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Abstract—Forecasting accurately is essential to successful in-
ventory planning in retail. Unfortunately, there is not always
enough historical data to forecast items individually— this is
particularly true in e-commerce where there is a long tail of
low selling items, and items are introduced and phased out
quite frequently, unlike physical stores. In such scenarios, it is
preferable to forecast items in well-designed groups of similar
items, so that data for different items can be pooled together to
fit a single model. In this paper, we first discuss the desiderata for
such a grouping and how it differs from the traditional clustering
problem. We then describe our approach which is a scalable
local search heuristic that can naturally handle the constraints
required in this setting, besides being capable of producing
solutions competitive with well-known clustering algorithms. We
also address the complementary problem of estimating similarity,
particularly in the case of new items which have no past sales.
Qur solution is to regress the sales profile of items against their
semantic features, so that given just the semantic features of a
new item we can predict its relation to other items, in terms of
as yet unobserved sales. Our experiments demonstrate both the
scalability of our approach and implications for forecast accuracy.

I. INTRODUCTION

Forecasting is a key problem encountered in inventory
planning [1]]. In order to buy inventory in advance, retailers
need an estimate of the number of units an SKU, or as we
informally refer to: an item, is going to sell in the coming
weeks. Buying fewer units leads to lost sales opportunity,
hence lower revenue; buying too much leads to loss since the
cost of buying inventory isn’t compensated by income from
sales. In general, the loss function of buying higher/lower
is not symmetric, and besides forecasts, one also needs its
variance. But for this paper, we will ignore such details, and
just assume the goal is to forecast accuratelyﬂ

Forecasting time-series data is a well-studied field, see [2]]
for a survey. There are two main components that contribute
to an item’s forecast: trend and seasonality. Trend refers to the
velocity of sales in the past few weeks, i.e. the rate at which
sales have been increasing/decreasing. An item on promotion,
for example, may experience increasing sales and in those
weeks that trend is an important factor for forecast. Seasonality
refers to periodic events that influence the sales, for e.g.
Thanksgiving, Back-to-School sales. These events produce a
bump in sales for many items.

In brick and mortar stores, the assortment of items is fairly
stable, hence there is enough past sales data to model each
item separately. In e-commerce, however, the assortment is
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much more dynamic as there is smaller overhead to adding
an item. Many items are short lived as well. In such cases,
when an item has not been around for even a year, one cannot
estimate its seasonality. Fitting a non-trivial model to such
short time-series is also not recommended, since it is difficult
to robustly estimate model parameters. Hence, it makes sense
to forecast items in groups: that way even if each item has
a short or sparse life cycle, the group has enough data to
estimate features like seasonality. Also, modeling the group
is more robust as any outliers or missing data in one item
does not have as much influence over the final model. We
illustrate this in [Fig. I} not every time-series has adequate
data on its own, but they rise and fall in similar fashion, so
one can estimate the influence of a seasonal event on an item
even though it was not around last year.

This is not a novel insight, in fact modeling items in
groups is the foundation of the entire field of analysis of
panel/longitudinal data [3]]. Panel data refers to repeated obser-
vations of multiple entities over a period of time. They are very
commonly used in economics (for instance GDP of countries
over time), finance, political science, and other social sciences
literature. Panel data models can use correlation across the
cross-section of entities in addition to the temporal correlation,
which is the only thing univariate models exploit. Of course,
we can’t model all the items together, since there is too much
variation in their behavior. So, we need to decompose the items
into groups so that items in a group can be modeled together.
There is a lot of work on multivariate models, viz. VAR [4]],
DLM [j5] that can be used after a suitable grouping has been
obtained.

Here, we will try to formulate the grouping problem in-
dependent of the forecasting model being used. Given a set
of time-series, we want to assign them into some groups so
that each item is assigned to at least one group and the size
of each group obeys a lower and upper bound. The upper
bound is necessary because of computational considerations,
and a lower bound is necessary since with fewer items the
model is more susceptible to outliers and missing data in
individual time-series, which tend to be very noisy. Note
that the groups do not need to be disjoint; assigning items
to multiple groups does increase the computational load of
modeling, and hence should be avoided as much as possible.
Unlike traditional notions of clustering/segmenting, our goal
here is not to identify groups of similar items so that the groups
are dissimilar to each other; just to find overlapping groups of
not dissimilar items respecting the size constraints. For e.g.,



putting two very similar items in different groups would be
considered bad by traditional clustering objectives, but in our
setting that is OK. But putting two very dissimilar items in the
same group is anathema. There is an additional constraint of
a cluster having enough time-series data points, for instance
having at least k observations per week of the year, to make
sure we have a robust estimate of seasonality and the model
we fit is reliable. All these constraints make it non-trivial to
extend most known clustering algorithms in this setting, and
since violating these can lead to bad or no model fit, hence
no forecasts, they need to be enforced rigidly. In this paper,
we attempt to solve this problem along the two dimensions
of estimating similarity between items, which is essential to
successful grouping and the grouping algorithm itself.

a) Estimating Similarity: There is a rich body of litera-
ture to estimate similarity in case of sufficient sales data. But
the items newly introduced present a challenge, since they
have no past sales and the only way to forecast them is to
predict other items that it is going to sell like. A common
approach in these cases is to use the semantic data about
items, which includes its name, description, brand, etc. Our
approach seeks to generalize the successful idea of Latent
Semantic Indexing(LSI) [6]]. LSI summarizes the semantic
feature matrix, X, by its principal components, i.e. the top
directions in which this matrix has highest variance. Now
suppose, in addition to this, we had the sales matrix Y as
well. We could then use the top directions maximizing the
covariance between X and Y. That way we are able to find
the directions in which the semantic features have maximal
variance and correlation with sales. To put this idea to work
though, one needs to find these directions during training on
the set of items with enough sales, and then use them to
predict on the set of items with little sales. We use Partial
Least Squares(PLS) regression which successfully implements
this idea in a regression and predictive setting. We refer the
reader to [[/]] for a good survey; our approach is discussed in
detail in[Sect. IIIl We demonstrate that the similarity predicted
by this approach is indeed a much better predictor of sales
correlation than using just semantic features.

b) Clustering: We propose a local-search based heuristic
that starting from an initial clustering, moves items between
clusters to minimize the cost function. One of the advantages
of having small local moves is that its easier to maintain
feasibility of the constraints. Moreover, as we show, one can
actually find the optimal move in just linear time, which means
each move is relatively quick, which allows us to perform
many more iterations. Local-search methods like this have
been used in clustering before as well, see [§]], [9]. Our
heuristic though similar in spirit differs in technical details
on how to choose the moves. [9] demonstrated that local-
search based heuristics provided a good alternative, especially
in cases when k-means converges to local optima in a few
iterations. We observe the same phenomena, with k-means
making progress only for first few iterations, but unlike [9],
who rely on a combination of k-means and local search,
we rely completely on local search. This is based on the
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Fig. 1.  Sales of similar items across time. Note how there are times of
year when sales rise or fall for most items. There is of course some per-item
variation. This illustrates the value in exploiting cross-sectional correlation
across item time-series.

tradeoffs of extending k-means to deal with all the constraints
required in our case, and benefit in performance obtained.
The comparisons are discussed and empirically demonstrated
in [Sect. TV]

Roadmap. The paper is organized as follows. We describe
our problem and overall system design along with some
background in [Sect. 1I} [Sect. ] describes our approach to
estimating similarity along with empirical results from some
experiments. contains the details of our clustering
algorithm and experimental results and comparisons of it with
other alternatives. Related work is summarized in We
conclude in We use terms like proximity, similarity,
distance interchangeably since it is trivial to transform one to
another. Same goes for terms like grouping and clustering.

II. GROUPING FOR FORECASTING: BASICS

In this section, we discuss some background to get the
reader acquainted with the problem setting, and also get a
sense of the challenges involved in solving them. Wherever
deemed relevant, we have described a related methodology;
for a more detailed related work though, we refer the reader

to Sect. V1

A. Problem Statement

We will denote our observed time-series by an n X m matrix
Y': there are n time-series Y; each of length m. Each data point
Y; ; can be a real number or VA, which stands for missing
value. Note that in general, the time-series are of unequal
length, but we just pad each series with N A to make them of
equal length. We should mention that even in the absence of
padding, our time-series have a lot of N A. Also, it is possible
for some rows of Y to be completely IV A: that would mean
it is a new item.

Besides the sales, we have an n x [ semantic feature matrix
X which can be composed of features like n-grams from
item descriptions, and indicator matrix of other attributes like



brand, category, etc. Unlike Y, X is a complete matrix with
no missing values, but it does have a lot of zeroes: in that
sense it is also a very sparse matrix.

Forecasting Problem: Given Y, and a natural number h,
the forecasting problem is to predict h-step ahead values of
Y. In other words we need to output n X h matrix Y so as
to minimize the error w.r.t to the actual values we observe in
future: Y. The error metric we use is defined as follows:
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There are many other definitions in use, most of which
aggregate the error per item. Taking mean of item errors is too
susceptible to outliers, while median ignores too many errors.
The above definition is preferred in our setting because while
it includes the contribution of everything, it is robust to a few
big errors. .

Grouping Problem: Given a distance matrix D(n xn) and a
candidate k for the number of groups, the goal is to decompose
the items into groups C s.t. that every item is in at least
one group and items in a group are not too dissimilar with
enough data point between them as defined by a function f.
Mathematically, we can write the problem as:
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L,U,§, A\ are constants chosen based on experiments. f can
be a function which says we need at least some data for every
part of the year, say week/month. This is to ensure a good
seasonality estimate per group. The only restriction we place
upon f is that given f(C) for a group C, f (C £ v) for any
item v can be computed in constant time. For our example f
this is true, assuming constant size of the time-series involved.
Note that there may not always be a feasible solution to the
above problem. But we will assume that the constants are
chosen judiciously so that there is one, which is true in practice
as well.

One could imagine replacing distance in the above objective
with a similarity function and then maximize the objective.
The two are very distinct! The above objective doesn’t care
if two very similar items are place in different groups— it just
seeks to minimize the dissimilarity within a group so that a
model that assumes items in a group are similar is not affected
adversely. One can verify mathematically as well by replacing
distance with similarity subtracted by a constant in the above
objective function, we do not get an objective that maximizes
similarity.

There are two things we have glossed over. First is defining
distance metric D; this is discussed in Another

is picking the number of clusters k. There are two opposing

forces that push the estimate of k. First note that, as we
increase k to n, within group dissimilarity is completely
minimized. But there is going to be very little data per group
to model. On the other hand, putting every item in one group,
k =1, means a lot of data for the group but high dissimilarity
within it. The success of the model depends on both of these
factors. One could define a function g which takes any C and
outputs a number proportional to the amount of useful data in
its groups. For instance, a group where every item has data for
only past six months has effectively fewer data than a group
that has an assortment of items: some for past few years, some
for past few months, even if the total number of non-missing
data points in both are the same. If we treat each X; as a set
of time-indices where it has non-missing value, then we could
define

9(C) =log Z | Uiec Xil
cec
This is one way of defining g, chosen based on our ex-
periments, but depending on one’s need, we envisage other
definitions as well. If the value of objective from [Eq. 2] is
O(C), we choose k to minimize O(C)/g(C).

B. Background

Below, we provide some background on the two problems
we focus on in this paper: estimation of similarity and clus-
tering.

1) Computing Time-Series Similarity:

a) Sufficient Sales Data: There is a large literature on
proximity/distance estimation between time-series, see [[10].
There are two important factors in choosing one for our
purpose. First, it has to be robust to outliers. Outliers, both
in forms of very low and very high sales are common in our
setting, and a distance function like say Euclidean distance,
that is easily influenced by an outlier is not a good choice.
In fact, due to the size of outliers, even Lj-norm is easily
influenced. The other consideration is dealing with missing
values and unequal length: we need a function which does
not get easily disrupted by missing values. For e.g., consider
a sophisticated approach that computes various characteristics
of the time-series data, which may involve fitting a model, as
in [[I1]: due to the sparsity of the data, the model may not
fit well, and even other parameters computed are likely to be
unreliable. This limits the possible approaches considerably in
our setting.

For modeling, we consider two time-series to be similar if
they rise and fall in unison. The concept of pearson correlation
captures whether two vectors are linearly related, and is
defined as the cosine angle between the two vectors, after
centering :

(v—"7) (w—w)
| (v="2) || (w—w) ||

where v,w denote the mean of v,w respectively. Note
that the above definition is invariant to shifts in v, w, i.e.
Corr(v,w) = Corr(v+ ¢,w + ¢) for any constant c. This

Corr(v,w) =



is accomplished by centering. The definition of cosine angle
is invariant to vector magnitudes by itself, and adding cen-
tering makes it invariant to shifts as well- both are desirable
characteristics for a similarity function in our case. In case of
missing values, we only keep those time points where both
vectors are non-missing.

One of the limitations of any similarity function when
applied to a sparse time-series, as in our case, is that the
absolute values may be very noisy, so its useful to have a
mechanism that tests whether the similarity is significant or
not. This gives us an alternative binary similarity function that
just records two items as similar or not. This definition is much
more immune to noise. The general idea to test significance
is to fix a threshold, say 10%, then the value of correlation
is significant if it is in the top 10%(positive correlation)
or bottom 10%(negative correlation) of its distribution. For
long enough vectors, one can approximate the distribution
of pearson correlation asymptotically: r %,
the correlation and s is the length of vectors, is distributed
as Student’s t-distribution with s — 2 degrees of freedom.
For smaller vectors, one can use permutation test. sample
many permutations of w and find their correlation with v to
approximate the distribution, and then test the significance of
their correlation value using the provided threshold. For more,
we refer the reader to standard statistics books like [[12]].

where r is

Pearson correlation however is not as robust to outliers.
To alleviate that, we use spearman correlation: pearson
correlation between the ranked vectors. For e.g. if v =
{10,35,11,20}, then ranked v would be {1,4,2,3}. An
additional advantage of using ranked vectors is that it captures
the intuitive definition of v and w rising and falling in unison
better. Since this is still a pearson correlation, significance can
be tested as discussed above.

b) Insufficient Sales Data: In case of insufficient sales
data, it is customary to work with the semantic feature matrix
X. Generally X is constructed using Information Retrieval(IR)
techniques and hence to get similarity, the popular IR methods
of cosine similarity and LSI are used ( [[13]] is a good reference
on IR). Cosine similarity, as the name suggests, treats items
as vectors based on matrix X and the similarity is computed
as cosine angle between the vectors. However, X, almost
always, is high dimensional and sparse. So, it is customary
to work with a low-rank decomposition of X along the top
few singular vectors. These vectors can thought of as latent
directions which are most informative, hence this is referred
to as Latent Semantic Indexing(LSI). For a good explanation
of its efficacy, see [14].

LSI is a special case of dimension reduction techniques
based on PCA wherein one embeds a feature space in a low-
dimensional space so that the distance between the objects in
low-dimensional space approximates the distance in original
feature space well. The rationale for this is not just computa-
tional; often this embedding removes a lot of noise and the dis-
tances in this space turn out to be more informative and useful.
Similar to LSI for X, one could also construct an embedding

Algorithm 1: K-MEANS WITH DISTANCE MATRIX

Input: Distance Matrix D(n X n), initial clusters
C?,1 <i <k, threshold §

Output: Clusters C;,1 < i < k

1 C<—Co,p<—oo,p0<—oo

2 while |p — pg| < dpy do

// Find the medoids

for i < 1to k do

4 L M; < argmin; - - Dlj,p]

// Update Clusters

for i < 1to k do

| Ci «+ {j | argmin,D(j, M;) == i}

// Quality of New Clusters

7 pPo < Pk
8 | P Dim1 2jec, DIMi, j]
9 return C

Y. for sales data Y for the items with sufficient sales data. For
the other items, we seek to find the coordinates in this space
based on X. This can be formulated in a regression framework
: Y. ~ X. The two challenges in solving this regression is
that Y. is multi-dimensional and X is sparse and possibly
collinear. So, Ordinary Least Squares(OLS), the simple linear
regression model fails because of singularity of X7 X. This
can be circumvented by regularized least squares, like ridge,
lasso, etc., but these were not designed with multidimensional
response in mind, and hence fail to take the structure of Y, into
account. Also, high sparsity of X doesn’t help. Building on the
success of LSI, one would think about using an approach like
Principal Component Regression(PCR), where the regression
is using the top principal components of X. A limitation of
this approach is that we are using the directions that explain
the variance in X successfully, but don’t take into account Y.
Our approach is to use Partial Least Squares(PLS), which is
akin to PCR, but instead of using principal components of X,
it uses directions that explain the covariance of X,Y. well.
This is discussed in detail in

2) Clustering: Clustering is a well-studied field and it
wouldn’t be possible to do justice to all the proposed methods
in a limited space. We will instead describe three approaches,
we feel are relevant to our problem, see for more. It
is also helpful to know these algorithms to get the motivation
for our final algorithm. At this point, its helpful to remind
ourselves of the clustering objective from [Eq. 2] A simplified
version of this objective, if we assume there are no overlaps
would be: Y e 2o, sec D(p:g), the sum of within group
dissimilarities.

The most popular clustering algorithm by far is K-Means. It
can be described in different ways: since our input is a distance
matrix we have described it with an input distance matrix in
Algorithm [T} In this setting, K-Means is often referred to as
K-Medoids, but we refer it to as K-Means because as we will
shortly show they are essentially the same approach manifested



in different settings. K-Means, like most clustering algorithms,
takes as input the number of clusters required and an initial
clustering. The algorithm is iterative and in each iteration, we
perform two steps. First, we find a medoid for each cluster—
which is the point closest to all the points in the cluster,
and then we create new clusters around each medoid, each
point now assigned to its closest medoid. The iterations can be
stopped when the clusters don’t change or after a pre-specified
limit. Each iteration has a time complexity of O(nk). K-Means
is known to be susceptible to local minima, but generally
with multiple trials, one can find a good quality clustering.
In our setting, we have found k-means to get stuck at a local
minima very quickly, and multiple trials don’t help. Another
thing to note is that the cost function being minimized by
K-Means is different: Yo >-,cc D(p,mc), where mc is
the medoid of cluster C. This is only useful when the clusters
are spherical, i.e. there is a central point, a centroid/medoid
around which most points lie. This is circumvented in practice
by using spectral clustering [15]]: projecting the points into
an Euclidean space more amenable to clustering. Spectral
transformation, however, is not scalable enough to used in
our setting; another way to achieve the same without the
overhead is to use kernel k-means |[16], which takes O(n?)
time per iteration. We will show comparisons with kernel k-
means in At this point, we would like to point out
that if our input was in say a Euclidean space, then the point
closest to a group of points would be their centroid. This is
the version commonly reported as K-Means, but note that it
is just a special case of the above: when we are only given
the distance matrix, we find the medoid as the center of the
cluster, while in general in a euclidean space one can compute
the optimal center— the centroid.

Partitioning around Medoids(PAM) [[17] proposed by Kauf-
man & Rousseeuw, is a simple gradient descent procedure to
directly minimize the within-group dissimilarity, our metric of
choice, see Algorithm [2. In PAM, a clustering is represented
by medoids: given a set of mediods, each point is assigned
to the closest medoid cluster. Given initial mediods, in each
iteration, PAM tries to replace a medoid with a non-medoid, to
maximize the decrease in cost function. The time complexity
of each iteration is O(nk(n — k)). PAM is known to be very
reliable and robust due to the nature of its cost function,
however it is very slow when compared with k-means. Our
goal is to simulate this behavior without the expensive time
complexity.

Kernighan and Lin proposed a local-search heuristic for
graph partitioning in [8]]. It is described in Algorithm [3] for
the simple case of partitioning a graph on 2n vertices into two
parts of n vertices each. The cost function being minimized
is once again within-group dissimilarity. In each iteration,
one vertex from each group is selected and then swapped:
this pair is chosen to minimize the decrease in cost function.
Note that after n iterations the change is zero, as we get the
same partitioning. Hence, one chooses some prefix of changes
between 1 to n that leads to the best net positive decrease
in the cost function. As the authors explain in their original

Algorithm 2: PARTITIONING AROUND MEDOIDS(PAM)
Input: Distance Matrix D(n X n), initial clusters
C?,1 <i <k, threshold §
Output: Clusters C;,1 < i < k
C + CY% p+ 00, pg & 0

-

2 while |p — pg| < dpy do
3 po < p

// Find the medoids
4 for i < 1to k do

L M; + argmin; Zpeci D[j,p]

// Swap mediods with non-medoids
6 fori< 1tok, j< 1tondo
7 M +— M, M'[i] < j
8 for [ < 1¢to k do
9 | C| < {m | argmin,D(m, M,) == i}

// Test new cluster quality
k

10 pcurr — Zp=1 Zq,TEC;, D(qa 7’)
1 if peurr < p then
12 L P Peurrs C — C'
13 return C

paper, one of the main advantages of this approach is that its
fast: each iteration takes O(n) time and its easy to maintain
constraints on the sizes of clusters with this approach.

In our setting, we have observed bad convergence properties
for k-means, while found PAM to be expensive. Kernel K-
Means, or spectral clustering based on normalized cut lead
to very big or very small clusters. Also, we find that much
of the change happens in the first few steps, while after that
there is very little change per iteration, even though we still
spend O(n?) time per step. Based on these observations,
our motivation is to have an algorithm which makes small
incremental changes per iteration, but each iteration be very
fast, like the local-search heuristic described above. Such an
approach can naturally control for the constraints required on
clustering as well, without the need for a post processing step.
This is discussed in

III. LEARNING TOKEN WEIGHTS TO PREDICT SALES

CORRELATION

In this section, we describe our approach to predict sales
correlation for items with little or no sales. We assume that we
have a semantic feature matrix X: rows corresponds to items
and features are on the columns. Generally it is constructed
using IR techniques like n-grams based on some semantic
information about items like brand, description, etc. Y is the
matrix of item sales, where once again items are on the rows.
Y will have fewer rows than X, since we will assume it
only has items with enough sales history. A major component
of our approach is the concept of Principal Components:
the popular idea of LSI is also based on the same applied
to X. Our goal though is to do it in a way that predicts
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Intersection of top 20 neighbors predicted by text/pls with the actual top 20 neighbors based on sales. Just using the semantic features almost always

gives none of the top 20 neighbors. Using a supervised approach, like we outlined, to train these features lifts the number of correct neighbors for a lot of

items.

Algorithm 3: KERNIGHAN-LIN HEURISTIC(KL)

Input: Distance Matrix D(2n X 2n), initial clusters
A% BO each of size n, threshold §
Output: Clusters A, B
1 function D(i,S) < >, DIi, j]
2 function f(p, S1,S52) « D(p, S2) — D(p, S1)
3g«1+946
4 while g > 0 do

5 U <+ [2n]
6 for it < 1 to n do
7 function A(p, q) +
f(p7 Ait—l’Bit—1)+f(q7Bit—1’Ait—l)_2D[p,q]
8 (m, n) < argmax, .y A(p, q)
9 gt < A(m,n)
10 At AL In) + {m}
1 Bt + Bl —{m} + {n}
12 U+U-{m,n}
13 | p<¢ argmax;y g
14 A« AP B+ BP g« >y

-

5 return A,B

correlations amongst sales matrix Y. As a side-effect, one also
gets a weighting of the tokens, the columns of X, which are
better correlated with sales than traditional methods like Term-
Frequency(TF)/Inverse Document Frequency(IDF).

A. Formulation

Before formulating our approach, we review the concept
of PCA using sales matrix Y. To perform PCA, we center
the rows of input matrix Y, so that each row sums to zero.
The reason for this will become clear shortly, but in brief this
enables us to compute covariance matrix of sales with a simple
matrix multiplication. Given r, we want to decompose Y as

Y = Z tipl +F (5)
=1
=TPT +F (6)

where P is orthonormal, i.e. Vi, j Pszj =1if i = j else 0.
One way to interpret the above is as a sum of r rank 1 matrices
and a residual F; clearly r can’t be more than the rank of Y.
T is commonly referred to as the scores and P the loadings.
The decomposition is actually unique given r: P are the top
r unit eigenvectors of Y'Y and T are the projections of Y
along those directions, i.e 7" = Y P. In other words, P gives
us the r-dimensional space, while 71" gives the projections of
Y in that space. In general, one is only interested in the scores
T'. Formally, they can be computed iteratively as follows :

ty = max,Var (Yv) (7
s.t.v||=1, Cov(tm,t;)) =0, 1<i<m-—1 (8)

t; is the variance along the vector of maximum sales covari-
ance. And ¢; gives us the maximum possible variance along
any vector, while being uncorrelated with t;..t;_1. Together,
P gives us a space that explains as much variance as possible
in r dimensions.

Our goal is to use the co-ordinates of Y in this space: T', as
a low-dimensional embedding. The property of this embedding
that is most relevant for us is the following: For any rank r
matrix A: || XXT —-TTT|| < [|XXT—~AAT|. Note that X X T
is the covariance matrix of the item sales, hence T' gives us an
embedding in dimension r that approximates this as closely
as possible.

With this insight, we formulate our problem as follows.
Divide X into Xiyqin, Xpredict, Where Xy.qqy, is the items for
which we have sales in Y and X,;.cq;c: are the rest. Fix r, and
find the principal component scores for Y: 7. Since distance
in this space approximates sales well, it is sufficient if we can
predict for the items with no sales, their coordinates in this
space. Hence our problem can be formulated as a regression
problem of T against Xy,4i,. 7 can be picked using cross-
validation. We discuss how to perform that regression below.

B. Solving the regression

We will focus on linear regression, and assume a relation-
ship of the form Y = X B+ F'. In most common scenarios, ¥
the response is a vector. But what distinguishes our problem
is the fact that it is multidimensional, and the number of
dimensions is not necessarily small either. The Ordinary Least



Square(OLS) estimate for B is B = (XTX)f1 XTY. Note
that in our case X, the semantic matrix, is high-dimensional
and sparse. Hence OLS generally fails because of the presence
of collinear columns in X, which render X7 X non-invertible.

There are many regularization techniques to deal with such
problems. The two common ones that we investigated are lasso
and ridge. In these two, the linear regression is solved subject
to an upper bound on the L; and Ly norm of B respectively.
Lasso gives a very sparse estimate of B, hence a lot of the
tokens may have no influence at all. Ridge, on the other
hand, shrinks the coefficients, so that the correlated tokens
will have similar weights. Since X in our case is very sparse
semantic matrix, which in practice, is generally summarized by
its principal components, it also makes sense to try Principal
Component Regression(PCR), which is the regression of Y
against principal components of X. In general, we didn’t
find much difference in their performance, has
detailed comparison. However, all of these approaches were
designed with a univariate Y in mind, and hence there is a
lost opportunity here in terms of exploiting the structure of Y.
The approach that we finally use for regression because of its
reliable performance, especially as dimension of Y increases,
is Partial Least Squares(PLS).

PLS is similar to PCR, except that the principal components
are chosen not just to maximize the variance of X, but
also the correlation with Y. For the sake of exposition, we
will assume that Y=y is univariate: the univariate case can
illustrate the concept just as well, without going into details.
The algorithm can be described iteratively in a similar manner
to PCA from [Eq. 6l We decompose X similarly as

X =TPT +E

However the components 7' are now chosen to maximize
both the variance of X and its correlation with y. Hence the

analogue of [Eq. 7] would be

tm = max,Corr? (y, Xv) Var (Xv)
S.t.”’UH = 13 Cov(tmatv) :07 1 S 1 Smfl

Finally, we do the same thing as PCR, regress y on T to get
y = TC + F. Note that since T is in the span of X, one
can express T = XW, which gives y = XWC + F': this lets
us express the result in terms of X. The weight of different
columns in X which correspond to tokens can be useful for
other interpretation purposes as well.

One might wonder, why instead of predicting the principal
components, we didn’t just predict the sales matrix, since our
response is already multi-dimensional. The main hindrance
to that is the inordinate number of N A in the sale matrix.
Even though the NIPALS algorithm [[18], used for solving
PLS, can work with N A, its performance would severely
degrade in the presence of so many N A; see [[19] for more
on PCA on missing data. Thats why we instead use Proba-
bilistic PCA(PPCA) [20]] to summarize the sales matrix before
employing PLS. PPCA is much more robust to NA.
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Fig. 3. Comparison of regression methods: we compute the top 20 neighbors
predicted by each method and evaluate the number of them which are actually
among the top 20. At higher dimensions, in particular the highest: 50, we
find PLS always dominates. This is because PLS can exploit the structure of
a multi-dimensional response better. From these figure it is clear that though
there is no clear winner, overall one would prefer PLS
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Fig. 4. Cross-Validation Error on Training Data versus number of components
used by PCR vs PLS. PCR almost always needs far more components than
that needed by PLS. For both approaches, coefficients over the components
on training data need to be transformed to those over feature matrix for use
on test data. Because of the high number of components required, which get
increasingly inaccurate, PCR is not as reliable on test data.

C. Empirical Comparisons

In this section, we report on the results from empirical eval-
uation of this approach over the sales data from Walmart.com
transactions. We picked 4 representative categories of items
on which we report the results. Our implementation is done
in R, and makes use of the following R packages— pls [21] for



PLS and PCR, pcaMethods [[19] for PPCA and glmnet [22]]
for ridge, lasso.

Overall Improvement: Our goal in this section is to predict
sales distance/correlation between items. But for evaluation,
we don’t want to compare directly the distance predicted by
an algorithm to the actual, since this would be too ambitious
a problem, and the results would be hard to rely on as the
correlation computed is itself not very accurate, and changes
with addition of one time-point of data. A more robust
evaluation measure would be to compare the top neighbors
of an item. There are many ways of comparing rankings
proposed in the literature, but we opt for the following simple
measure: size of intersection of top 20 neighbors predicted by
an algorithm to the top 20 neighbors based on sales. The main
benefit is that the results are easily interpretable. We have also
made sure to run our experiments on only the subset of the
items which are consistent-sellers and hence have long sales
history which ensures that the correlation/distance computed
are reliable.

The overall improvement our method provides is illustrated
in Note that the points in the plot have been jittered,
since our metric is discrete: this way instead of seeing just one
point at say (0,0), we see a cloud of points around it that gives
a sense of number of points at that location. For a category,
we have evaluated both PLS and text-based neighbors based
on a 10-fold cross-validation. As one would expect, generally
getting neighbors purely based on semantic data gives us none
of the top 20 neighbors. Our method, on the other hand,
sometimes provides as many as 6 of the top 20! The average
improvement along with standard error is also demonstrated
in the plot.

Regression: Recall that we construct an embedding of
items in some dimension r, before regressing it on semantic
data. illustrates the performance of various regression
solvers vs r. First, observe that for the maximum dimension
50, pls performs best for every category. For Categories 1,2,
even though in small dimensions PLS is not very different
from ridge, lasso, but as the dimensions increase it starts to
dominate. This is to demonstrate that PLS is reliable when
higher dimensional embedding is chosen, while ridge, lasso
may not be. For two categories, 3 and 4, PLS outperforms
ridge, lasso consistently. These two also happen to have the
largest number of items, as can be seen from the point clouds
from and worst results. This is not a coincidence;
in bigger categories, we often have many items with similar
names, or common brand, but not all of them are correlated.
While this experiment was done on a small sample of consis-
tent sellers, in general this problem is exacerbated when all
items are included. PLS does work better in this case; even
though the average improvement may not be much a lot of
items go from no good neighbors to around 2-3 which can
make a big difference in the clustering results.

We didn’t compare against PCR, because strictly speaking
PLS is a generalization of PCR. Often on training data PCR
can perform just as well as PLS, except that it would need
many more dimensions, as illustrated in Note though

Algorithm 4: OPTMOVE CLUSTERING ALGORITHM

Input: Distance Matrix D(n X n), initial clusters
C[i],1 < i < k, params: gap, L, U, 6,
Output: Clusters C[i],1 <i <k
1 function D(i,C) < > ;. Dli, j]
// Initialize data structures
2 0=C"
3 item-cluster distance matrix M (n x k):
Mli,j] + DG, Clj])
4 H : n size array of fibonacci min-heaps
HIi)  {M[i,j], 1< j < k}
5 Cluster Membership: Cml[i] < {j | i € C[j]}
6 Cluster Quality : F[i] + f(C[i]), 1<i<k
7 Vertices visited : visited[i] < 0,1 <i<n
8
9

while Convergence do

for i < 1 to n do
10 pick ¢,1q randomly from Crmli]
11 Cnew < H[i].top()
12 if |coia] > LA f (cota — {’L}) >0 A ‘Cnew| <U
then
13 | wtli] < M[i, cora] — M[i, Crew)
14 else
15 | wtfi] <0
16 Pick u probabilistically according to wt
17 Let co14, Cnew define move for u as above
18 if |Clenew]| == U || visited[u] > 0 then
19 | continue // next iteration
20 decrement all positive visited by 1
21 visited (u) < gap
22 Update M, H,C, F,C'm : move ¢ from c,q t0 Cpew

23 return C

that in both PCR and PLS, regression coefficients on the
components are converted to coefficients over the semantic
feature data. Because PCR uses so many components, and
latter components can get very inaccurate, its performance on
test data is not as consistent as PLS. Another useful thing that
this plot demonstrates is that picking the optimal number of
components for PLS is easier because its error curve forms a
sharp valley unlike PCR.

IV. OPTMOVE CLUSTERING ALGORITHM

In this section, we present our clustering algorithm, and
empirical results for comparison with existing approaches.

A. The Algorithm

We will reiterate the grouping problem formulated

in briefly here. Given a distance matrix D (n X n),

number of groups desired: k, and some user-defined params
L,U, 4, \, we want to solve the following optimization prob-



lem:

ming Y Y D(p,q)+ A (Z C|n> s.t.

CeCp,qeC ceC
VCeC L<|C|<U, f(C)>34, and

Uc=m

CceC

We assume the the params have been chosen in a way that the
problem is feasible. f is a function to measure the quality of
a cluster: we assume | is monotonic, i.e f (C + {v}) > f(C)
and given f(C'), one can compute f(C'+{v}) in constant time.
The former is just an intuitive condition for simplification,
and isn’t necessary, while the latter property is used in the
complexity analysis of our algorithm. Algorithm f] summarizes
our approach, which we call OPTMOVE. We first describe the
algorithm below, then analyze its complexity, and finally prove
its soundness.

OPTMOVE, like the Kernighan-Lin(KL) heuristic, seeks
to modify the clusters, with small local changes. Unlike the
former though, OPTMOVE doesn’t swap the vertices, but
instead moves them. Also, it is not necessarily the optimal
vertex move that is picked, but instead a move is picked with
a probability proportional to the improvement it would make
to the objective function: moves with no change to objective
aren’t picked since their probability is 0. One of the issues
faced by any local heuristic, like OPTMOVE, is that a few
vertices, which may be outliers, may always be moved around
since they have a higher influence on the objective function.
This hinders a better exploration of the moves possible. KL
handles this by not moving a vertex once moved. We achieve
this in two ways: first, we make a randomized pick which
makes sure any vertex that can make an improvement by being
moved, can be moved. Besides this, we also stop a vertex
once picked from being picked for the next gap iterations. We
will see the effect of gap more in the empirical evaluation
section, We also experimented with choosing a
random vertex at each step with a small probability, but it
had no significant effect either on the time to terminate or the
quality of the minima reached.

A good initializing of the clusters is important in our case,
since it leads to convergence in fewer steps, hence smaller
execution time. Also, initialization has to bear the burden of
producing a feasible solution, which involves allowing over-
lapping clusters. Our strategy is borrowed from the popular
farthest-first heuristic: pick the cluster mediods to be as far
apart from each other as possible. See [23]], [24] for instances
where this leads to provable guarantees on cluster quality. Our
initialization is done as follows. First, we initialize mediods
according to farthest-first. Then we assign the closest vertex
medoid pair till clusters are of size less than L. Once all
clusters have reached size L, we need to enforce cluster quality
: f(C) > 6. In this phase, we take clusters where cluster
quality is violated and add closest cluster vertex pairs till
all clusters satisfy the quality constraint or the cluster vertex
distance exceed A. At this stage, vertices are too far from these

clusters and overlap is preferred, so we assign closest vertices
to these clusters, even if they may be present in other clusters
until quality constraint is satisfied. Finally, we just assign the
unassigned vertices in the closest first fashion.

Theorem IV.1 (Complexity). Running OPTMOVE for M it-
erations takes time O (nk + nM). In particular each iteration
takes O(n) time.

Proof: Initializing the data structures takes time O(nk).
It suffices to show that each iteration of While loop runs in
O(n) time. The For loop from 1 to n consists of simple
manipulations except for accessing the min. element of the
heap which is in O(1) time amortized; hence overall the loop
takes time O(n). Sampling from wt involves cumulatively
summing the elements and then picking a uniform random
number in the range. This can be accomplished in O(n) time
as well. Finally, since only two clusters are affected by a move,
of the nk points in the item cluster distance matrix, only 2n
are affected. Hence updating M, H also takes time O(n). W

Theorem IV.2 (Soundness). Given a feasible initial solution,
OPTMOVE returns feasible solution. Also, the objective value
from [Eq. 2| never increases in any iteration.

Proof: A feasible solution never becomes infeasible be-
cause of the explicit check which ensures that such a move has
wt = 0, hence it can’t be picked. A move can’t have negative
weight, since it is always moved to the optimal cluster, which
in the worst case would be itself. So, no move can increase
the objective. [ ]

Discussion One might have noticed that we did not use
A during the optimization, but only initialization. This is
because overlap in our case is only introduced for feasibility,
generally A is high enough that there is not a lot of gains to
be made considering the space of overlapping clusters. Also,
note that while the space of partitions is of the order k" /k!,
an asymptotic approximation for sterling numbers of second
kind, overlapping clusters occupy a space of size (2" — 1)*.
An efficient way to explore the former space is preferable
especially when the gains possible from the latter space are
not believed to be high. Technically, our algorithm can be
extended with moves of 2 vertices at a time, which would
allow us to explore the space of overlapping clusters, but we
believe this increased complexity does not offer any benefit,
if the initial clusters are good enough.

B. Empirical Results

Our goal in this section is to evaluate OPTMOVE and com-
pare it against existing graph clustering algorithms. We will
evaluate its convergence properties and its performance w.r.t
a multivariate forecasting model. All the clustering algorithms
compared in this section were implemented in C++ by us.

By far the most popular clustering algorithm is k-means,
but in our setting it converges after very few iterations as
illustrated in It actually seems to get worse than the
initialization, but thats because k-means optimizes a different
metric than the within-group dissimilarity metric we use. The
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Fig. 5. Convergence Comparison of OPTMOVE with alternatives.
OPTMOVE-KL uses moves like OPTMOVE but composes them determinis-
tically like KL heuristic, i.e., the optimal every time. This is why its slope is
steeper, but because of a lack in variety of moves, it settles at a minima before
OPTMOVE, which picks moves probabilistically. gap, which is the amount of
time a vertex once moved has to wait before moved again, has clearly some
advantage but not very pronounced in our setting because of the probabilistic
choice of moves.
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Fig. 6. Convergence properties of k-means/k-medoids and kernel k-means
according to our dissimilarity metric. Both of them only make progress for a
few moves before converging. Moreover, kernel k-means leads to some very
big clusters which is punished by our metric.

direction it goes is not as significant as the fact that it only took
3 steps before converging. Spectral Clustering is very popular
in community detection and image segmentation, but because
they involved computation of eigenvectors, we haven’t found
them to scale well for larger assortment of items. A scalable
alternative to spectral clustering is kernel k-means. [Fig. 6
also illustrates kernel k-means where the kernel is chosen to

B3 Kernel K-Means B8 OPTMOVE

le+01 - . * i .

Item-wise Error

Category

Fig. 7. Item Wise Model Error( [Eq._T)) vs clustering scheme used. Note the
fewer number of big outlier items in case of OTPMOVE, which is one of the
benefits of choosing the right cluster for an item.

mimic spectral clustering with normalized laplacian: it tries
to maximize the ratio of similarity in clusters to dissimilarity
across them. It does worse than k-means, for the simple reason
that in our setting, it has the tendency to form very large
or very small clusters and note that our metric discourages
big clusters as it leads to higher dissimilarity in the group.
But choice of metric aside, it also means that using such an
approach would necessitate a post processing step to split big
clusters and glue small clusters to existing clusters, which
would make a lot of changes to the cluster output. Ideally,
one would like the clustering algorithm to be cognizant of
these size constraints.

Even though KL heuristic is closely related to OPTMOVE,
their approach isn’t directly applicable in our setting. However,
one key difference between our approach and theirs is that
while our moves are probabilistic, theirs is deterministic. We
implemented OPTMOVE with the same idea of combining
moves as KL, this is similar to the local-search approach
proposed in [9], which we call OPTMOVE-KL. shows
that our probabilistic approach always finds a better minima
of the objective. While KL strategy, since it picks the optimal
move every time, has a better slope; because of the lack of
variety in the moves, it settles at minima earlier as well.

A tunable parameter of our approach is gap, which specifies
how long does a vertex once moved has to wait for the next
move. This is to avoid giving few outlier vertices too much
influence. This was accomplished in KL by not moving a
vertex once moved till every other vertex had been moved.
In our heuristic, this is less of a problem since the moves
are probabilistic. Still, as demonstrates letting gap be
0, does seem slightly suboptimal as the curve for that case
is consistently higher or at the same levels as when gap is
20%. But clearly even letting gap be 0 does better than the
deterministic KL strategy.

Finally, we also evaluated the forecast accuracy of a multi-
variate forecasting model on clusters produced by OPTMOVE
vs Kernel K-Means. We only experimented with consistent



sellers with long sales history to make sure the results are
reliable. One of the challenges with these comparisons is that
most of the error is contributed by bad points in the data,
that the model can’t catch because of missing information to
predict them. These can’t be alleviated by smart grouping.
What a good grouping can do is bring the error on good
points down, which may be small when compared to the
error contributed by the bad points, but is still observable.
We summarize the results in The improvements
due to OPTMOVE is around 4-8%. This is about as much
improvement as one can expect in aggregate, since as we
explained its hard to move the aggregate error numbers too
much by just different groupings. Note that the number of
items modeled using OPTMOVE is consistently more since
kernel k-means produces many small clusters which don’t have
enough data, hence are discarded during modeling. [Fig. 7] has
the plot for item-wise error. The two distributions look very
similar since the plot had to be done on log scale due to
high variation in data. As we can see, there are items with
about 100% error. However, as we see in spite of the fact that
kernel k-means models fewer items and has already discarded
most outliers in small clusters which could not be modeled,
OPTMOVE has fewer big outliers. It accomplishes this by
bringing some points from bad to good set, which don’t show
up in aggregate numbers.

V. RELATED WORK

The general approach of panel data models all the entities
together. However, modeling dissimilar entities together has
obvious disadvantages, hence many tests have been proposed
on whether to model all the entities together, or to find
subset of them that can be, see [25]-[27]]. The approach we
follow, generalizes this idea by allowing for decomposition
of entities into multiple groups, successfully demonstrated in
some prior work such as [27]-[30]. A major departure of
our approach from these is that those clustering algorithms
have been developed with a model in mind, to make sure
different entities are homogeneous w.r.t their model fits. Indeed
one of the motivations of our work was that it isn’t even
possible to successfully fit a model to individual items in our
case. One could conceive of a bayesian model-based clustering
framework wherein we would find the groups that lead to best
model fit. There are two reasons we don’t pursue model-based
clustering: (i) it is very expensive and almost impractical in
our setting at least when done naively, and (ii) a good model
fit doesn’t necessarily lead to good forecasts. We instead try
to impose intuitive constraints on our clusters that we know
to be necessary for reliable forecasts.

There is a big literature on time-series clustering, both on
computing similarity and clustering algorithm. Most of the
similarity metrics treat the time-series as a vector or a distribu-
tion. Another class of metrics try to summarize the time-series
using some model fit, or other characteristics [[11f], [31]-[33].
Since seasonality is frequently the most important part, there
are also approaches which measure the similarity just based
on seasonality. For e.g., [34]] defines similarity based on a x?-

test to determine if the two seasonal patterns follow the same
distribution. Dynamic Time Warping(DTW) [35]], [36] tries to
align two series to minimize their distance: this is particularly
useful if one wanted to compare seasonal profile of time-series,
because annual events don’t always fall on the same day every
year. Many of these metrics could be potentially useful in
different scenarios for us, but they need to be extended to be
robust against missing values. Also, a lot of work in this area
has been focused on scaling these operations to deal with high-
dimensionality of the time-series involved: this is not relevant
for us since, because of some pre-processing and aggregation,
our time-series are of a bounded size.

After the similarity matrix has been computed, clustering
time-series is no different from graph clustering which is a
very well-studied field in itself. We are not aware of any
prior work that handles all the constraints we do, in particular
the cluster quality constraint. There is a renewed interest
in overlapping clustering thanks to community detection in
social networks, see [37]-[39]. These approaches if modified
to satisfy the constraints in our setting could be useful.

VI. CONCLUSION

In this paper, we discussed, formalized and listed our
approaches to grouping SKU for forecasting in retail. We
have defined the problem independent of the forecasting model
being used. While most of the forecasting literature has tended
to side-step the grouping problem, our goal in this paper has
been to introduce this as an interesting problem on its own. We
presented our heuristic which is scalable and yields solutions
with quality as good as the contemporary approaches, while
still satisfying the myriad of constraints imposed in our setting.
We also presented an approach to computing the similarity
metric for a new item with no sales: new items are introduced
very frequently in e-commerce and finding items similar to
them has typically been done using semantic information with
some ad hoc manual manipulation. Our approach seeks to
design a more principled approach to this as well. We hope this
paper provides readers with a better understanding of some of
the problems in e-commerce/retail setting.
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