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Abstract

Most clustering algorithms produce a single clustering for
a given data set even when the data can be clustered natu-
rally in multiple ways. In this paper, we address the difficult
problem of uncovering disparate clusterings from the data
in a totally unsupervised manner. We propose two new ap-
proaches for this problem. In the first approach we aim to
find good clusterings of the data that are alsodecorrelated
with one another. To this end, we give a new and tractable
characterization of decorrelation between clusterings, and
present an objective function to capture it. We provide an
iterative “decorrelated”k-means type algorithm to minimize
this objective function. In the second approach, we model
the data as a sum of mixtures and associate each mixture
with a clustering. This approach leads us to the problem of
learning a convolution of mixture distributions. Though the
latter problem can be formulated as one of factorial learn-
ing [8, 13, 16], the existing formulations and methods do not
perform well on many real high-dimensional data sets. We
propose a new regularized factorial learning framework that
is more suitable for capturing the notion of disparate clus-
terings in modern, high-dimensional data sets. The resulting
algorithm does well in uncovering multiple clusterings, and
is much improved over existing methods. We evaluate our
methods on two real-world data sets - a music data set from
the text mining domain, and a portrait data set from the com-
puter vision domain. Our methods achieve a substantially
higher accuracy than existing factorial learning as well as
traditional clustering algorithms.

1 Introduction

Clustering data into groups based on similarity is often one
of the most important steps in any data analysis application.
Currently, most clustering algorithms partition the data into
groups that are disjoint, while other algorithms extend this
approach to probabilistic or overlapping clustering. How-
ever, in many important applications it is necessary to un-
cover disparate or alternative clusterings1 in order to reflect

1Throughout this paper, aclusteringwill refer to a set of disjoint clusters
of the data.

Figure 1: Images of different persons in different poses.
Each row has different persons in the same pose. Each
column has the same person in different poses.

the different groupings inherent in the data. As an exam-
ple, consider a set of pictures of different persons in differ-
ent poses (see Figure 1). These images can be clustered by
the identity of the person in the picture or by the pose of the
person. Given such a dataset it would be desirable to recover
two disparate clusterings of the data - one based on the iden-
tity of the person and the other based on their pose.

The above problem arises naturally for many other
widely used datasets, for instance: news articles (can be
clustered by the main topic, or by the news source), reviews
of various musical albums (can be clustered by composers, or
by other characteristics like genre of the album), and movies
(can be clustered based on actors/actresses or genre).

Most existing methods to recover alternative clusterings
use semi-supervision or side-information about one or more
of the clusterings. Since clustering is generally the first step
in data analysis, such information might not be available
beforehand. For example, news articles change dynamically
and it is infeasible to manually label them by topic and the
source. Thus, completely unsupervised techniques to find
disparate clusterings are immensely useful.

In this paper, we present two novel unsupervised ap-



proaches for discovering disparate clusterings in a given
dataset. In the first approach we aim to find multiple clus-
terings of the data which satisfy two criteria: a) the cluster-
ing error of each individual clustering is small and b) differ-
ent clusterings have smallcorrelationbetween them. To this
end, we present a new and computationally tractable charac-
terization ofcorrelation(or decorrelation) between different
clusterings. We use this characterization to formulate ak-
means type objective function which contains error terms for
each individual clustering along with a regularization term
corresponding to the correlation between clusterings. We
provide a computationally efficientk-means type algorithm
for minimizing this objective function.

In the second approach we model the problem of find-
ing disparate clusterings as one of learning the component
distributions when the given data is sampled from a convolu-
tion of mixture distributions. This formulation is appropriate
when the different clusterings come from independent addi-
tive components of the data. The problem of learning a con-
volution of mixture distributions is closely related to facto-
rial learning [8, 13, 16]. However, the methods of [8, 13, 16]
are not suited for recovering multiple clusterings. The prob-
lem with applying factorial learning directly is that thereare
multiple solutions to the problem of learning a convolution
of mixture distributions. Out of all such possible solutions,
the desirable solutions are the ones that give maximally dis-
parate clusterings. To address this problem we propose a
regularized factorial learning model that intuitively captures
the notion of decorrelation between clusterings and aims to
estimate the parameters of the decorrelated model.

An important aspect of both our approaches is the notion
of decorrelation between clusterings. The decorrelation mea-
sures that we propose quantify the “orthogonality” between
the mean vectors corresponding to different clusterings. We
show that the characterization of disparity between different
clusterings by the “orthogonality” between the mean vectors
of the respective cluster centers has a well-founded theoreti-
cal basis (see Section 3.3.1).

We evaluate our methods on synthetic and real-world
datasets that have multiple disparate clusterings. We con-
sider real-world datasets from two different domains - a mu-
sic dataset from the text-mining domain and a portrait dataset
from the computer vision domain. We compare our meth-
ods to two factorial learning algorithms, Co-operative Vector
Quantization (CVQ)[8] and Multiple Cause Vector Quanti-
zation (MCVQ)[16]. We also compare against traditional
single clustering algorithms likek-means and non-negative
matrix approximation (NNMA)[15]. On all the datasets,
both of our algorithms significantly outperform the factorial
learning as well as the single clustering algorithms. The fac-
torial learning methods work reasonably well on a few syn-
thetic datasets which exactly satisfy their respective model
assumptions. But they are not robust in the case where model

assumptions are even slightly violated. Because of this, their
performance is poor on real-world datasets and other syn-
thetic datasets. In comparison, our algorithms are more ro-
bust and perform significantly better on all the datasets. For
the music dataset both our algorithms achieve around20%
improvement in accuracy over the factorial learning and sin-
gle clustering algorithms (k-means and NNMA). Similarly,
for the portrait dataset we achieve an improvement of30%
over the baseline algorithms.

2 Related Work

Most of the existing work for finding disparate cluster-
ings has been in the semi-supervised setting. The semi-
supervised clustering problem of finding a clustering con-
sistent with a given set of constraints has been extensively
studied ([21, 23, 2]). This approach has been applied to the
problem of recovering multiple clusterings by providing ap-
propriate constraints. Must-link and cannot-link constraints
have been extensively used for semi-supervised clustering
([21, 22, 2]). Recently, Davidson et al.[4] proposed an ef-
ficient incremental algorithm for must-link and cannot-link
constraints. An alternative approach to the problem is taken
by [1, 10, 11] where it is assumed that a clustering of the data
is given and the objective is to find a clustering different from
the given one. Our work differs from the above approaches
in that our methods for discovering the disparate clusterings
are completely unsupervised.

A supervised approach to the related problem of learn-
ing hidden two-factor structures from the observed data was
suggested in [20]. Their method, named Separable Mixture
Model (SMM), models the data using a bilinear function of
the factors and can also be used for obtaining two clusterings
of the data. An advantage of our methods over SMM is that
our methods are unsupervised compared to the supervised
approach of SMM. Also, our model can be extended to more
than two factors, whereas it is unclear how SMM could be
extended to a data generated from more than two-factors.

Our second approach (“sum of parts” approach) is
closely related to the factorial learning problem where each
data point is assumed to be generated by combining multi-
ple factors. Ghahramani[8] introduced a novel architecture
named co-operative vector quantization (CVQ), in which a
set of multiple vector quantizers (VQ) combine linearly to
generate the input data. However, a drawback of CVQ is that
it can have multiple solutions. Many of these solutions give
poor results for the problem of discovering disparate cluster-
ings, especially on our real-world applications. Also, CVQ
can be seen as a special case of our model. Another recent
model related to factorial learning is multiple cause vector
quantization (MCVQ) (Ross and Zemel[16]). In MCVQ it is
assumed that the dimensions of the data can be separated into
several disjoint factors, which take on values independently
of each other. The factors are then modeled using a vector



quantizer as in CVQ. However, MCVQ also faces the same
drawbacks of CVQ - existence of multiple solutions - which
leads to poor performance for our application of discovering
disparate clusterings.

The problem of learning convolutions of distributions
that forms the basis of our second approach has been con-
sidered in the statistics community - see for instance [6],
[18], [17]. However, these methods deal with learning con-
volutions of simple distributions like binomial, Gaussianand
Poisson, and do not consider mixtures of distributions. A
fundamental problem with learning a convolution of Gaus-
sians, as mentioned in [18], is that the problem is not well-
defined - there exist many solutions to the learning problem.
We face a similar problem in the M-step of our algorithm for
learning the convolution of mixtures of Gaussians, where the
maximum likelihood estimation has multiple solutions. We
deal with this issue by regularizing the solution space in a
way suitable for the purpose of recovering disparate cluster-
ings so that the problem becomes well-posed.

We emphasize that though we state the problem of re-
covering disparate clusterings as one of learning independent
components from the data, the problem we address is com-
pletely different from that of independent component anal-
ysis (ICA) [14]. ICA tries to separate a multivariate signal
into independent additive univariate signals, whereas in our
problem we try to decompose the signal into independent
multivariate signals, each of which may have high correla-
tion between its different dimensions.

For our experiments, we also evaluated various simple
extensions ofk-means such as the removal of important fea-
tures of the first clustering to uncover the second clustering,
and projection of the data onto the space orthogonal to the
means of the first clustering. The later heuristic was moti-
vated by principal gene shaving[12]. But, these approaches
are ad-hoc and do not perform well in our experiments.

3 Methodology

For simplicity, we present our methods for uncovering two
disparate clusterings from the data; our techniques can be
generalized to uncover more than two clusterings. We
propose the following approaches:

• Decorrelated-kmeans approach: In this approach we try
to fit each clustering to the entire data, while requir-
ing that different clusterings be decorrelated with each
other. To this end, we introduce a novel measure for
correlation between clusterings. This measure is mo-
tivated by the fact that if the representative vectors of
two clusterings are orthogonal to one another, then the
labellings generated by nearest neighbor assignments
for these representative vectors are independent under
some mild conditions (see Section 3.3.1).

• Sum of parts approach: In this approach we model

the data as a sum of independent components, each of
which is a mixture model. We then associate each com-
ponent with a clustering. Further, as the distribution
of the sum of two independent random variables is the
convolution of the distributions (see [5]), we model the
observed data as being sampled from a convolution of
two mixtures. Thus, our approach leads us to the prob-
lem of learning a convolution of mixtures. Note that
the individual components uncovered by this approach
may not be good approximations to the data by them-
selves, but their sum is. This is in complete contrast to
the first approach where we try to approximate the data
individually by each component.

3.1 First Approach: Decorrelated-kmeans

Given a set of data pointsZ = {z1, z2, . . . , zn} ⊆ R
m,

we aim to uncover two clusteringsC1 andC2. Specifically,
we wish to partition the setZ into k1 groups for the first
clusteringC1 andk2 groups for the second clusteringC2.
To achieve this task, we try to finddecorrelatedclusterings
each of which approximates the data as a whole. We propose
the following objective function:

(3.1)

G(µ1...k1
, ν1...k2

) =
∑

i

∑

z∈C1

i

‖z−µi‖2+
∑

j

∑

z∈C2

j

‖z−νj‖2

+ λ
∑

i,j

(βT
j µi)

2 + λ
∑

i,j

(αT
i νj)

2,

whereC1
i is clusteri of the first clustering,C2

j is cluster
j of the second clustering, andλ > 0 is a regularization
parameter. The vectorµi is therepresentativevector ofC1

i ,
νj is therepresentativevector ofC2

j , αi is the mean vector
of C1

i andβj is the mean vector ofC2
j .

The first two terms of (3.1) correspond to ak-means type
error term for the clusterings, with a crucial difference being
that the “representative” vector of a cluster may not be its
mean vector. The last two terms are regularization terms that
measure the decorrelation between the two clusterings. In
order to extend this formulation forT ≥ 2 clusterings, we
addk-means type error terms for each of theT clusterings.
Furthermore, we addT × (T − 1)/2 terms corresponding to
the decorrelation between pairs of clusterings.

The decorrelation measure given above is motivated
by the intuition that if the “representative” vectors of two
clusterings are orthogonal to one another, then the labellings
generated by nearest neighbor assignments for these vectors
are independent. We provide a theoretical basis for the above
intuition in Section 3.3.1. Also, an important advantage
of the proposed decorrelation measure is that the objective
function remains strictly and jointly convex in theµi’s and
νj ’s (assuming fixedC1

i ’s andC2
j ’s).

To minimize the objective function (3.1), we present



an iterative algorithm which we call Decorrelated-kmeans
(Algorithm 1). We fix C1 andC2 to obtainµi’s andνj ’s
that minimize (3.1) and then assign each pointz to C1

i such
that i = argminl ‖z − µl‖2 and to C2

j such thatj =

argminl ‖z−νl‖2. We initialize one of the clusterings using
k-means withk = k1 and the other clustering randomly.

For computing theµi’s andνj ’s, we need to minimize
(3.1). The gradient of the objective function in (3.1) w.r.tµi

is given by:

∂G

∂µi
= −2





∑

z∈C1

i

z



+2





∑

j

nij



µi+2λ
∑

j

(βT
j µi)βj ,

wherenij is the number of points that belong toC1
i andC2

j .

Now,(βT
j µi)βj = (βjβ

T
j )µi andαi =

(

∑

z∈C1

i

z

)

∑

j
nij

. Thus,

∂G

∂µi
= −2

∑

j

nijαi + 2
∑

j

nijµi + 2λ





∑

j

βjβ
T
j



µi.

Similarly,

∂G

∂νj
= −2

∑

i

nijβj + 2
∑

i

nijνj + 2λ

(

∑

i

αiα
T
i

)

νj .

Setting the gradients to zero gives us the following equations:

µi =



I +
λ

∑

j nij

∑

j

βjβ
T
j





−1

αi,(3.2)

νj =

(

I +
λ

∑

i nij

∑

i

αiα
T
i

)−1

βj.(3.3)

Since the objective function (3.1) is strictly and jointly
convex in bothµi’s andνj ’s, the above updates lead to a
global minima of the objective function (3.1) forfixedC1

andC2.

3.1.1 Computing the updates efficiently:Computing the
updates given by (3.2) and (3.3) requires computing the
inverse of anm×m matrix, wherem is the dimensionality
of the data. Thus updating all theµi’s and νj ’s directly
would seem to require O(k1m

3 + k2m
3) operations, which

is cubic in the dimensionality of the data. We now give
a substantially faster way to compute the updates in time
linear in the dimensionality. Using the Sherman-Morrison-
Woodbury formula (see [9]) for the inverse in (3.2), we get

(

I + ξiV V T
)−1

= I − ξiV
(

I + ξiV
T V
)−1

V T ,

whereξi = λ
∑

j
nij

and V = [β1, . . . , βk2
]. Using the

eigenvalue decompositionV T V = QΣQT we see that
(

I + ξiV
T V
)−1

= Q (I + ξiΣ)
−1

QT .

Algorithm 1 Decorrelated-kmeans (Dec-kmeans)

Input: DataZ = {z1, z2, . . . , zn}
k1: Number of clusters in first clustering (C1)
k2: Number of clusters in second clustering(C2)
λ: regularization parameter

Output: C1, C2: Two different clusterings

1. C1 ← k-means(Z), C2 ← Random assignment
2. repeat

2.1. αi ← ComputeMean(C1
i ), for all 1 ≤ i ≤ k1

2.2. βj ← ComputeMean(C2
j ), for all 1 ≤ j ≤ k2

2.3. Updateµi andνj for all i, j using (3.4), (3.5)

2.4. ∀z, C1
i ← C1

i ∪ {z},
if i = argminl ‖z − µl‖2.

2.5. ∀z, C2
j ← C2

j ∪ {z},
if j = argminl ‖z − νl‖2.

4. until convergence
return C1, C2

SinceV T V is ak2×k2 matrix its eigenvalue decomposition
can be computed in O(k3

2) time. Also, as(I + ξiΣ)
−1 is a

diagonal matrix, calculating its inverse requires just O(k2)
operations. The updates forµi’s can now be rewritten as,

(3.4) µi =
(

I − ξiV Q (I + ξiΣ)
−1

QT V T
)

αi.

Similarly, the updates forνj ’s can now be written as,

(3.5) νj =
(

I − ζjMU (I + ζjΛ)
−1

UT MT
)

βj ,

whereζj = λ
∑

i
nij

, M = [α1, . . . , αk1
], andUΛUT is the

eigenvalue decomposition ofMT M .
Using these updates reduces the computational complexity
of computing all theµi’s andνj ’s to O(mk2

1 + mk2
2 + k3

1 +
k3
2). If m > k = max(k1, k2), which is typically the case,

the above bound becomesO(mk2).

3.1.2 Determining λ: The regularization parameterλ
plays an important role in the Decorrelated-kmeans algo-
rithm. It determines the tradeoff between minimizing the
individual clustering error of each clustering (first two terms
in (3.1)) and finding decorrelated cluster centers for the dif-
ferent clusterings (last two terms in (3.1)). Empirically,
we observe that the clustering accuracies are good when
λ ∈ [100, 10000], which is a large range. But, a different
scaling of the data can change this range forλ. Hence, we
determineλ using a simple heuristic. Note that for small val-
ues ofλ, the Decorrelated-kmeans algorithm finds approxi-
mately the same clusters for both the clusterings. While for



high value ofλ it tries to find clusterings which are orthogo-
nal to each other, even though both the clusterings may not fit
the data well. Thus, a suitableλ balances out both the objec-
tives and hence generally there is a large change in objective
function value whenλ is perturbed slightly. Based on this in-
tuition we form a heuristic to determineλ: start with a large
λ and find different clusterings of the data while decreasing
λ, and select aλ for which the drop in the objective function
is the highest. Note that different variants of the heuristic
can be used depending on the data and domain knowledge.
For example, if the data is large, then a subset of the data can
be used for finding clusterings or if the data is noisy then a
more robust measure like average change in objective func-
tion should be preferred over the maximum change measure
for selectingλ.

3.2 Second Approach: Sum of Parts

In this section, we describe our “sum of parts” approach.
Let Z = {z1, . . . , zn} be the observedm-dimensional data
sampled from a random variableZ. We modelZ as a sum
X + Y , whereX, Y are independent random variables and
are drawn from mixtures of distributions. Specifically,

pX =

k1
∑

i=1

aipXi
, pY =

k2
∑

j=1

bjpYj
.

The problem of learning independent components can
now be stated as: Given data sampled according toZ, re-
cover the parameters of the probability distributionspXi

, pYj

along with the mixing weightsai, bj .
As Z = X + Y , the probability density function ofZ is

the convolution ofpX andpY [5, Section A.4.11]. Thus,
(3.6)

pZ(z) = (pX ∗ pY )(z) =

k1
∑

i=1

k2
∑

j=1

(aibj) · (pXi
∗ pYj

)(z) ,

wheref1 ∗ f2(z) =
∫

Rm f1(x) · f2(z − x)dx denotes the
convolution off1 andf2.

From (3.6) it follows that when the distributionspXi
and

pYj
belong to a family of distributions closed under convolu-

tion, Z can be viewed as a mixture ofk1 × k2 distributions.
However, the problem of learning the componentsX andY
from Z is harder than that of simply learning the parame-
ters of a mixture model, as along with learning thek1 × k2

component distributions one must also be able to factor them
out. In the following section, we give a generalized Expec-
tation Maximization (EM) algorithm for learning the param-
eters of the component mixtures when the base distributions
are spherical multi-variate Gaussians. Our techniques can
be extended to more general distributions like non-spherical
Gaussians and potentially to other families closed under con-
volution.

3.2.1 Learning the convolution of a mixture of Gaus-
sians
Let the componentsX and Y be mixtures of spherical
Gaussians, i.e.,pX =

∑k1

i=1 aiN (µi, σ
2) and pY =

∑k2

i=1 biN (νi, σ
2). As in our first approach we initialize the

EM algorithm (Algorithm 2) byk-means for the first cluster-
ing and a random assignment for the second clustering. We
initialize µ0

i ’s andν0
j ’s to be the means of the first and sec-

ond clusterings respectively. To initializeσ we use a heuris-
tic presented in [3],

σ =
1√
2m

min

(

min
i6=j
‖µ0

i − µ0
j‖, min

i6=j
‖ν0

i − ν0
j ‖
)

.

E-step:

Let pt
ij(z) denote the conditional probability thatz comes

from the GaussianpXi
∗ pYj

given the current parameters.
As our main objective is to cluster the data, we use hard
assignments in the E-step to ease the computations involved.
The E-step in this case will be:
(3.7)

pt+1
ij (z) =











1, if (i, j) =

argmax(r,s){at
rb

t
s · N

(

µt
r + νt

s, 2(σt)2
)

(z)}
0, otherwise.

Note that, to uncoverT different clusterings from the data,
O(kT ) computational operations are required for each data
point in the E-step. Ghahramani[8] suggested various ap-
proximation methods to reduce the time complexity of this
estimation, and the same can be applied to our setting as well.
In our implementation, we use Gibbs sampling for approxi-
mating the distribution of labels,pt+1

ij (z), when the parame-
ters of the base distributions are fixed.

M-step:

In the M-step, we use the clusterings updated in the E-
step (specified bypt+1

ij ’s) to estimate the parameters of the
distributions. Formally, we maximize the log-likelihood:
(

µt+1
1...k1

, νt+1
1...k2

, σt+1, at+1
1...k1

, bt+1
1...k2

)

=

argmax
µ
1...k1

,ν
1...k2

,σ,

a1...k1
,b1...k2

∑

i,j,z

pt+1
ij (z) log (aibjN (µi + νj , σ)(z)) .

The mixture weights and varianceσ can be easily computed
by differentiating w.r.t.ai’s, bj ’s, σ and setting the deriva-
tives to zero. This gives us the following expressions:

at+1
i =

1

n

∑

j

∑

z

pt+1
ij (z),(3.8)

bt+1
j =

1

n

∑

i

∑

z

pt+1
ij (z),(3.9)

(σt+1)2 =
1

2mn

∑

i,j,z

pt+1
ij (z) ‖z − µt

i − νt
j‖2.(3.10)



Computing the means to maximize the log-likelihood is
more involved and it reduces to minimizing the following
objective function:
(3.11)

min
µ1...k1

,ν1...k2

F (µ1...k1
, ν1...k2

) =
∑

i,j,z

pt+1
ij (z)‖z−µi−νj‖2.

Note that there exist multiple solutions for the above equa-
tion; since we can translate the meansµi’s by a fixed vec-
tor w and the meansνj ’s by −w to get another set of so-
lutions. As discussed in Section 2, the CVQ [8] algorithm
also suffers from the same problem of multiple solutions.
Out of all the solutions to (3.11), the solutions which give
maximally disparate clusterings are more desirable. To ob-
tain such solutions we regularize theµi’s andνj ’s to have
small correlation with each other. To this end we introduce
a regularization term to make theµi’s andνj ’s orthogonal
to one another. This correlation measure is similar to the
measure discussed in the previous Decorrelated-kmeans ap-
proach (Section 3.1). Formally, we minimize the following
objective function:

(3.12) F̃ (µ1...k1
, ν1...k2

) =
∑

i,j,z

pt+1
ij (z)‖z − µi − νj‖2

+ λ
∑

i,j

(µT
i νj)

2,

where λ > 0 is a regularization parameter and can be
selected using a heuristic similar to the one described in
Section 3.1.2.

Observe that the above objective is not jointly convex in
µi andνj but is strictly convex inµi for fixedνj ’s and vice-
versa. To minimizẽF , we use the block coordinate descent
algorithm ([24]) where we fixνj ’s to minimizeµi and vice-
versa. By differentiating (3.12) w.r.t.µi andνj and setting
the derivatives to zero we get,

(

I +
λ
∑

j νjν
T
j

∑

j nij

)

µi +

∑

j nijνj
∑

j nij
= αi,

(

I +
λ
∑

i µiµ
T
i

∑

i nij

)

νj +

∑

i nijµi
∑

i nij
= βj ,

wherenij =
∑

z pt+1
ij (z) is the number of data-points that

belong to clusteri of the first clustering and clusterj of the
second clustering,αi denotes the mean of all points that are
assigned to clusteri in the first clustering andβj denotes the
mean of points assigned to clusterj in the second clustering,
i.e. ,

αi =
1

nai

∑

j

∑

z

zpt+1
ij (z),(3.13)

βj =
1

nbj

∑

i

∑

z

pt+1
ij (z).(3.14)

To solve forµi and νj in the above equations we use an
alternative minimization scheme - we iteratively update the
µi andνj as follows:

µi =

(

I +
λ
∑

j νjν
T
j

∑

j nij

)−1(

αi −
∑

j nijνj
∑

j nij

)

(3.15)

νj =

(

I +
λ
∑

i µiµ
T
i

∑

i nij

)−1(

βj −
∑

i nijµi
∑

i nij

)

.(3.16)

For initialization we setνj to beβj for eachj. Below
we prove that this scheme converges to a local minima of
(3.12).

LEMMA 3.1. The updates forµi and νj given by(3.15)
converge to a local minimum of the regularized objective
function given by(3.12).

Proof. As the updates (3.15) minimize the objective function
at each iteration, the updates converge to a fixed point[24].
Also, the objective function (3.12) is strictly-convex inµi

for fixedνj ’s and vice-versa. Thus, any fixed point of (3.12)
is also a local minimum. It now follows that our updates
converge to a local minimum of the objective function.�

THEOREM 3.1. Algorithm 2 monotonically decreases the
objective function:

(3.17) F =
∑

i,j,z

pt+1
ij (z)

‖z − µi − νj‖2
2σ2

+λ
∑

i,j

(µT
i νj)

2

Proof. Let Ft be the objective function value at the start of
t-th iteration,FE

t be the objective function value after the E-
step oft-th iteration andFM

t = Ft+1 be the objective func-
tion afterM -step oft-th iteration. The E-step assigns new
labels according to 3.7, which is equivalent to minimizing:

∑

i,j,z

pt+1
ij (z)

‖z − µi − νj‖2
2σ2

,

with µi andνj being fixed.
Thus, the first term of the objective function (3.17) is

decreased by the E-step while the second term remains fixed.
Hence,Ft ≥ FE

t . Using Lemma 3.1,FE
t ≥ FM

t , as only
µi’s andνj ’s are variables withpij fixed (σ can be absorbed
in λ). Thus,Ft ≥ Ft+1. �

3.2.2 Computing the updates efficiently:Using tech-
niques similar to Section 3.1.1, the update forµi can be writ-
ten as:
(3.18)

µi =
(

I − ξiV Q (I + ξiΣ)
−1

QT V T
)

(

αi −
∑

j nijνj
∑

j nij

)

,



Algorithm 2 Convolutional-EM (Conv-EM)

Input: DataZ = {z1, z2, . . . , zn}
k1: Number of clusters in first clustering (C1)
k2: Number of clusters in second clustering(C2)
λ: regularization parameter

Output: C1, C2: Two different clusterings

1. C1 ←k-means(Z), C2 ←Random assignment
2. µi ←ComputeMean(C1

i ), νj ←ComputeMean(C2
j )

3. ai= 1
k1

, bj= 1
k2

4. repeat
E Step:
4.1. For eachz, assignpij(z) using (3.7).
M Step:

4.2. Assignai, bj andσ using (3.8), (3.9), (3.10).

4.3. Assignαi andβj using (3.13), (3.14).

4.4. νj ← βj

4.5. repeat until convergence

• Updateµi using (3.18).

• Updateνj using (3.19).

5. until convergence
6. C1

i = {z|pij(z) = 1, ∀j}, C2
j = {z|pij(z) = 1, ∀j}

return C1, C2

where,ξi = λ
∑

j
nij

andV = [ν1, . . . , νk2
] andQΣQT is

the eigenvalue decomposition ofV T V .
Similarly, the update forνj can be written as,
(3.19)

νj =
(

I − ζjMU (I + ζjΛ)
−1

UT MT
)

(βj −
∑

i nijµi
∑

i nij
),

where,ζj = λ
∑

i
nij

, M = [µ1, . . . , µk1
] and MT M =

UΛUT .
As in Section 3.1.1, the above updates reduce the com-

putational complexity of computing all theµi’s and νj ’s
from O(k1m

3 + k2m
3) to O(m(k2

1 + k2
2)).

3.3 Discussion

3.3.1 Decorrelation measure:Now we motivate the
decorrelation measures used in equations (3.1) and (3.12).
For this, we will need the following two lemmas about
uniqueness of projection and multivariate Gaussians. In the
following lemmas, for a subspaceS of R

m let PS : R
m →

R
m be the orthogonal projection operator onto the subspace

S.

LEMMA 3.2. LetS1, S2 be subspaces ofRm such thatS1 ∩
S2 = {0}. Then, for allx ∈ S1, andy ∈ S2, there exists a
uniqueu ∈ S1 + S2 such thatPS1

(u) = x andPS2
(u) = y.

Proof. Let x ∈ S1 and y ∈ S2. Also, let P1, P2 be the
projection matrices for the projection operatorsPS1

andPS2

respectively. We first formulate the hypothesis thatS1∩S2 =
{0} in terms of the matricesP1, P2 by showing thatI−P1P2

andI − P2P1 are invertible. Suppose on the contrary that
I − P1P2 is not invertible. Then, for some non-zeroz we
must have,(I − P1P2)z = 0, i.e.,z = P1P2z. Recall that
for a projection matrixP into a subspaceS we always have
‖Pu‖ ≤ ‖u‖ with equality if and only ifu ∈ S. Thus, we
have

‖z‖ = ‖P1P2z‖ ≤ ‖P2z‖ ≤ ‖z‖.
Therefore,z = P1P2z = P2z, which is possible only if
z ∈ S1 andz ∈ S2. This contradicts the assumption that
S1 ∩ S2 = {0}, I − P1P2 must be invertible. Similarly, we
can also show thatI − P2P1 is invertible.

Now, to prove the lemma we need to show that there
exists a uniqueu ∈ S1 + S2 such that‘x = P1u and
y = P2u’. Since,S1 ∩ S2 = {0}, solving the above system
of equations is equivalent to solving forv ∈ S1, andw ∈ S2

such that

x = P1(v + w), y = P2(v + w).

Manipulating the above equations, we get:

(I − P1P2)v = x− P1y, (I − P2P1)w = y − P2x.

The existence and uniqueness ofv, w follow from the fact
thatI − P1P2 andI − P2P1 are invertible. �

LEMMA 3.3. Let Z ∈ R
m denote a random variable with

spherical Gaussian distribution. LetS1, S2 ⊆ R
m be

two subspaces such thatS1 ∩ S2 = {0} and let Z1 =
PS1

(Z), Z2 = PS2
(Z) be the random variables obtained

by projectingZ ontoS1, S2 respectively. Then, the random
variables Z1 and Z2 are independent if and only if the
subspacesS1 andS2 are orthogonal.

Proof. ⇐= If S1 andS2 are orthogonal, then foru1 ∈ S1

andu2 ∈ S2, Pr[Z = u1 + u2] = Pr[Z1 = u1, Z2 = u2].
Further, sinceZ has a spherical Gaussian distribution so do
Z1 andZ2. The independence ofZ1 andZ2 follows easily
from the above observations.

=⇒ Let the random variablesZ1 andZ2 be indepen-
dent. Note that without loss of generality we can assume
that Z has mean0 (as else we can translateZ). Further-
more, we can also assume that the support ofZ is con-
tained inS1 + S2. This is because,PS1

= PS1
◦ PS1+S2

andPS1+S2
(Z) is also distributed as a spherical multivari-

ate Gaussian. For the rest of the proof we will suppose that
S1 + S2 = support(Z) = R

m and thatZ has mean0.
Using Lemma 3.2, foru ∈ R

m, we have

Pr[Z = u] = Pr[PS1
(Z) = PS1

(u), PS2
(Z) = PS2

(u)].



As Z1 andZ2 are independent the above can be rewrit-
ten as

Pr[Z = u] = Pr[PS1
(Z) = PS1

(u)]·Pr[PS2
(Z) = PS2

(u)].

Now, since the projection of a spherical multivariate
Gaussian is also a spherical multivariate Guassian, substi-
tuting probability density formulae in the above equation we
get the following:

1

(2π)m/2
e−

1

2
‖u‖2

=
1

(2π)m1/2
e−

1

2
‖u1‖

2 · 1

(2π)m2/2
e−

1

2
‖u2‖

2

,

where,m1, m2 denote the dimensions ofS1, S2 respectively
andu1 = PS1

(u), u2 = PS2
(u). Noting thatm = m1 + m2

(sinceS1 ∩ S2 = {0}) the above equation can be simplified
to

‖u‖2 = ‖PS1
(u)‖2 + ‖PS2

(u)‖2.
As the above equation holds for allu it also holds in
particular foru ∈ S1. Now, foru ∈ S1 we havePS1

(u) = u,
thus we get

∀u ∈ S1, PS2
(u) = 0.

The above condition can easily be shown to be equivalent to
S1 andS2 being orthogonal. �

We now give the motivation for our decorrelation mea-
sures. Letµ1, . . . , µk1

andν1, . . . , νk2
be vectors inRm

such thatµi andνj are orthogonal for alli, j. Let S1 be
the space spanned byµi’s and S2 be the space spanned
by νj ’s. Define the “nearest-neighbor” random variables,
NN1(Z), NN2(Z) as follows:

NN1(Z) = argmin{‖Z − µi‖ : 1 ≤ i ≤ k1},(3.20)

NN2(Z) = argmin{‖Z − νj‖ : 1 ≤ j ≤ k2}.

Then asS1 andS2 are orthogonal to each other, it follows
from Lemma 3.3 that whenZ is a spherical multivariate
Gaussian, the random variablesNN1(Z) andNN2(Z) are
independent. Similarly, it can be shown that whenZ is a
spherical multivariate Gaussian, the random variablesNN1,
andNN2 defined by,

(3.21) (NN1(Z), NN2(Z)) = argmin
(i,j)

{‖Z −µi − νj‖},

are independent. Note that in equations (3.1), (3.12) we use
inner products involving the mean vectors of different clus-
terings as the correlation measure. Thus, minimizing the cor-
relation measure ideally leads to the mean vectors of differ-
ent clusterings being orthogonal. Also, observe that we use
nearest neighbor assignments of the form (3.20), (3.21) in
our algorithms in Decorrelated-kmeans and Convolutional-
EM. Thus, the decorrelation measures specified in equations
(3.1) and (3.12) intuitively correspond to the labellings of
the clusterings being independent.
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Dec−Kmeans Representative Vectors 1
Dec−Kmeans Representative Vectors 2
Parts Recovered by Conv−EM

Figure 2: Representative vectors obtained by Dec-kmeans
and the parts obtained by Conv-EM. The bold line rep-
resents the separating hyperplane for the first clustering,
while the dotted line represents the separating hyperplane
for the second clustering. Conv-EM produced mean vectors
{µ1, µ2, ν1, ν2} and subsequently each of the four parts are
obtained byµi + νj (i ∈ {1, 2},j ∈ {1, 2}).

3.3.2 Decorrelated-kmeans vs Convolutional-EM:

Decorrelated-kmeans (Algorithm 1) has a three-fold advan-
tage over the “sum of the parts” approach (Algorithm 2):

• Computing the E-step exactly in the “sum of the parts”
approach requires O(kT ) computation for each data
point, whereT is the number of alternative clusterings.
On the other hand, in Decorrelated-kmeans, each label
assignment step requires just O(kT ) computations as
the error terms for different clusterings are independent
in (3.1). Thus, Decorrelated-kmeans is more scalable
than Convolutional-EM with respect to the number of
alternative clusterings.

• The M-step in the “sum of the parts” approach solves
a non-convex problem and requires an iterative proce-
dure to reach a local minimum. In the Decorrelated-
kmeans approach, computing the representative vectors
(the equivalent of M-step) requires solving a convex
problem and the optimal solution can be written down
in closed form. Hence, estimation of representative
vectors is more accurate and efficient for Decorrelated-
kmeans.

• Decorrelated-kmeans is a discriminative approach,
while Convolutional-EM is a generative model based
approach. Thus, the model assumptions are more strin-
gent for the latter approach. This is observed empiri-
cally also, where Decorrelated-kmeans works well for
all the datasets, but Convolutional-EM suffers on one



of the real-life datasets.

On the flip side, there is no natural interpretation of the
“representative” vectors given by Decorrelated-kmeans. On
the other hand, the means given by Convolutional-EM can
naturally be interpreted as giving a part-based representation
of the data. This argument is illustrated by Figure 2. The
representative vectors obtained from Decorrelated-kmeans
partition the data into two clusters accurately. But, they don’t
give any intuitive characterization of the data. In contrast,
Convolutional-EM is able to recover the four clusters in the
data generated by the addition of two mixtures of Gaussians.

4 Experiments

We now provide experimental results on synthetic as well as
real-world datasets to show the applicability of our meth-
ods. For real-world datasets we consider a music dataset
from the text-mining domain and a portrait dataset from the
computer-vision domain. We compare our methods against
the factorial learning algorithms Co-operative Vector Quan-
tization (CVQ)[8] and Multiple Cause Vector Quantization
(MCVQ)[16]. We also compare against single-clustering
algorithms such ask-means and NNMA. We will refer
to the methods of Sections 3.1, 3.2 as Dec-kmeans (for
Decorrelated-kmeans) and Conv-EM (for Convolutional-
EM) respectively.

We also compare our methods against two simple
heuristics:

1. Feature Removal (FR): In this approach, we first clus-
ter the data usingk-means. Then, we remove the co-
ordinates that have the mostcorrelationwith the labels
in the obtained clustering. Next, we cluster the data
again using the remaining features to obtain the alterna-
tive clustering. The correlation between a feature and
the labels is taken to be proportional to the total weight
of the mean vectors for the feature and inversely pro-
portional to the entropy of the particular feature in the
mean vectors. Formally:

C(i) =

∑

j µi
j

−∑j

(

µi
j

∑

l
µi

l

log
µi

j
∑

l
µi

l

) ,

whereµi
j is thei-th dimension of thej-th cluster.

2. Orthogonal Projection (OP): This heuristic is motivated
by principal gene shaving[12]. The heuristic proceeds
by projecting the data onto the subspace orthogonal to
the means of the first clustering and uses the projected
data for computing the second clustering.

(a) Cluster the data using a suitable method of clus-
tering.

(b) Let the means of the obtained clustering be
m1, . . . , mk. Project the input matrixX onto the
space orthogonal to the one spanned by the means
m1, . . . , mk to getX ′.

(c) Cluster the columns ofX ′ to obtain a new
set of labels, and compute the cluster means
m̃1, . . . , m̃k.

(d) Repeat steps (b),(c) with meansm̃1, . . . , m̃k.

(e) Until convergence, repeat steps (a)-(d).

4.1 Implementation Details: All the methods have been
implemented in MATLAB. The implementation of MCVQ
was obtained from the authors of [16]. Lee and Seung’s
algorithm[15] is used for NNMA. Experiments were per-
formed on a Linux machine with a 2.4 GHz Pentium IV pro-
cessor and 1 GB main memory. For the real-world datasets,
we report results in terms of accuracy with the true labels. As
the number of clusters can be high in the synthetic datasets,
we report results in terms of normalized mutual information
(NMI) [19]. For all the experiments, accuracy/NMI is aver-
aged over 100 runs.

4.2 Synthetic Datasets:For our experiments we generate
synthetic datasets as a sum of independent components.
Let X and Y be samples drawn from two independent
mixtures of multivariate Gaussians. To evaluate our methods
in various settings, we generate the final datasetZ by
combiningX andY in three different ways. By viewing
X andY as thecomponentsof the datasets, and clustering
based on these components we get two different clusterings
of the data.

1. Concatenated dataset: This dataset is produced by
simply concatenating the features ofX and Y, i.e.,

Z =

[

X
Y

]

.

2. Partial overlap dataset: In this dataset we allow a few
of the features ofX andY to overlap. Specifically, let

X =

[

X1

X2

]

andY =

[

Y1

Y2

]

, whereX1, X2, Y1 and

Y2 all have the same dimensionality. Then, we form

Z =





X1

X2 + Y1

Y2



.

3. Sum dataset: In this dataset, all of the features ofX and
Y overlap, i.e.,Z = X + Y.

In our experiments the dimensionality ofX andY was set
to 30 and there were3000 data points. We label eachxi

and yj according to the Gaussian from which they were
sampled. Thus, eachz is associated with two true-labels.
Both our methods produce two disparate clusterings, and



Figure 3: NMI achieved by various methods on the Con-
catenated Dataset. Top figure shows NMI for the first clus-
tering and bottom figure shows NMI for the second cluster-
ing. Overall, Dec-kmeans achieves the highest NMI, while
MCVQ also performs well on this dataset.
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we associate each clustering with a unique true-labeling and
report NMI with respect to that true-labeling. We use the
same procedure for CVQ and MCVQ. Fork-means and
NNMA2, which produce just one clustering, we report the
NMI of the clustering with respect to the true-labellings.

Figure 3 compares the NMI achieved by various meth-
ods on the Concatenated dataset. It can be seen from the
figure that Conv-EM and Dec-kmeans outperformk-means
and NNMA for both the clusterings, achieving an average
improvement of50 − 60% in NMI. Similarly, both Conv-
EM and Dec-kmeans achieve significantly higher NMI than
CVQ. Note that the Concatenated dataset satisfies MCVQ’s
assumption that each dimension of the data is generated from
one of the two factors. This is empirically confirmed by the
results, as MCVQ not only outperforms CVQ but also per-
forms competitively with Conv-EM and Dec-kmeans.

Figure 4 compares the NMI for various methods on the
Overlap dataset. Clearly, Conv-EM and Dec-kmeans per-
form better than both CVQ and MCVQ. Note that when the
number of clusters is small, NMI of MCVQ with respect to
both the clusterings drops to around0.6. This is probably
because the overlap dataset does not satisfy the model as-

2As NNMA is useful for the non-negative data only, we made the data
non-negative by choosing the means sufficiently far away from origin.

Figure 4: NMI achieved by various methods on the Overlap
Dataset. Top figure shows NMI for the first clustering and
bottom figure shows NMI for the second clustering. Dec-
kmeans and Conv-EM achieves similar NMI. Both achieve
higher NMI than MCVQ or CVQ.
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sumptions of MCVQ.
Figure 5 shows the NMI achieved by various methods

on the Sum dataset. For this dataset also, both Conv-EM
and Dec-kmeans perform comparably and both the methods
achieve significantly higher NMI than other methods. In-
terestingly, NMI for MCVQ is even lower than the single-
clustering algorithms (k-means and NNMA). This could be
because the modeling assumption of MCVQ – each dimen-
sion in the data is generated by exactly one factor – is com-
pletely violated in the Sum dataset. Note that, although CVQ
is designed to model the Sum datasets, it performs poorly
compared to Conv-EM and Dec-kmeans. This trend can be
attributed to the fact that due to the lack of regularization
CVQ selects one of the many possible solutions to its opti-
mization problem, which may or may not correspond to good
disparate clusterings.

Also note that Conv-EM does not perform significantly
better than Dec-kmeans, even though the datasets fit the
Conv-EM model well. This is probably because of the non-
convex nature of the optimization problem for the M-step
in Conv-EM, due to which which the maximum likelihood
estimation gets stuck in a local minimum.

4.3 Real-World Datasets



Figure 5: NMI achieved by various methods on the Sum
Dataset. Top figure shows NMI for the first clustering and
bottom figure shows NMI for the second clustering. Dec-
kmeans and Conv-EM achieves similar NMI. NMI achieved
by MCVQ is very low.
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4.3.1 Music Dataset:The music dataset is a collection of
270 documents, with each document being a review of a clas-
sical music piece taken fromamazon.com. Each music piece
is composed by one of Beethoven, Mozart or Mendelssohn
and is in one of symphony, sonata or concerto forms. Thus,
the documents can be clustered based on the composer or
the genre of the musical piece. For the experiments a term-
document matrix was formed with dimensionality258 after
stop word removal and stemming.

Table 1 shows that although all the methods are able
to recover the true clustering for composer, most of the
algorithms perform poorly for the genre based clustering. In
particular,k-means and NNMA perform very poorly for the
clustering based on genre as they produce just one clustering
which has high NMI with the clustering based on composers.
Note that in this dataset, the sets of features (words) that
determine clustering with respect to composer and genre
respectively are almost disjoint. Hence, methods like Feature
Removal and Orthogonal Projection, which try to identify
disjoint sets of features for the clusterings work fairly well.
But, both MCVQ and CVQ algorithm achieve very low
accuracy as they do not try to finddecorrelatedclusterings.
Both our methods outperform the baseline algorithms.

Table 1: Accuracy achieved by various methods on the
Music dataset, which is a collection of text documents. Dec-
kmeans performs the best on this dataset. CVQ and MCVQ
perform very poorly compared to Conv-EM

Method\Type Composer Genre
NNMA 1.00 0.40
k-means 0.89 0.41
Feature Removal 0.97 0.64
Orthogonal Projection 0.99 0.66
CVQ 0.97 0.57
MCVQ 0.91 0.53
Conv-EM 1.00 0.65
Dec-kmeans 1.00 0.69

4.3.2 Portrait Dataset: The Portrait dataset consists of
324 images obtained from Yale Face Dataset B [7]. Each
image in the dataset is a portrait of one of three people, in one
of three poses in different backgrounds. The dimensionality
of each image is64 × 64. As a first step we reduce
the dimensionality of the data to300 by using principal
component analysis. As in the music dataset, the current
dataset can be clustered in two natural ways - by the person in
the picture or the pose. Table 2 shows that bothk-means and
NNMA perform poorly with respect to both the clusterings.
This shows that in the datasets where there is more than one
natural clustering, traditional clustering algorithms could fail
to find even one good clustering. Hence, it can be beneficial
to use alternative clustering methods even if one is interested
in obtaining a single clustering.
Our hypothesis is that unlike the music dataset, there are no
dominant features for any of the clusterings in this dataset.
This hypothesis can be justified by observing the poor ac-
curacies of methods like Feature Removal and Orthogo-
nal Projection. Conv-EM outperforms baseline algorithms
CVQ and MCVQ significantly, but interestingly Dec-kmeans
achieves an even higher accuracy of84% and78% for the
two clusterings.

5 Conclusions and Future Work

We address the difficult problem of uncovering disparate
clusterings from the data in a totally unsupervised setting.
We present two novel approaches for the problem - a decor-
relatedk-means approach and a sum of parts approach. In
the first approach, we introduce a new regularization fork-
means to uncover decorrelated clusterings. We provide theo-
retical justification for using the proposed decorrelationmea-
sure. The sum of parts approach leads us to the interesting
problem of learning a convolution of mixture models and
we present a regularized EM algorithm for learning a con-
volution of mixtures of spherical Gaussians. We address
the problem of identifiability for learning a convolution of



Table 2: Accuracy achieved by various methods on the Por-
trait dataset, which is a collection of images. Dec-kmeans
outperforms all other methods by a significant margin. Conv-
EM achieves better accuracy than all other methods, espe-
cially CVQ and MCVQ.

Method\Type Person Pose
NNMA 0.51 0.49
k-means 0.66 0.56
Feature Removal 0.56 0.48
Orthogonal Projection 0.66 0.70
CVQ 0.53 0.51
MCVQ 0.64 0.51
Conv-EM 0.69 0.72
Dec-kmeans 0.84 0.78

mixtures of Gaussians by using a regularization geared for
providing disparate clusterings. We demonstrate the effec-
tiveness and robustness of our algorithms on synthetic and
real-world datasets. On each of these datasets, we signifi-
cantly improve upon the accuracy achieved by existing fac-
torial learning methods such as CVQ and MCVQ. Our meth-
ods also outperform the traditional clustering algorithmslike
k-means and NNMA.

For future work, it would be of interest to study the prob-
lem of learning a convolution of mixtures for a more general
class of distributions and look for other settings where learn-
ing convolutions of mixtures could be useful. We also plan
to further investigate the properties of the decorrelationmea-
sure, especially for more general distributions of the data. A
problem that we do not address in this paper is model se-
lection - choosing the number of clusters and the number
of clusterings. Good heuristics for choosing these parame-
ters would be very useful. Also, a more detailed compari-
son of Conv-EM and Dec-kmeans would be useful; it would
be interesting to understand the comparable performance of
Conv-EM and Dec-kmeans for the synthetic datasets which
fit the convolution model well.
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