal blocks. Computing the best rank-ri

approximations through spectral graph embedding for every cluster
(diagonal block), we get

Aii ≈ ViΛiV
T
i , i = 1, . . . , c, (6)

where Λi is a diagonal matrix and contains the ri largest eigenval-
ues of Aii (in magnitude), and Vi is an orthonormal matrix with
the corresponding eigenvectors. Due to the orthonormality of Vi

it can be shown that the matrix V = diag(V1, . . . , Vc) is also or-
thonormal. We can now use this block-diagonal matrix V to obtain
a graph embedding for the entire adjacency matrix A. The graph
embedding may be written as A ≈ V SV T. Since V is orthonor-
mal, it follows that the optimal S, in least squares sense, is

S = V TAV =

2

64
S11 · · · S1c

...
. . .

...
Sc1 · · · Scc

3

75 ,

where Sij = V T
i AijVj , for i, j = 1, . . . , c. Using Eq. (6) we can

verify that Sii = Λi are diagonal. The off-diagonal blocks Sij , on
the other hand, capture interactions between different clusters. We
obtain the following approximation

A ≈ V SV T = (7)

diag(V1, . . . , Vc)

2

64
S11 · · · S1c

...
. . .

...
Sc1 · · · Scc

3

75 diag(V1, . . . , Vc)
T,

which we call clustered spectral graph embedding (CSGE). For
example, with c = 3 we can write

A ≈

2

4
V1 0 0
0 V2 0
0 0 V3

3

5

2

4
S11 S12 S13

S21 S22 S23

S31 S32 S33

3

5

2

4
V1 0 0
0 V2 0
0 0 V3

3

5
T

.

Figure 1 shows an illustration of SGE compared to CSGE. Using
analogous terminology SGE, we denote V = diag(V1, · · · , Vc)
as a basis for the clustered embedding subspace, and S as the em-
bedded adjacency matrix for CSGE. Note that with c = 1, CSGE
becomes the regular SGE. In related preliminary evaluation, we
explored the benet of combining clustering with different local

(within-cluster) low rank approximation schemes from the view-
point of numerical accuracy on a few static graphs [38]. However,
higher numerical accuracy in matrix approximations does not nec-
essarily translate to benets in end applications, such as link pre-
diction. Additionally, social network analysis requires more than
matrix approximation in order to accommodate scalability and ex-
ibility for various algorithms. In the subsequent sections, we de-
velop and validate CSGE in the context of large, dynamic social
networks.

3.2 Extensions
Different social networks exhibit different link structure, density,

and dynamic behavior as their purpose, characteristics, and demog-
raphy vary. In this section, we propose the following extensions to
the basic CSGE algorithm aiming to better accommodate various
networks: (i) asymmetric adjacency matrix computation to exi-
bly accommodate networks with asymmetric link relationships, (ii)
further embedding to scalably handle larger networks, (iii) incre-
mental updates to cope with dynamic nature of social networks,
and (iv) parallel/distributed computation to balance the computa-
tion load.

Asymmetric adjacency matrices. There are two possible strate-
gies to cope with an asymmetric adjacency matrix A:

(1) When the fraction of asymmetric edges (i.e., vertex pairs
(i, j) such that A[i, j] )= A[j, i]) is not high, we can simply derive
the basis of the clustered embedding subspace (i.e., the V matrix)
using a symmetrized version of A, e.g., Asym = 1

2 (A + AT) or
Asym = max(A, AT). We can then capture the asymmetry of A
by solving minS ‖A−V SV T‖F which yields S = V TAV , where

‖X‖F =
qP

ij X[i, j]2 is the Frobenius norm of X.

(2) Alternatively, we can apply singular value decomposition
[13] to compute the best rank-ri approximation for every cluster
(diagonal block), yielding Aii ≈ UiΣiV

T
i for i = 1, . . . , c, where

Σi is a diagonal matrix containing the ri largest singular values of
Aii, Ui and Vi are orthonormal matrices with the corresponding left
and right singular vectors, respectively. Due to the orthonormality
of Ui and Vi, U

!
= diag(U1, . . . , Uc) and V

!
= diag(V1, . . . , Vc)

are also orthonormal. We can then use the block-diagonal matrices
U and V to obtain an asymmetric clustered graph embedding for
the entire adjacency matrix A, which is written as A ≈ USV T.
The optimal S, in least squares sense, is

S = UTAV =

2

64
S11 · · · S1c

...
. . .

...
Sc1 · · · Scc

3

75 ,

where Sij = UT
i AijVj , for i, j = 1, . . . , c. The asymmetric

graph embedding A ≈ USV T has properties very similar to that
of the symmetric graph embedding. For example, it can be ap-
plied to efciently approximate matrix powers Ak ≈ (USV T)k =
U(SV TU)k−1SV T.

Further embedding. With a large number of clusters, and larger
ranks in the approximations, the size of S could become too large.
To reduce memory usage, we can further compute SGE of the em-
bedded adjacency matrix S. That is, we further approximate S by
keeping the largest eigenvalues (in magnitude), i.e., S ≈ Q̄Λ̄Q̄T,
where Λ̄ contains the largest eigenvalues of S and Q̄ contains the
corresponding eigenvectors. The combined approximation is then
A ≈ V Q̄Λ̄QTV T. Note that we can directly derive SGE S ≈
Q̄Λ̄Q̄T without having to explicitly compute the dense matrix S
(which requires extra computation and memory). All we need is
to treat S = V TAV as an operator acting on a vector. Thus, for



a given vector v we compute Sv = (V TAV )v = V T(A(V v)).
Since V is block diagonal, and A is sparse, computing matrix-
vector products with both V and A is efcient. State-of-the-art
algorithms for sparse eigendecomposition (e.g., [21, 22]) can then
efciently compute SGE S ≈ Q̄Λ̄Q̄T using such matrix-vector
products.
Incremental updates. Because many social networks are highly
dynamic, it is desirable to cheaply update the graph embedding
equation A ≈ V SV T under the new adjacency matrix A′ = A +
∆A when ∆A has only few non-zero elements. A simple strategy
is to keep V stable while updating S with

S′ = V TA′V = V T(A + ∆A)V = S + V T∆AV
!
= S + ∆S , (8)

where ∆S = V T∆AV contains the updates to S and can be ef-
ciently computed due to the sparsity of ∆A. The embedding for
the new adjacency matrix A′ is then A′ ≈ V S′V T.

Parallel/distributed computation. For the applications with pre-
clustered input, CSGE is naturally suited for parallel/distributed
computation. For example, consider the email exchange graph of
a large corporation, which may consist of a number of organiza-
tions. Instead of requiring a separate clustering step, we can di-
rectly partition users based on their natural organizational bound-
aries. Each organization (i.e., cluster) i can then derive Vi locally
based on its internal email exchange subgraph Aii according to
Aii ≈ ViΛiV T

i . Each pair of organizations i and j can jointly
compute the block Sij of the embedded adjacency matrix S based
on their Vi, Vj and the inter-organization email exchange subgraph
Aij , which can again be locally monitored. The ability to support
parallel/distributed computations can further improve the efciency
in parallel/distributed computational environments.

3.3 Advantages
Compared with the rank-r SGE A ≈ UΛUT, the CSGE A ≈

V SV T can achieve much higher accuracy while using a compara-
ble amount of memory. In many cases, CSGE is also computation-
ally more efcient. To simplify the discussion for CSGE, we use
r-dimensional graph embeddings for each cluster Aii (i.e., ri = r).

3.3.1 Efciency
Memory usage of the nal embedding. From the block-diagonal
structure of V , we immediately observe that we have a cr-dimen-
sional embedding in CSGE, while only an r-dimensional embed-
ding in SGE. Thus, there are c times more columns in Vm×cr than
in Um×r . However, Vm×cr has exactly the same O(mr) mem-
ory usage as Um×r , because we only store the diagonal blocks
Vi, and not the off-diagonal blocks, which are all zeros (see Fig-
ure 1). Comparing the embedded adjacency matrices S from CSGE
and Λ from SGE, we see that the cr × cr matrix S is larger and
dense, while the Λ is r × r and diagonal. Therefore, CSGE uses
O(mr + c2r2) total memory and SGE uses O(mr + r). For large
graphs with millions of vertices, the memory complexity is dom-
inated by U or V because we have m * r and m * cr. For
example, in the LiveJournal dataset m = 1, 770, 961. With (typ-
ical values) r = 100 and c = 50, S accounts for only 12% of
the total memory usage of CSGE. As shown in Section 3.2, we can
further reduce the memory usage of S through another embedding.
So the total memory usage of CSGE is comparable to that of SGE.

Memory usage for deriving the embedding. With state-of-the-art
algorithms for computing a small number of eigenvectors of a large
and sparse matrix (e.g., [21,22]), SGE has a memory complexity of
O(m(r + p)), where p is a user specied parameter and usually
p ≈ r. A smaller p requires less memory but the convergence
becomes slower, and vice versa. For CSGE, the approximation of

the different clusters is independent of one another and thus the
computation of each cluster can be done using the entire memory
space. Because the size of each cluster mi = |Vi| may be orders
of magnitude smaller than m =

Pc
i=1 mi, we can compute the

per-cluster spectral graph embedding with a much larger dimension
than the embedding on the entire m. When c = 10, for example,
the average cluster size would be about m/10. Allowing CSGE to
fully utilize the entire memory space would increase the maximum
computable dimensions from r to 10r.

Computational efciency. The time complexity for computing
CSGE or SGE is dominated by the cost of eigendecomposition.
State-of-the-art algorithms (e.g., [21,22]) for sparse eigendecompo-
sition are typically iterative; their time complexity for each iteration
scales linearly with respect to the number of non-zeros in the input
matrix, whereas the number of iterations required to achieve con-
vergence depends on the gap between adjacent eigenvalues. Thus,
it typically takes many more iterations to decompose the normal-
ized adjacency matrix T = D−1/2AD−1/2 than the original adja-
cency matrix A because eigenvalues of T have smaller gaps.

It is easy to see that the number of non-zeros in the global adja-
cency matrix A is larger than the total number of non-zeros from all
of the per-cluster adjacency matrices Aii. Hence, the per-iteration
cost for decomposing A is higher than the total per-iteration cost
for decomposing all the Aii. In addition, our experience suggests
that it often takes a larger number of iterations for the global eigen-
decompositon to converge. As a result, it is often much faster to
compute many r-dimensional graph embeddings of smaller matri-
ces Aii than it is for a single r-dimensional graph embedding com-
putation of a large A. Our experimental results in Section 5 show
that even after including the initial clustering time of the graph as
well as the computation time for S, CSGE is still much faster than
SGE. In the specic case when the normalized adjacency matrix
T is used, CSGE is an order of magnitude faster than SGE. More-
over, with parallel/distributed computation of clusters detailed in
Section 3.2, we can further improve the timing efciency of CSGE.

3.3.2 Accuracy
An important consequence of explicitly focusing on each cluster

of the network is that, using the same amount of memory, CSGE
yields a signicantly smaller residual than the residual for the reg-
ular SGE, i.e., ‖A − V SV T‖F < ‖A − UΛUT‖F , Recall that
SGE is optimal with respect to the dimension of the embedding
(or with respect to the rank in the approximation), but in terms of
memory consumption, CSGE gives signicantly better embedding
(see Section 5).

The accuracy benet of CSGE is most signicant when we are
able to transform (using permutations) a given adjacency matrix so
that most of the non-zeros are contained within the diagonal blocks.
This property is closely related to a graph forming good clusters.
Many, if not all, real-world graphs and social networks exhibit this
property of forming reasonably good clusters [23]. This is certainly
the case for the datasets we consider in this paper.

Interestingly, even if the original graph does not form good clus-
ters or if the clustering algorithm performs poorly, CSGE can still
achieve a lower residual error than the regular SGE. The following
theorem establishes this guarantee for the special case with c = 2
clusters 1.

THEOREM 1. Let A ≈ UΛUT be the r-dimensional SGE. Split
U into any two parts UT = [UT

1 UT
2 ]. Let Ui = QiRi be the QR

decomposition [13] of Ui, where Qi is orthonormal (i.e., QT
i Qi =

1The proof of the theorem is provided in the technical report version of this paper [41].



Ir) and Ri is upper triangular. Let V = diag(Q1, Q2) and let
S = V TAV . We have ‖A − V SV T‖F ≤ ‖A − UΛUT‖F .

The theorem can be easily generalized to the case with c > 2 clus-
ters. Therefore, under any arbitrary clustering of the original graph,
there always exists CSGE that has a lower residual error than the
regular SGE.

4. APPLICATION TO SOCIAL NETWORKS
In this section, we describe how we apply CSGE to three signi-

cant social network analysis tasks. In proximity estimation, we pro-
vide detailed description on estimation techniques to a number of
proximity measures. In missing link inference, we leverage CSGE
in determining unobserved interactions in the well appreciated net-
work analysis problem. And in link prediction, we develop novel
parameter learning schemes aimed at automatically optimizing for
the best parameter conguration for targeted networks.

4.1 Proximity estimation
In Section 2.1 we dened four proximity measures: common

neighbors, Katz measure, rooted PageRank, and escape probabil-
ity. Each of these proximity measures can be computed or approxi-
mated using three different approaches: (i) direct computation; (ii)
approximation using SGE A ≈ UΛUT from Eq. (4); and (iii) ap-
proximation using CSGE A ≈ V SV T from Eq. (7). We obtain 12
different proximity measures as summarized in Table 1. Note that
following [40], the summation for the Katz measures are truncated
to only include kmax = 6 terms (i.e., at most length-6 paths are
taken into account). This truncation is necessary to compute the
real proximity measures that do not use any graph embedding [40];
these serve as the ground truth for accuracy evaluation when we
compare approximated measures from (ii) and (iii). In the rooted
PageRank measures where we truncate the summation to only in-
clude kmax = 20 terms, we have T

!
= D−1/2AD−1/2 ≈ ŪΛ̄ŪT

(from SGE) and T ≈ V̄ S̄V̄ T (from CSGE). Finally, the escape
probability measures are computed from the rooted PageRank mea-
sures using the function f dened in Eq. (1).

4.2 Missing link inference
Missing link inference aims to infer additional links that, while

not directly visible, are likely to exist (based on directly observed
links). Missing link inference falls into the general realm of com-
pressive sensing, which aims to reconstruct missing data based on
indirect, partial observations. Compressive sensing has many ap-
plications in networking [46] and beyond, and has attracted consid-
erable research attention recently (e.g., [7, 11, 35, 46]).

Problem denition. Let G = (V, E) be a social network with a
binary adjacency matrix A. Let O be the set of observed edges or
links and M = E \ O be the set of missing or unobserved links.
Let AO be the incomplete adjacency matrix containing the set of
observed links. AO is dened as

AO[i, j] =


A[i, j], if (i, j) ∈ O;
0, otherwise.

Let AM = A−AO. Given AO, the goal of missing link inference
is to infer non-zeros in AM as they correspond to the set of missing
links in M.

Inference algorithm. Despite much progress on compressive sens-
ing, we are not aware of any existing compressive sensing algo-
rithm that can scale to massive social networks with millions of
vertices. Therefore, in this paper we explore the following simple
but much more scalable heuristic. We rst compute proximity mea-
sures based on the observed incomplete adjacency matrix AO (e.g.,

those given in Section 4.1), and then assume that the high values
in these proximity measures will correspond to the set of missing
links, i.e., non-zeros in AM. The threshold for determining high
proximity measure values can be varied to achieve different trade-
offs between false positives and false negatives.

4.3 Link prediction
Link prediction [25] refers to the task of predicting which ver-

tex pairs in a social network will become connected. An accu-
rate link predictor can provide valuable insights for constructing
meaningful network evolution models [4, 9]. It also allows social
networks to make high-quality recommendations on potential new
friends, making it easier for individual users to expand their social
neighborhood. Link prediction also has direct applications in cy-
ber security. For example, it allows one to conjecture that certain
individuals in a terrorist network are working together even though
their interaction has not been directly observed [18]. In this section,
we show how CSGE and supervised learning together can facilitate
more accurate link prediction with no parameter congurations.

4.3.1 Problem specication
A natural setting for evolving social networks, or networks in

general, is to introduce discrete time steps t = 1, · · · , tmax at
which �“snapshots�” Gt = (Vt, Et) of the graph are taken. Denote
the corresponding adjacency matrices with At. To ease the analysis
and notation, we will restrict ourselves and only use V1 for all time
steps, i.e., Vk = V1

!
= V . It is clear that the evolution of the graph

is incremental. In terms of the adjacency matrices, we can express
this as At+1 = At +∆t, where ∆t contains the edges or links that
are formed between time t and t + 1 (for simplicity, we assume no
edges are removed).

In the link prediction problem, given At, we try to nd the non-
zeros in ∆t as they correspond to newly formed links. The standard
heuristic is to rst compute some proximity measures based on At

(e.g., those given in Section 4.1) and then assume that the high
scores in these proximity measures will correspond to new links,
i.e., non-zeros in ∆t. In the following, we present several super-
vised proximity measures that explicitly target ∆t and construct
graph specic models for link prediction. To clarify the problem
setting, we use three snapshots, A1, A2, and A3, in the order of
data collection time. The rst two will be used to learn the model
and the third one will be used to validate the obtained model. Ex-
tending to more than three snapshots is straightforward.

4.3.2 Link prediction models and framework
Link prediction models. The models we propose have generic
prediction scores, obtained from a low dimensional embedding

P∗ = W∗F∗(x)W T
∗ ,

where W∗ represents the basis for a graph embedding, and F∗(x) is
a small matrix with the model parameters x that will be learned. In
particular, we will consider the following two models that are char-
acterized by the particular form of the embedded adjacency matrix
F∗(x) and the kind of graph embedding (spectral or clustered spec-
tral) that is used.

• Spectral learning. In this model, we set Wsl-sge = Ut, where
At ≈ UtΛtU

T
t is SGE of the adjacency matrix At. We then

let the parameter matrix be of the form

Fsl-sge(x) = diag(x1, · · · , xr).

• Clustered spectral learning. Here we set Wsl-csge = Vt,
where At ≈ VtStV

T
t is CSGE of the adjacency matrix At as



Abbreviation Method name Denition

cn Common neighbor Pcn = A2

cn-sge Common neighbor with spectral graph embedding Pcn-sge = UΛ2UT

cn-csge Common neighbor with clustered spectral graph embedding Pcn-csge = V S2V T

kz Katz measure Pkz =
Pkmax

k=1 βkAk

kz-sge Katz measure with spectral graph embedding Pkz-sge = U
` Pkmax

k=1 βkΛk
´
UT

kz-csge Katz measure with clustered spectral graph embedding Pkz-csge = V
` Pkmax

k=1 βkSk
´
V T

rpr Rooted PageRank Prpr = (1 − α)D−1/2
` Pkmax

k=0 αkT k
´
D1/2

rpr-sge Rooted PageRank with spectral graph embedding Prpr-sge = (1 − α)D−1/2
`
I + Ū

` Pkmax
k=1 αkΛ̄k

´
ŪT

´
D1/2

rpr-csge Rooted PageRank with clustered spectral graph embedding Prpr-csge = (1 − α)D−1/2
`
I + V̄

` Pkmax
k=1 αkS̄k

´
V̄ T

´
D1/2

ep Escape probability Pep[i, j] = f(Prpr, i, j)
ep-sge Escape probability with spectral graph embedding Pep-sge[i, j] = f(Prpr-sge, i, j)
ep-csge Escape probability with clustered spectral graph embedding Pep-csge[i, j] = f(Prpr-csge, i, j)

Table 1: Description of the proximity measures.

in Eq. (7). The parameter matrix has the form

Fsl-csge(x) = Qt diag(x1, · · · , xcr)Q
T
t ,

where orthogonal matrix Qt is obtained from the full eigen-
decomposition St = QtΛStQ

T
t . Recall that Vt is block di-

agonal and St is a dense matrix that captures interactions
among all clusters. The number of parameters to be learned
is cr, where c is the number of clusters and r is the embed-
ding dimension.

Framework. Our basic framework for supervised link prediction
consists of the following two phases:

1. Supervised learning. We compute the basis matrix W∗ from
either SGE or CSGE of the rst snapshot A1. We then learn
the parameter matrix F∗(x) by performing linear regression
on ∆1 = A2 − A1 (which contains the links newly formed
between snapshots A1 and A2) with respect to F∗(x).

2. Link prediction. We compute the basis matrix W̄∗ from ei-
ther SGE or CSGE of the second snapshot A2. We then use
P∗ = W̄∗F∗(x)W̄ T

∗ as the prediction score matrix to predict
∆2 = A3 − A2, which contains the set of new links that are
formed between snapshots A2 and A3.

4.3.3 Supervised learning
Because different networks exhibit different link structures, per-

formance of link prediction schemes vary to their characteristics
( [40]). Moreover, because the characteristics tend to be unclear,
it is not easy to pick one that will perform the best. To exibly
accommodate diverse networks, we develop a series of supervision
schemes that seek for the most favorable model parameters.
Problem setup. At each time step t, there are three associated sets:
the set of existing edges Et; a positive setPt containing vertex pairs
that form new links in the time interval (t, t+1]; and a negative set
Nt containing vertex pairs without edges at time step t + 1. Using
adjacency matrices At and At+1, we can write

Et = {(i, j) | At[i, j] )= 0},
Pt = {(i, j) | At[i, j] = 0 and At+1[i, j] )= 0},
Nt = {(i, j) | At[i, j] = 0 and At+1[i, j] = 0}.

It is straightforward to see that Et+1 = Et ∪ Pt, and that the three
sets Et, Pt, Nt are mutually disjoint.

Supervised learning of model parameters. We perform linear
regression on ∆1 to learn the parameter matrix F∗(x). Specically,
we learn x by solving the following least squares problem:

min
x

X

(i,j)∈S

`
[W∗F∗(x)W T

∗ ]i,j − ∆1[i, j]
´2

, (9)

where W∗ is obtained from either SGE or CSGE of A1, F∗(x)

is one of the parameter matrices from Section 4.3.2 (for time step
t = 1), ∆1 = A2 − A1 contains the new links, the notation [ · ]i,j
denotes the i, j entry of the argument, and S is a sample set (see
discussions below). Care must be taken in order to solve this least
squares problem efciently. In the interest of brevity, we will defer
the details of the solution process to the technical report [41].

Choice of the sample set S . In an ideal case, the model parameters
in the vector x should be learned only over the positive set P1 and
the negative set N1, thus setting S = P1∪N1. With this approach,
the edges that already exist in E1, i.e., the non-zeros in A1, will not
contribute to the learning process. The reason behind this choice
of the sample set is that we only want to target links that will form
during the next time interval and we do not want to target links that
already exist. Unfortunately, for the social networks we consider,
the choice S = P1 ∪ N1 would yield a sample set of the order
|V|2 and this is practically impossible to work with. To make the
problem manageable, we choose S to contain a fraction of P1 and
a fraction of N1. In addition |S| should not only be large enough
to capture the essence of the model, but also have a manageable
size. In our experiments we have |V| ≈ 2 · 106 and we choose
|S| ≈ 5 · 105 (see Section 5).

4.3.4 Link prediction
Different link prediction models are validated by predicting the

new links in A3. The prediction scores are based on

P∗ = W̄∗F∗W̄
T
∗ ,

where W̄∗ is obtained from a SGE or CSGE based on A2 (as op-
posed to A1 which is used in the model learning step). Speci-
cally, let SGE of A2 be U2Λ2U

T
2 , then the prediction scores for

sl-sge can be written as

Psl-sge = U2Fsl-sge(x)UT
2 = U2 diag(x1, · · · , xr)U

T
2 ,

where the parameter vector x = [x1, · · · , xr]
T is learned by solv-

ing Eq. (9). Similarly, let CSGE of A2 be V2S2V T
2 , then the pre-

diction scores for sl-csge are given by

Psl-csge = V2Fsl-csge(x)V T
2 = V2Q2 diag(x1, · · · , xcr)Q

T
2V T

2 ,

where Q2 is obtained from the eigendecomposition S2 = Q2ΛS2QT
2 ,

and the parameter vector x = [x1, · · · , xcr]
T is learned by solving

the least squares problem in Eq. (9).

5. EVALUATION
In this section we present experimental results that evaluate ac-

curacy, scalability, and exibility of CSGE in the context of the
three applications on massive scale social network datasets.



c µ =
P

i mi/c Links in Aii links in Aij , i "= j

Flickr 18 110,563 71.8% 28.2%
LiveJournal 17 106,241 72.5% 27.5%
MySpace 17 125,721 51.9% 48.1%

Table 2: Clustering results with Graclus; c is the number of
clusters and µ is the average cluster size.

5.1 Dataset description
In our experiments, we use three large real-world online social

networks with millions of nodes: Flickr (1,990,149 nodes, 41,302,
536 links), LiveJournal (1,770,961 nodes, 83,663,478 links) and
MySpace (2,137,264 nodes, 90,333,122 links) From the dataset,
we see that the majority (80%) of links in the positive set P1 are
between user pairs who are two-hops away, whereas the fraction of
new links between users who are 4 or more hops away is very small
2. All users in the datasets are connected to at least one other user
and for simplicity, we do not consider rare occasions of link dele-
tions. Links in MySpace are undirected because it requires mutual
agreement for users to become friends. Although Flickr and Live-
Journal allow directed �‘follower/followee�’ relations, the majority is
symmetric. For simplicity, we make Flickr and LiveJournal undi-
rected.

Flickr is a photo-sharing website, where users can connect to each
other by indicating a relationship. This dataset was gathered by a
breadth-rst search on the graph starting from a few seed nodes. To
allow most nodes to be discovered, we use the rst few months as a
bootstrap period, and create three snapshots when most nodes have
been discovered and link growth has stabilized. Because of this
crawling method, we observe that even though the snapshot dates
are just ten days apart, there is 2% growth in the number of links.

LiveJournal is a blogging site, where members can become �“fans�”
of other members. The dataset was collected by listening to the
RSS server, which sends out recent update information. The statis-
tics suggest that LiveJournal users are more active in forming links
than users in other networks.

MySpace is a social networking site for people to interact with
their acquaintances by posting on each other�’s personal pages. We
collected the friendships of the rst 10 million users. MySpace
assigns user IDs chronologically. Since the rst few million IDs
we crawled are also the oldest IDs, they have already formed most
of the links and are relatively dormant in forming new ones (i.e.,
the fraction of new links is smaller than those of other networks).

5.2 Scalability
In this section, we compare various aspects of the computational

efciency of CSGE, SGE, and proximity embedding introduced in
[40]. All benchmarks were done using an Intel Xeontm E5440 ma-
chine with 32GB memory, running Ubuntu Linux Kernel v2.6.

Graph clustering: In our experiments we use both GRACLUS
[10] and METIS [1] to partition the social networks. The two
software packages produce different clusterings as they minimize
different objective functions: METIS attempts to produce clusters
with equal size, regardless of the inherent clustering structure of
the network, whereas GRACLUS produces more balanced clus-
ters. Both software produce good quality partitioning in a relatively
short period of time. All experiments are conducted on the largest
connected component of each graph, which results in only a very
small fraction of users (5.1%) and links (0.5%) being discarded.
Table 2 gives an example of clustering results on each data set. In
this particular case the clustering was performed using GRACLUS
in a recursive way until all cluster sizes were smaller than 1/10 of
2A detailed description of the three datasets is provided in our technical report [41].
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Figure 3: Comparison of eigendecomposition times (on LiveJournal).

the original network size. We observe that more than 70% of the
links in Flickr and LiveJournal are within the same clusters, while
only 51.9% of the links in MySpace are within the same clusters.

Timing benchmarks: Approximation of proximity measures in-
volves two stages: (1) preparation of the embedded matrix and (2)
querying proximity of user pairs from the embedded matrix. We
evaluate the timing performance of CSGE by comparing it against
other algorithms for each of these stages.

In the rst stage of preparing an embedded matrix, we compare
CSGE against SGE and Proximity Embedding from [40]. In the
case of CSGE, the preparation involves three sub-stages: (i) cluster-
ing; (ii) SGE of each cluster; and (iii) computation of the embedded
adjacency matrix S. We compare CSGE and SGE for embedding
both the adjacency matrix A and the normalized adjacency matrix
T = D−1/2AD−1/2 in each of these sub-stages. For Proximity
Embedding, which does not directly approximate A or T , we in-
stead generate models to compute approximations of Pkz and Prpr

with relatively few (1,600) �“landmark�” nodes so that they are com-
parable to the embeddings of A and T , respectively.

Table 3 summarizes the preparation timing benchmarks for the
three approximation algorithms for all three data sets. The number
of clusters is set to be c = 20 and the rank in SGE and CSGE is
set to be r = ri = 100. We see that CSGE outperforms the other
two algorithms in most cases; in the approximation of A, CSGE is
up to 30% faster than the other algorithms. In the approximation
of T , the timing difference between CSGE and SGE becomes even
higher, resulting in over an order of magnitude difference. The con-
vergence of iterative spectral methods is inuenced by the size of
the �“gap�” in the eigenvalues [21]. Because the eigenvalues of T
are normalized to be between 1 and -1 with very small gaps be-
tween them, the computation times for T are expected to become
much longer than that of A; therefore, the difference in timing per-
formance becomes more dramatic. In an extreme case of Flickr
dataset where all 100 dominant eigenvalues of T (and Tii) are very
close to 1, the computation of T by CSGE is 20% slower than the
computation of rooted PageRank by Proximity Embedding due to
the aforementioned reasons.

Among the three sub-stages of CSGE, the majority of time is
spent in SGE for each of the Aii and Tii. Figure 3 further ana-
lyzes the SGE time of LiveJournal dataset with varying numbers
of clusters and sizes of embedding dimensions within each cluster.
As Flickr and MySpace exhibit similar trends, we omit them here
for brevity. The timing results for c = 1 are simply SGE on the
entire A (because A is a single connected component). The tim-
ings for c > 1 are the sum of SGE times for all Aii. We observe
from the graph that, for any given r, the aggregate times of cluster-
wise approximations are signicantly less than the SGE time with-
out clustering. It is also evident that computational time generally
decreases with increasing number of clusters. Furthermore, from
these results, we can estimate the potential amount of time im-
provement when we parallelize the per-cluster SGE computation
(as discussed in Sec. 3.2).



Proximity Embedding SGE CSGE
Dataset Katz Rooted PageRank A T clustering SGE of all Aii S Total SGE of all Tii S̄ Total
Flickr 216 276 19.9 2,821 1.4 12.0 2.3 15.7 327 3.1 331.5
LiveJournal 324 456 23.8 420 1.4 12.8 2.4 16.6 33.0 2.5 36.9
MySpace 330 588 22.8 546 2.6 14.4 2.9 19.9 48.1 3.5 54.2

Table 3: Comparison of preparation times (c = 20 and r = ri = 100). All timings are in minutes.

Direct Method Proximity Embedding SGE CSGE
Dataset cn kz kz-prox.embed. cn-sge kz-sge cn-csge kz-csge sl-csge
Flickr 15.9ms 8040ms 0.051ms 0.042ms 0.045ms 2.72ms 2.76ms 5.59ms
LiveJournal 23.5ms 14790ms 0.045ms 0.038ms 0.036ms 5.45ms 2.03ms 4.57ms
MySpace 24.5ms 16655ms 0.076ms 0.040ms 0.036ms 2.60ms 2.65ms 4.73ms

Table 4: Comparison of query times (r = ri = 100, 0.6 million samples).

AFL B C

m 2,000,000 6,000,000 12,000,000
Numbers of links 40,000,000 239,000,000 598,000,000
c 18 52 104
Timing 22.6 min 116.3 min 391.2 min
Memory usage 74 MB 546 MB 1,197 MB

Table 5: Computational time and memory usage for CSGE.
Network size m and number of links are approximate.

In the second stage of querying proximity of user pairs, we com-
pare the average query times of 600,000 randomly sampled node
pairs for the three embedding algorithms (i.e., CSGE, SGE, and
Proximity Embedding) as well as directly calculated common neigh-
bor and Katz scores. We consider the direct calculation in the query
stage but not in the preparation stage because the storage of exact
proximity measures for all m2 node pairs in preparation stage is
prohibitive. From Table 4, we observe that all three embeddings
are orders of magnitude faster than the direct calculations. While
all three embedding algorithms exhibit a millisecond level of fast
query time, CSGE is slightly slower than the other two. This is
because CSGE is dependent on the size of its dense core matrix
S. While the query time of CSGE is already several folds faster
than that of Proximity Embedding, in a time-sensitive online ap-
plication, the query time can be further improved by either using
a smaller S or applying low-rank approximation on S (c.f., further
embedding in Sec. 3.2).

Scalability of graph embedding: While CSGE has more ef-
cient precomputation, its major advantage is lower memory usage
so that it can achieve higher accuracy for a xed memory cost.
In Section 3.3.1, we discussed the memory usage of CSGE. To
show the scalability, both in computational time and memory ef-
ciency, we present some measurements on even bigger (arti-
cial) networks. Let AFL, ALJ, and AMS be the adjacency matrices
for Flickr, LiveJournal and MySpace, respectively. Then we form
B = diag(AFL, ALJ, AMS)+AOff where AOff contains a small frac-
tion of links in the off-diagonal part so that B becomes connected.
We also form C in a similar way, C = diag(B,B) + BOff. One
may consider that the constructed datasets correspond to some real-
world social networks. The approximate size, number of links, and
number of clusters are presented in the upper half of Table 5.

The lower part of Table 5 shows the memory required to store
V = diag(V1, · · · , Vc) and the embedded adjacency matrix S.
Corresponding computational times are also given. We x ri =
100 in all cases and examine the behavior by increasing the number
of clusters c rather than the size of individual clusters. The memory
and time required to create the embedded adjacency matrix S not
only grows quadratically with the number of clusters c, but also
with the rank ri. Despite the fact that the size of S is inherently
quadratic in c, CSGE is able to handle the largest network with 12
million users and 598 million links - with only 1.2 GB of memory.
On the other hand, regular SGE is unable to load U for B network,

conrming that S is indeed not a limiting factor of memory usage
in CSGE, and that it has higher spatial scalability than SGE.

5.3 Proximity measure estimation
Next, we compare the accuracy of Katz, rooted PageRank, and

escape probability when they are combined with SGE and CSGE.
For the sake of brevity, we present results only for LiveJournal.

5.3.1 Evaluation methodology
Since it is expensive to compute and store the actual proxim-

ity measures for all m2 user pairs, we instead evaluate SGE and
CSGE using sampled user pairs S , which consists of 100 columns
randomly chosen from the proximity matrix. This gives roughly
180,000,000 sample points. For each pair (i, j) ∈ S we let pij

denote the �‘true�’ value of a proximity measure and p̂ij to be an �‘es-
timate�’. For example, we may have pij = Pkz[i, j] while p̂ij =
Pkz-sge[i, j]. The true proximity measures were computed for com-
parison purpose using the methodology outlined in [40]. Regard-
ing the accuracy measure, we use the normalized absolute error
eij = |pij − p̂ij |/µ, where µ =

P
(i,j)∈S pij/|S|. We plot the

cumulative distribution function (CDF) to compare the error.
In all Katz computations, we use β = 0.0005 and kmax = 6.

For computing the rooted PageRank and the escape probability, we
use α = 0.15 and kmax = 20 (c.f., Table 1). The embedding
subspace dimensions in SGE and within each cluster in CSGE are
set to r = 100. Clustering of the datasets is done on A while the
graph embedding is based on A for Katz and T = D−1/2AD−1/2

for rooted PageRank and escape probability.

5.3.2 Accuracy evaluation

Approximating low-rank matrix. Figure 4 (a) plots the CDF of
the normalized absolute errors in approximating Katz measure with
Pkz-sge and Pkz-csge. We make two observations: (1) for most sam-
ples, the error is small: with 85% of the node pairs having an error
of 0.2 or less; and (2) the error for CSGE is lower than SGE with
the gap in error as little as 2%. A likely reason for SGE and CSGE
yielding similar performance is that Pkz has a low intrinsic dimen-
sionality and that both SGE and CSGE have reached a point where
r = 100 is enough for the low-rank approximation of Katz.

Approximating non low-rank matrix. In Figure 4 (b) we present
the CDF of normalized absolute errors in approximating the rooted
PageRank measure with Prpr-sge and Prpr-csge. We observe that clus-
tering gives a considerable improvement in the accuracy of the
rooted PageRank measure. For over 95% of the samples, the nor-
malized absolute error is less than 0.01. On the other hand, SGE
exhibits a relatively higher error: above 0.6 error for 95% of the
samples. It can be veried that the normalized adjacency matrix
T , for which we compute SGE and CSGE, has a much higher in-
trinsic dimensionality than A. The improved accuracy in Prpr-csge

may be explained by the fact that 100 dimensional embeddings on
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(c) Escape Probability
Figure 4: Accuracy of proximity estimation for LiveJournal dataset.
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(c) MySpace
Figure 5: Missing link inference accuracy for different proximity measures.

each cluster (CSGE) captures a much larger fraction of variance
compared to an r = 100 embedding on the entire matrix (SGE).
Figure 4 (c) shows the CDFs of normalized absolute error for es-
cape probability measure Pep-sge and Pep-csge. Again, using clus-
tering signicantly improves the accuracy. This improvement is to
be expected because the escape probability is based on the rooted
PageRank measure. While CSGE provides a normalized absolute
error less than 0.1 for more than 95% of the samples, SGE exhibits
a much higher error of over 20 for the same 95% of the samples.

Summary. Our proximity estimation evaluation shows that CSGE
is not only effective in approximating proximity measures on A, but
also performs well on matrices with high intrinsic dimension such
as the normalized adjacency matrix T . Compared with SGE, CSGE
can accurately approximate the rooted PageRank and escape proba-
bility despite the general difculty in approximating these metrics.

5.4 Missing link inference
Here, we compare the amount of correctly inferred missing links

among proximity measures with and without clustering.

5.4.1 Evaluation methodology

Metrics. The accuracy of link prediction is quantied by comput-
ing false positive rates (FPR = #of incorrectly predicted friend links

#of non-friend links ) , and

false negative rates (FNR = # of missed friend links
# of new-friend links ) of all user pairs in a

sample set. Note that the denominator of the FPR is the number of
user pairs who are not friends. This number is usually very large,
e.g.in MySpace, we have 2 × 106 × 2 × 106 − 90 × 106 ≈ 1012.
Since we are more interested in picking up small number of correct
friendships (as opposed to nding as many new friendship links as
possible), we present trade-off curves with an emphasis to small
FPR area by displaying the x-axis in log-scale.

Experimental setup. From the rst snapshots, A1, of all three
datasets, we randomly mask half of the links as missing M. The
adjacency matrix with the remaining links is considered as an in-
complete adjacency matrix with observed links AO. The trade-off
curve between FPR and FNR is plotted for all user pairs given the
non-zero of AM (i.e., AM being used as the ground truth).

5.4.2 Accuracy evaluation
In Figure 5, we present the performance of Pcn-sge, Pcn-csge, Pkz-csge,

and Pkz-csge. We observe that using CSGE in both proximity mea-
sures consistently outperforms SGE in all three datasets. Compar-
ing across different measures, we observe that Katz measure with
CSGE generally performs the best. For instance, in LiveJournal,
for a given FPR, Pkz-csge yields 10% or less FNR than Pkz-sge.

5.5 Link prediction evaluation
In this section, we compare the link prediction accuracy of su-

pervised learning combined with CSGE, supervised learning with
SGE, and unsupervised proximity measures.

5.5.1 Evaluation methodology

Training and testing steps. From each dataset, we take three snap-
shots of social graphs, A1, A2, and A3, with 1-2% (600,000 -
1,300,000) increment in links from the previous snapshot. To learn
the model parameters in the two supervised models, we devise the
training step to use a graph embedding of A1 and minimize Eq. (9)
by explicitly targeting newly formed links in A2. In the next step of
testing, we use an embedding of A2 with the learned model param-
eters to predict new links in A3. We validate the prediction against
the ground truth of A3.

Because of the size of our datasets, we randomly select a fraction
of the positive and negative samples. Specically, for training, we
select 100,000 user pairs from the positive links P1, and 500,000
from the negative links N1. For testing, we pick a different sample
set of the same size as before but now from P2 and N2.

In a second experiment, we learn the model parameters based
on a sample set of user pairs that are connected by two hops. This
practical scenario focuses on link prediction for user pairs who are
already close in the network (likely to be friends but not friends
yet) and thus require proximity algorithms to consider only a small
set of user pairs. These are user pairs that will form a triangle with
a common friend, if they become friends.

Metrics. The accuracy of link prediction is quantied using the
FPR and FNR introduced in Section 5.4. In the context of link
prediction, the �“true�” and �“estimated�” links refer to the links in



 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1

Fa
ls

e 
N

eg
at

iv
e 

R
at

e 
(in

 %
)

False Positive Rate (in %)

sl-csge
kz-sge

cn

 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1

 

 

 
 
 

(a) Flickr

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1

Fa
ls

e 
N

eg
at

iv
e 

R
at

e 
(in

 %
)

False Positive Rate (in %)

sl-csge
kz-sge

cn

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1

 

 

 
 
 

(b) LiveJournal

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1

Fa
ls

e 
N

eg
at

iv
e 

R
at

e 
(in

 %
)

False Positive Rate (in %)

sl-csge
kz-sge

cn

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001  0.01  0.1

 

 

 
 
 

(c) MySpace
Figure 6: Link prediction accuracy of different measures.
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(c) MySpace
Figure 7: Link prediction accuracy with 2-hop scenario.

P2. As in missing link inference, the raw count of non-friend pairs
in FPR is extremely large, and thus we present the performance
measures with x-axis in log-scale.

Link predictors. We have conducted an extensive set of exper-
iments, with numerous methods. In the interest of brevity, we
present link prediction results based on three link models: Pcn,
Pkz-sge and the supervised Psl-csge.

5.5.2 Accuracy evaluation

Clustered Spectral Graph Embedding. Figure 6 presents the
link prediction accuracy of Pcn, Pkz-sge and Psl-csge. We see that,
the spectral learning with CSGE performs the best in all datasets,
followed by the Katz measure with SGE. For example, at an FPR
of 0.001, spectral learning with CSGE reduces FNR by more than
10% in both Flickr and LiveJournal. In MySpace, the performance
of clustered spectral learning is still better than the other two mea-
sures albeit by a smaller margin.

Two hop user pairs. In Figure 7, we evaluate link predictors
for user pairs who are only two hops apart. Our spectral learning
model again outperforms other measures by up to 20% in the Flickr
dataset, and 10% in the LiveJournal dataset. For MySpace, the per-
formance of Katz with SGE and spectral learning with CSGE is
better than common neighbor by about 4%.

Note that there is no signicant difference among predictors in
MySpace. We speculate that this is an artifact of the data collection
technique. Since this data set contains rst 10 million users [40],
these users have been in the network the longest time, and seem
to already have a large number of friends, and thus are less active
in creating new relationships. An indication of the claim is in the
relatively small rate of link increase in MySpace (0.7% on average)
compared to Flickr (1.2%) and LiveJournal (1.8%). Another pos-
sible reason is the large number of inter-cluster links in MySpace,
as shown in Table 2. Taking into account that 48% of the links
are outside the clusters, the benet of the clustering approach may
have diminished, as almost half the links in the network are not
used when computing the cluster-wise embeddings.

Summary. Through the comparison between supervised and unsu-
pervised learning methods, we verify that learning model parame-

ters in a supervised way is indeed helpful in improving accuracy.
Also, comparing the two supervised learning methods, we nd sl-
csge consistently out-performs sl-sge across different datasets.

6. RELATED WORK
Social network analysis. Traditionally, studies on social networks
often focus on relatively small social networks (e.g., [25] examine
co-authorship networks with about 5000 nodes). The recent ex-
plosion of online social networks, however, has given rise to large-
scale social networks with billions of links. A number of mea-
surement studies characterize the topological structure, information
propagation and user behavior of online social networks [2,28,29].
In [38], we explore the use of graph clustering with a few different
within clusters dimensionality reduction schemes. In this paper, we
develop the CSGE and demonstrate its effectiveness on large scale
social network analysis tasks, and illustrate its ability to cope with
temporal dynamics present in real world applications.

Proximity estimation. Given their importance in social network
applications, proximity measures have received considerable re-
search attention (e.g., [16,17,25,30,36,37,42]). A number of prox-
imity measures have been proposed, such as common neighbors,
the Katz measure [16], rooted PageRank [25], and escape proba-
bility [42]. Despite their effectiveness in a multitude of social net-
work applications (e.g., fraud detection [8], viral marketing [15],
and link prediction [25]), many existing proximity measures are
computationally prohibitive for large social networks [37, 42]. In
our previous work [40], we proposed scalable techniques for ap-
proximating proximity measures in online social networks based
on the idea of low-rank approximation. In Section 5, we compare
our new technique with [40] and show that the new approach is not
only much more scalable, it is much more accurate when the prox-
imity measures of interest have a high intrinsic dimensionality.

Link prediction. The problem with link prediction in social net-
works was rst introduced in [24] and a number of proximity mea-
sures have been considered for link prediction in [24, 25]. A de-
cision tree based link predictor that combines multiple proximity
measures has been studied in [40]. There has also been some re-
cent work on using supervised learning methods for link prediction



in diverse networks such as hyperlink and citation graphs [19]. As
shown in Section 5.5, our supervised link prediction technique can
achieve good performance in link prediction accuracy without re-
quiring network-specic parameter congurations.

Missing link inference. The problem of missing link inference is
closely related to link prediction and was also mentioned in [24,25].
Missing link inference falls into the general realm of compressive
sensing, which has broad applicability in computer science [7, 11,
35, 46]. However, we are unaware of any existing compressive
sensing techniques that can scale to massive social networks with
millions of vertices. To this end, we focus on simple inference algo-
rithms based on proximity measures, which are much more scalable
and can directly benet from our CSGE technique.

7. CONCLUSION
In this paper, we develop a novel dimensionality reduction tech-

nique termed clustered spectral graph embedding (CSGE) to em-
bed a massive original graph into a much smaller, dense graph and
show its potential in social network analysis. The existing tech-
niques often require the underlying graph to have good low-rank
approximations. CSGE, in contrast, can easily cope with mas-
sive graphs that have much higher intrinsic dimensionalities and
improves both accuracy and computational efciency.

On three large-scale real-world social network datasets (i.e., Flickr,
LiveJournal and MySpace) with up to 2 million vertices and 90 mil-
lion edges, we employ CSGE to explore three important social net-
work analysis tasks �– for proximity estimation, we achieve up to an
order of magnitude improvement in computation time and memory
usage, and up to several orders of magnitude improvement in accu-
racy when the proximity measures of interest have high intrinsic di-
mensionality. For missing link inference, CSGE consistently yields
better inference on unobserved links across different datasets. For
link prediction, our novel supervised learning automatically learns
parameter congurations optimal to target networks, achieving the
best accuracy among proximity measures being compared.
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