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Abstract

Most clustering algorithms produce a single clustering for|
a given data set even when the data can be clustered nat
rally in multiple ways. In this paper, we address the difficul
problem of uncovering disparate clusterings from the data
in atotally unsupervised manneiWe propose two new ap-
proaches for this problem. In the first approach we aim t
find good clusterings of the data that are adaorrelated
with one another. To this end, we give a new and tractablg
characterization of decorrelation between clusteringsl a
present an objective function to capture it. We provide a
iterative “decorrelatedk-means type algorithm to minimize
this objective function. In the second approach, we mode.
the data as a sum of mixtures and associate each mixture

with a clustering. This approach leads us to the problemfdgure 1: Images of different persons in different poses.
learning a convolution of mixture distributions. Thougle thEach row has different persons in the same pose. Each
latter problem can be formulated as one of factorial leargRlumn has the same person in different poses.

ing [8, 13, 16], the existing formulations and methods do not

perform well on many real high-dimensional data sets. We

Propose a new regularized.factorial Iegrning fr_amework ﬂlﬂe different groupings inherent in the data. As an exam-
IS more suitable for_captl_mng t_he notion of disparate cl le, consider a set of pictures of different persons in diffe
terlngs in modern, hl_gh-dlmens_lonal da_ta Sets. Th_e regult nt poses (see Figure 1). These images can be clustered by
?"9"”‘“”? does well in uncovering multiple clustermgsdan[he identity of the person in the picture or by the pose of the
is much improved over existing methods. We evaluate rson. Given such a dataset it would be desirable to recover

mhethods on twc(; real—_worldddata sets_, -da musu? datar?et fr disparate clusterings of the data - one based on the iden-
the text mining domain, and a portrait data set from the co ¥ of the person and the other based on their pose.

puter vision domain. Our methods achieve a substantially The above problem arises naturally for many other

higher accuracy than existing factorial learning as well aﬁdely used datasets, for instance: news articles (can be

traditional clustering algorithms. clustered by the main topic, or by the news source), reviews
. of various musical albums (can be clustered by composers, or
1 Introduction by other characteristics like genre of the album), and nmvie
Clustering data into groups based on similarity is often oggan be clustered based on actors/actresses or genre).
of the most important steps in any data analysis application Most existing methods to recover alternative clusterings
Currently, most clustering algorithms partition the dat®i use semi-supervision or side-information about one or more
groups that are disjoint, while other algorithms extend thif the clusterings. Since clustering is generally the fitsps
approach to probabilistic or overlapping clustering. Howh data analysis, such information might not be available
ever, in many important applications it is necessary to Useforehand. For example, news articles change dynamically
cover disparate or alternative clusterihgs order to reflect and it is infeasible to manually label them by topic and the
source. Thus, completely unsupervised techniques to find

TThroughout this paper, dusteringwill refer to a set of disjoint clusters disparate clusterings are immensely useful.
of the data. In this paper, we present two novel unsupervised ap-




proaches for discovering disparate clusterings in a givaessumptions are even slightly violated. Because of thég, th
dataset. In the first approach we aim to find multiple cluperformance is poor on real-world datasets and other syn-
terings of the data which satisfy two criteria: a) the clustehetic datasets. In comparison, our algorithms are more ro-
ing error of each individual clustering is small and b) diffe bust and perform significantly better on all the datasets. Fo
ent clusterings have smalbrrelationbetween them. To thisthe music dataset both our algorithms achieve ard(d
end, we present a new and computationally tractable chaiaggrovement in accuracy over the factorial learning ane sin
terization ofcorrelation(or decorrelation) between differengle clustering algorithmsiémeans and NNMA). Similarly,
clusterings. We use this characterization to formulate afor the portrait dataset we achieve an improvemergst
means type objective function which contains error terms fover the baseline algorithms.
each individual clustering along with a regularizatiomter
corresponding to the correlation between clusterings. \&e Related Work
provide a computationally efficiedtmeans type algorithm post of the existing work for finding disparate cluster-
for minimizing this objective function. _ings has been in the semi-supervised setting. The semi-
~ Inthe second approach we model the problem of fingypervised clustering problem of finding a clustering con-
ing disparate clusterings as one of learning the compong@tent with a given set of constraints has been extensively
distributions when the given data is sampled from a convolyy,died ([21, 23, 2]). This approach has been applied to the
tion of mixture distributions. This formulation is appragte problem of recovering multiple clusterings by providing ap
vyhen the different clusterings come from indepenc_ient adﬂi‘bpriate constraints. Must-link and cannot-link corisiisa
tive components of the data. The problem of learning a cqsve been extensively used for semi-supervised clustering
volution of mixture distributions is closely related to fac (121 22, 2]). Recently, Davidson et al.[4] proposed an ef-
rial learning [8, 13, 16]. However, the methods of [8, 13, 1@kient incremental algorithm for must-link and cannotklin
are not suited for recovering multiple clusterings. Theerogonstraints. An alternative approach to the problem isrtake
lem with applying factorial learning directly is that theaee y (1, 10, 11] where it is assumed that a clustering of the data
multiple solutions to the problem of learning a convolutiog given and the objective is to find a clustering differeatfr
of mixture distributions. Out of all such possible soluspnine given one. Our work differs from the above approaches
the desirable solutions are the ones that give maximally gi$ that our methods for discovering the disparate clusgsrin
parate clusterings. To address this problem we Proposgr@ completely unsupervised.
regular_ized factorial Iea_rning model that intl_Jitiver tares A supervised approach to the related problem of learn-
the notion of decorrelation between clusterings and aimsiig hidden two-factor structures from the observed data was
estimate the parameters of the decorrelated model. suggested in [20]. Their method, named Separable Mixture
Animportant aspect of both our approaches is the notigfyge| (SMM), models the data using a bilinear function of
of decorrelation between clusterings. The decorrelatioamine factors and can also be used for obtaining two clustering
sures that we propose quantify the “orthogonality” betwegfthe data. An advantage of our methods over SMM is that
the mean vectors corresponding to different clusterings. W,r methods are unsupervised compared to the supervised
show that the characterization of disparity between diffier approach of SMM. Also, our model can be extended to more
clusterings by the “orthogonality” between the mean vetqhan two factors, whereas it is unclear how SMM could be
of the respective cluster centers has a well-founded thieorgytended to a data generated from more than two-factors.
cal basis (see Section 3.3.1). _ Our second approach (“sum of parts” approach) is
We evaluate our methods on synthetic and real-wogghsely related to the factorial learning problem whereneac
datasets that have multiple disparate clusterings. We cggig point is assumed to be generated by combining multi-
sider real-world datasets from two different domains - a Mife factors. Ghahramani[8] introduced a novel architetur
sic dataset from the text-mining domain and a portrait @ataga med co-operative vector quantization (CVQ), in which a
from the computer vision domain. We compare our metgat of multiple vector quantizers (VQ) combine linearly to
ods to two factorial learning algorithms, Co-operativetdec generate the input data. However, a drawback of CVQ is that
Quantization (CVQ)[8] and Multiple Cause Vector Quantit can have multiple solutions. Many of these solutions give
zation (MCVQ)[16]. We also compare against tradition@lyor results for the problem of discovering disparate elust
single clustering algorithms liké-means and non—negative;ngs' especially on our real-world applications. Also, CVQ
matrix approximation (NNMA)[15]. On all the datasetsgan pe seen as a special case of our model. Another recent
both of our algorithms significantly outperform the factri jodel related to factorial learning is multiple cause vecto
Iea\_rning as well as the single clustering algorithms. Tloe fahuantization (MCVQ) (Ross and Zemel[16]). In MCVQ it is
torial learning methods work reasonably well on a few syBssumed that the dimensions of the data can be separated into
thetic datasets which exactly satisfy their respective @o@eyeral disjoint factors, which take on values indeperident
assumptions. But they are not robustin the case where mqgelach other. The factors are then modeled using a vector



quantizer as in CVQ. However, MCVQ also faces the same the data as a sum of independent components, each of
drawbacks of CVQ - existence of multiple solutions - which ~ which is a mixture model. We then associate each com-
leads to poor performance for our application of discov@rin ~ ponent with a clustering. Further, as the distribution
disparate clusterings. of the sum of two independent random variables is the
The problem of learning convolutions of distributions  convolution of the distributions (see [5]), we model the
that forms the basis of our second approach has been con- observed data as being sampled from a convolution of
sidered in the statistics community - see for instance [6], two mixtures. Thus, our approach leads us to the prob-
[18], [17]. However, these methods deal with learning con- lem of learning a convolution of mixtures. Note that
volutions of simple distributions like binomial, Gausseamd the individual components uncovered by this approach
Poisson, and do not consider mixtures of distributions. A may not be good approximations to the data by them-
fundamental problem with learning a convolution of Gaus- selves, but their sum is. This is in complete contrast to
sians, as mentioned in [18], is that the problem is not well- the first approach where we try to approximate the data
defined - there exist many solutions to the learning problem. individually by each component.
We face a similar problem in the M-step of our algorithm for
learning the convolution of mixtures of Gaussians, wheee tB.1  First Approach: Decorrelated-kmeans
maximum likelihood estimation has multiple solutions. Wejyen a set of data point§ = {z1,2s,...,2,} C R™,

deal with this issue by regularizing the solution space inyg& aim to uncover two clusteringd! andC?. Specifically,

way suitable for the purpose of recovering disparate alust@e wish to partition the sef into k; groups for the first

ings so that the problem becomes well-posed. clusteringC! andk» groups for the second clusterirgg.
We emphasize that though we state the problem of fgs achieve this task, we try to findecorrelatedclusterings

covering disparate clusterings as one of learning inde@®ndszch of which approximates the data as a whole. We propose
components from the data, the problem we address is cQfgs following objective function:

pletely different from that of independent component anal-
ysis (ICA) [14]. ICA tries to separate a multivariate signgB.1)
into independent additive univariate signals, whereasim q; — 12 _.l1?
> > WI By, V1oky) = llz—pes|| "+ |z—v;]l
problem we try to decompose the signal into mdependen(t ' ’ Z Z ' Z Z ’
multivariate signals, each of which may have high correla-
tion between its different dimensions. + A Z(BJ-TM)Q + A Z(aiTuj)Q,
For our experiments, we also evaluated various simple i,J i,j

extensions of-means such as the removal of important fea/here(}-l is clusteri of the first clusteringC? is cluster
tures of the first clustering to uncover the second cluggerin of thezsecond clustering, and > 0 is a rejgularization
and projection of the data onto the space orthogonal to é‘herameter. The vector; is tﬁerepresentativa'ector ofC1
means of the first clustering. The later heuristic was mofl- ig therepresentativarector of C2, a; is the mean veéfor
vated by principal gene shaving[12]. But, these approache% A

are ad-hoc and do not perform well in our experiments 0 5011 andg; is the mean vector (ﬁ’?'
P P ’ The first two terms of (3.1) correspond té-aneans type

error term for the clusterings, with a crucial differencénige

3 Methodology u L .
DA ) that the “representative” vector of a cluster may not be its

For simplicity, we present our methods for uncovering tWoean vector. The last two terms are regularization ternts tha

disparate clusterings from the data; our techniques canfi€asure the decorrelation between the two clusterings. In

generalized to uncover more than two clusterings. Weger to extend this formulation fa&f > 2 clusterings, we

propose the following approaches: addk-means type error terms for each of theclusterings.

e Decorrelated-kmeans approach: In this approach we &rtgermortla, we :;dﬁ” (T - .1)/2ftelrms cprrespondmg 0
to fit each clustering to the entire data, while requil‘—e ecorrelation between pairs of clusterings.

ing that different clusterings be decorrelated with each ;hg de_gorreLath? Lne?sure glven_ab”ove 1S mo;uvated
other. To this end, we introduce a novel measure fof 1€ intuition that if the “representative” vectors of two

correlation between clusterings. This measure is m%ysterings are orthogongl to one ar_lother, then the lalgslli
tivated by the fact that if the representative vectors gfgn_erated by nearest ne|ghbor as&gn_ments fpr these gector
two clusterings are orthogonal to one another, then e independent. We provide a theoretical basis for theaabov

labellings generated by nearest neighbor assignmé fyition in Section 3.3.1. _Also, an |mportant advantag_e
ive vectors are independent un eWe proposed decorrelation measure is that the objective

unction remains strictly and jointly convex in the's and
v;'s (assuming fixed’}'s andC?’s).
e Sum of parts approach: In this approach we model To minimize the objective function (3.1), we present

i zeC} J =zeC7

some mild conditions (see Section 3.3.1).



an iterative algorithm which we call Decorrelated-kmeardgorithm 1 Decorrelated-kmeans (Dec-kmeans)
(Algorithm 1). We fixC' andC? to obtainu;’s andv;’s Input: DataZ = {z1, 2s,...,2n}

that minimize (3.1) and then assign each peitiv C} such k1: Number of clusters in first clustering’'¢)
thati = argmin, ||z — w* and to C? such thatj = ko: Number of clusters in second clusterifngj
argmin, ||z —v||?. We initialize one of the clusterings using A: regularization parameter

k-means withk = k; and the other clustering randomly.  Output: C*', C2: Two different clusterings

For computing theu;’s andv;’s, we need to minimize 1 ~ _ k-meansg), C2 — Random assignment
(3.1). The gradient of the objective function in (3.1) wit o repeat

is given by:

2.1. a; < ComputeMear(}), forall 1 <i < k;

—9 Z z |42 Z"ij ui+2)\2(,@fui),@j, 2.2. B — ComputeMear(CJ?), foralll < j < ko
J J 2.3. Updateu,; andvy; for all 4, j using (3.4), (3.5)

wheren,; is the number of points that belong@f andC?.  2.4.Vz, O} «— Cf U {z},
(Z z) ' if i = argmin ||z —

Now, (8] ni)B; = (B;8] )u: andey; = E;C Thus,  2.5.vz, C? — C? U{z},
if 7 = argmin; ||z — v]|?.

oG
opi B

zeC}
I12.

- Mg,
gy

oG ;

5= _QZnijai + QZnijui +2) Zgjg;! w;. 4.until convergence
2% F ; p return C1, C?

Similarly,

oG T SinceV TV is aky x ko matrix its eigenvalue decomposition
ov; _227%3‘/33‘ + 22”1'-7'”3’ +2A (Z i ) Yj- can be computed in @f) time. Also, as(I + &%) " is a

_ _ _ _ ~ diagonal matrix, calculating its inverse requires jusk£)(
Setting the gradients to zero gives us the following equatio gperations. The updates fps’s can now be rewritten as,
-1

(3.2) 7% I+ Z)\ Z,Bj,ﬁjT a, (3.4) ni = (I =&V U+ fiE)_l QTVT) ;.
4 Vg j '

Similarly, the updates far;’s can now be written as,

-1
A
3.3 =11 o 2
B3 < +Zinijzi:aa ) & (3.5) Vj:(I—QjMU(I-i-CjA)_l UTMT) Bi,

Since the objective function (3.1) is strictly and jointly
convex in bothu;’s andv,’s, the above updates lead to avhere(; = Z#" M = [ay,..., 0], andUAUT is the
global minima of the objective function (3.1) fdixed C'* Y

eigenvalue decomposition 87 M.
andC?. g P

Using these updates reduces the computational complexity
of computing all theu;’s andv;’s to O(mk? + mk3 + k3 +
3). If m > k = max(ki, k2), which is typically the case,
above bound becomésmk?).

3.1.1 Computing the updates efficiently: Computing the
updates given by (3.2) and (3.3) requires computing
inverse of ann x m matrix, wherem is the dimensionality
of the data. Thus updating all the;'s and v;'s directly

. 3 A . .
yvoulcz).se.enlr':o rde_quwe '(B(ml't+ k}f"m )(;)pteratl\j)vns, wh|ch lays an important role in the Decorrelated-kmeans algo-
IS cub Icn ”e f 'mensionaity of the aha. de NOW 9V&thm. It determines the tradeoff between minimizing the
a substantially faster way to compute the updates in U ;q, | clustering error of each clustering (first twortes

IiWnea(;kiJn thf dimtlansionagty.f Ustir?g_the Sh?rm?f‘g"\"o”iso'ﬂi (3.1)) and finding decorrelated cluster centers for tlie di
oodbury formula (see [3]) for the inverse in (3.2), we 9€%erent clusterings (last two terms in (3.1)). Empirically,

3.1.2 Determining A: The regularization parametex

(I+ @VVT)_I =I-&V(I+ @VTV)_I VT, we observe that the_ cIu_stering accuracies are gc_>od when
N ) A € [100,10000], which is a large range. But, a different
where¢; = S andV = [B1,...,Bk]. Using the scaling of the data can change this rangeXoHence, we

determine\ using a simple heuristic. Note that for small val-
i ues of)\, the Decorrelated-kmeans algorithm finds approxi-
(I + @VTV) =Q+ &E)_l QT. mately the same clusters for both the clusterings. While for

eigenvalue decompositidi” V = QXQ7 we see that



high value of] it tries to find clusterings which are orthogo3.2.1 Learning the convolution of a mixture of Gaus-
nal to each other, even though both the clusterings may nosiitns

the data well. Thus, a suitablebalances out both the objecLet the components{ and Y be mixtures of spherical
tives and hence generally there is a large change in objecBaussians, i.e.px = Zf;l a;N(pi,0%) and py =
fu_npuon value wher is p_erturbed shg_htly. Base_d on this inS~k2 b N (v, 02). As in our first approach we initialize the
tuition we form a heuristic to determine start with a large gn algorithm (Algorithm 2) byk-means for the first cluster-
A and find different clusterings of the data while decreasifigy and a random assignment for the second clustering. We
A, and select a for which the drop in the objective functionjyitialize pY’s andw’s to be the means of the first and sec-
is the highest. Note that different variants of the hewisind clusterings respectively. To initializewe use a heuris-
can be used depending on the data and domain knowleqg&resented in [3],

For example, if the data is large, then a subset of the data can

be used for finding clusterings or if the data is noisy then a 5 — L min <min |9 — p2], min || — ,/O|> .

more robust measure like average change in objective func- 2m i7J T !

tion should be preferred over the maximum change measHrstep:

for selecting. Let p};(z) denote the conditional probability thatcomes

3.2 Second Approach: Sum of Parts from the G_aus&_am).(i * py; given the current parameters.
As our main objective is to cluster the data, we use hard

In this section, we describe our “sum of parts” approacfisignments in the E-step to ease the computations involved
Let Z = {z1,..., z,} be the observegh-dimensional data The E-step in this case will be:

sampled from a random variable We modelZ as a sum 3
X + Y, whereX,Y are independent random variables and

. A o 1, if (4,4) =
are drawn from mixtures of distributions. Specifically, ’ ’
PEEEE gt = argma {ald) N (ul 4 02 2(01)?) (2}
k1 k2 0, otherwise.
= Q,L' iy = b ; .. . .
px ; Pxo by ; iPY; Note that, to uncover different clusterings from the data,

O(k™) computational operations are required for each data
%(r)]int in the E-step. Ghahramani[8] suggested various ap-
proximation methods to reduce the time complexity of this
estimation, and the same can be applied to our setting as well
In our implementation, we use Gibbs sampling for approxi-
mating the distribution of Iabel@fjl(z), when the parame-
ters of the base distributions are fixed.

The problem of learning independent components ¢
now be stated as: Given data sampled according,toe-
cover the parameters of the probability distributiprs, py,
along with the mixing weights;, b;.

As Z = X +Y, the probability density function of is
the convolution ofpx andpy [5, Section A.4.11]. Thus,
(3.6) M-step:

k1 ko

pz(z) = (px *py)(2) = ZZ(%% (px: #py)(z), N the M-step, we use the clusterings updated in the E-

i1 =1 step (specified by)f;.“l’s) to estimate the parameters of the
distributions. Formally, we maximize the log-likelihood:

wheref  fo(z) = [ fi(2) - fo(z — x)dz denotes the (BUFL L GeR L ey
convolution of f; and f5. 1, ko V1 kg 1A ko 1ky) T

From (3.6) it fol_lows that yvhe_n the distributiops;, and argmax Z pf.;rl(z) log (ab; N (i +v;,0)(2)) .
py; belong to a family of distributions closed under convolu..x, ek TG
tion, Z can be viewed as a mixture bf x ko distributions. ~ “*F1 7tk
However, the problem of learning the componekitandY  The mixture weights and varianeecan be easily computed
from Z is harder than that of simply learning the paraméy differentiating w.r.t.a;’s, b;'s, o and setting the deriva-
ters of a mixture model, as along with learning thex k, tives to zero. This gives us the following expressions:

component distributions one must also be able to factor them 1 1 1

out. In the following section, we give a generalized Expe@-g) i =5 Z Zpij (2),

tation Maximization (EM) algorithm for learning the param- iz

eters of the component mixtures when the base distributiclggg) pttl — 1 Z pr?—.ﬁ-l (2)

are spherical multi-variate Gaussians. Our techniques can I n e ey ’

be extended to more general distributions like non-sphkric 1

Gaussians and potentially to other families closed under c63.10)  (o"*!)? = py— P (2) Iz — pf — |17

volution. 1,4,z



Computing the means to maximize the log-likelihood ko solve foru,; andv; in the above equations we use an
more involved and it reduces to minimizing the followinglternative minimization scheme - we iteratively update th

objective function: p; andy; as follows:
(3.11)
i F - t+1 —pi—v;|?. T\ 7!
“1”.?117111}1”.k2 (Hl...klvyl...kQ) ,”Zzpz_] (Z)HZ K VJH (315) i = I+ )\Z] VJVJ o — Z] nljyj
b Zj g Zj Thij

Note that there exist multiple solutions for the above equa- A o -1 S s e
tion; since we can translate the meangs by a fixed vec- (3.16) v; = ([ + ﬂ) (@- - M) )
tor w and the meang;’s by —w to get another set of so- 22 Mij 2 Mij

lutions. As discussed in Section 2, the CVQ [8] algor_|thm For initialization we sev; to be3; for eachj. Below

Out of all the solutions to (3.11), the solutions which givqffelggove that this scheme converges to a local minima of

maximally disparate clusterings are more desirable. To ob-

tain such solutions we regularize tpe’s andv;’s to have | gmma 3.1. The updates fop; and v; given by(3.15)
small correlation with each other. To this end we introdu@@nverge to a local minimum of the regularized objective
a regularization term to make the’s andv;’s orthogonal function given by3.12)
to one another. This correlation measure is similar to the
measure discussed in the previous Decorrelated-kmeansmapof. As the updates (3.15) minimize the objective function
proach (Section 3.1). Formally, we minimize the followingt each iteration, the updates converge to a fixed point[24].
objective function: Also, the objective function (3.12) is strictly-convex jn

~ for fixedv;’s and vice-versa. Thus, any fixed point of (3.12)
(3.12) F(pty. s V1. k) = Zp;?jl(z)nz —p; —v;||* is also a local minimum. It now follows that our updates

i,4,2 converge to a local minimum of the objective functionj

FAD (), . .
i THEOREM3.1. Algorithm 2 monotonically decreases the

: L objective function:
where A > 0 is a regularization parameter and can be

selected using a heuristic similar to the one described jn llz — pi —vj|?
Section 3.1.2. @17 F= Zpﬁjl(z)Tj XY (wlv)?
Observe that the above objective is not jointly convex in 63,2 iJ

p; andw; butis strictly convex nu; for fixedw;'s and vice- pyoot | et 1, be the objective function value at the start of
versa. To minimize’, we use the block coordinate descenty, iteration,7/Z be the objective function value after the E-

algorithm ([24]) where we fiw;’s to minimize; and vice- step oft-th iteration andF = F,; be the objective func-
versa. By differentiating (3.12) w.r.j4; andv; and setting tjon after M-step of¢-th iteration. The E-step assigns new
the derivatives to zero we get, labels according to 3.7, which is equivalent to minimizing:

A vv] 22 iV 2
I—i—ij J i—f—ij = oy, t+1 HZ_""'L_VJH
< K le nij Zpij (Z) )

Zj Tij = 202
AY mip] 2 Miji -
(I + o, )Y + BT B, with 12; andv; being fixed.

Thus, the first term of the objective function (3.17) is
wheren;; = >__ pi'(2) is the number of data-points thatiecreased by the E-step while the second term remains fixed.
belong to clustef of the first clustering and clustgrof the Hence,F; > FF. Using Lemma 3.1FF > FM, as only
second clusteringy; denotes the mean of all points that arg,’s andv;’s are variables with;; fixed (o can be absorbed
assigned to clusterin the first clustering an@; denotes the in \). Thus,F; > F}, ;. 0
mean of points assigned to clusgen the second clustering,

ie., 3.2.2 Computing the updates efficiently:Using tech-

1 41 niques similar to Section 3.1.1, the update/gican be writ-
(3.13) Y= Z Z zpi; (%), ten as:
IF (3.18)

1 _—
@i 8= 2 2 p ) = (1-6vQ( +&)7 QTV7) (ai - %—ﬁ) |



Algorithm 2 Convolutional-EM (Conv-EM) Proof. Let x € S; andy € S,. Also, let P, P, be the

Input: DataZ = {z1,22,...,2n} projection matrices for the projection operatétg andPs,

k1: Number of clusters in first clustering’) respectively. We first formulate the hypothesis thiat 5, =

ko: Number of clusters in second clusterifitf) {0} in terms of the matrice®,, P» by showing thaf — P P,

A: regularization parameter andl — P, P, are invertible. Suppose on the contrary that
Output: C*', C2: Two different clusterings I — P, P, is not invertible. Then, for some non-zetove

must have(I — P P)z = 0, i.e.,z = P, P,z. Recall that
for a projection matrixP into a subspac# we always have
|Pu|| < ||u|| with equality if and only ifu € S. Thus, we

1.C' —Ek-meansg), C?> —Random assignment
2. p; —ComputeMean(}), v; —ComputeMear(?)
3. ai:kll, b= 1

4. repeat s have
E Step: [l = 1P Poz| < [[Poz]l < l=]]-
4.1. For each, assignp;;(z) using (3.7). Therefore,z = PP,z = Pz, which is possible only if
M Step: z € Sp andz € Sy. This contradicts the assumption that

S1 NSy = {0}, I — P, P, must be invertible. Similarly, we
can also show that — P, P; is invertible.
Now, to prove the lemma we need to show that there

4.2. Assigna;, b; ando using (3.8), (3.9), (3.10).
4.3. Assigna; andg; using (3.13), (3.14).

4.4. v; — B; exists a uniques € S; + S, such thatz = Piu and
4.5. repeat until convergence y = Pyu’. Since,S; N Sy = {0}, solving the above system
e Updatey; using (3.18). gzgﬂl:ﬁ\g:)ns is equivalent to solving fore S;, andw € S

e Updater; using (3.19).

5. until convergence z=Pv+w), y=P~{+uw).

6.C! = {zlpij(2) = 1,Yj}, CF = {z|pi;(2) = 1,Vj}

Manipulating the above equations, we get:
return C*1, C? P g a g

(I—Plpg)’U:I—Ply, (I—PgPl)w:y—PQx.

where,§; = ZA"” andV = [v1,...,1,] andQXQT is The existence and uniqueness_u)iu follow from the fact
) i . that/ — P P, andl — P, P, are invertible. |

the eigenvalue decomposition Bf V.

Similarly, the update for; can be written as, LEMMA 3.3. Let Z € R™ denote a random variable with

(3.19) spherical Gaussian distribution. Le§;, S, C R™ be

v = (]_ GMU (I+QA)’1 UTMT) (8, — 2 ”ij‘/‘”)’ two subspaces such th&y N S, = {0} qnd let Z; =
22 Mij Ps,(Z), Zy = Ps,(Z) be the random variables obtained
by projectingZ onto Sy, S respectively. Then, the random
where,(; = ZAn,.’ M = [p1,...,px,] and M"M = variables Z, and Z, are independent if and only if the

i

UAUT. subspaces$; and.S; are orthogonal.

As in Section 3.1.1, the above updates reduce the cqg)-
. ; . , , roof.
putational complexity of computing all thg;'s and v;’s
from O(k1m3 + kam?) to O(m(k} + k3)).

<~ If S; andS, are orthogonal, then fai; € Sy
andug € S, PT[Z = U1 +U2] = PT[Zl =uy, Ly = UQ].
Further, sinceZ has a spherical Gaussian distribution so do
7, and Z,. The independence d¢f; and Z; follows easily
from the above observations.
3.3.1 Decorrelation measure:Now we motivate the — Let the random variable&; and Z, be indepen-
decorrelation measures used in equations (3.1) and (3.H&ht. Note that without loss of generality we can assume
For this, we will need the following two lemmas abouhat Z has mearD (as else we can transla). Further-
uniqueness of projection and multivariate Gaussians. én fiore, we can also assume that the supporgZa con-
following lemmas, for a subspaceof R™ let Ps : R™ —  tained inS; + S,. This is becausePs, = Ps, o Ps, 43,
R™ be the orthogonal projection operator onto the subspagfi Ps, ¢, (Z) is also distributed as a spherical multivari-
S. ate Gaussian. For the rest of the proof we will suppose that
Sy + S2 = support(Z) = R™ and thatZ has mear®.

Using Lemma 3.2, for, € R™, we have

3.3 Discussion

LEMMA 3.2. Let Sy, S; be subspaces ™ such thatS; N
Sy = {0}. Then, for allz € S;, andy € Ss, there exists a

uniqueu € Sy + S such thatPg, (u) = x and Pg, (u) = y. Pr(Z =u] = Pr|Ps,(Z) = Ps, (u), Ps,(Z) = Ps, (u)].



As Z; andZ, are independent the above can be rew
ten as

Pr[Z = u] = Pr[Ps,(Z) = Ps, (u)]-Pr{Ps, (Z) = Ps, (u)].

Now, since the projection of a spherical multivaria
Gaussian is also a spherical multivariate Guassian, sul
tuting probability density formulae in the above equatiaan \
get the following:

_ 1
(2m)m/2

_ 1
" enmr©

1 a2
—35lu
e~ luall®,

(2m)ma/2

—3llul? = Slluall®,

e

where,m1, ms denote the dimensions 6f , S, respectively
andu; = Pg, (u),us = Ps,(u). Noting thatm = m; + mao
(sinceS; N Sy = {0}) the above equation can be simplifie
to

lull? = | Ps, (w)[|? + || Ps, ()|

As the above equation holds for all it also holds in
particular foru € S;. Now, foru € S; we havePg, (u) = u,
thus we get

Vu € S1, Ps,(u) = 0.

The above condition can easily be shown to be equivalent to
S andS, being orthogonal. |

T o
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A Parts Recovered by Conv-EM
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Figure 2: Representative vectors obtained by Dec-kmeans
and the parts obtained by Conv-EM. The bold line rep-
resents the separating hyperplane for the first clustering,
while the dotted line represents the separating hyperplane
for the second clustering. Conv-EM produced mean vectors
{p1, 12,11, 2} and subsequently each of the four parts are
obtained byu; + v, (i € {1,2},5 € {1,2}).

3.3.2 Decorrelated-kmeans vs Convolutional-EM:

We now give the motivation for our decorrelation mea-
sures. Letus,...,u,, andwvy, ... v, be vectors inR™
such thatu; andv; are orthogonal for alt, j. Let.S; be
the space spanned hy;’s and S, be the space spanned
by v;'s. Define the “nearest-neighbor” random variables,
NN1(Z),NN»(Z) as follows:

(3.20) NNi(Z) = argmin{||Z — p;|| : 1 < i <k},

NNy(Z) = argmin{||Z — vj]| : 1 < j < ka}.

Then asS; and .S, are orthogonal to each other, it follows
from Lemma 3.3 that whel is a spherical multivariate
Gaussian, the random variabldsV; (Z) and NN, (Z) are
independent. Similarly, it can be shown that whéris a
spherical multivariate Gaussian, the random variabl@g, ,
andN N, defined by,

(3.21) (NN1(Z),NNy(2)) = ar(gn_f;in{IIZ — pi — v},
]

are independent. Note that in equations (3.1), (3.12) we use
inner products involving the mean vectors of different elus
terings as the correlation measure. Thus, minimizing the co
relation measure ideally leads to the mean vectors of differ
ent clusterings being orthogonal. Also, observe that we use
nearest neighbor assignments of the form (3.20), (3.21) in
our algorithms in Decorrelated-kmeans and Convolutional-
EM. Thus, the decorrelation measures specified in equations
(3.1) and (3.12) intuitively correspond to the labellings o
the clusterings being independent.

Decorrelated-kmeans (Algorithm 1) has a three-fold advan-
tage over the “sum of the parts” approach (Algorithm 2):

Computing the E-step exactly in the “sum of the parts”
approach requires ®{) computation for each data
point, wherel" is the number of alternative clusterings.
On the other hand, in Decorrelated-kmeans, each label
assignment step requires justk@() computations as
the error terms for different clusterings are independent
in (3.1). Thus, Decorrelated-kmeans is more scalable
than Convolutional-EM with respect to the number of
alternative clusterings.

The M-step in the “sum of the parts” approach solves
a non-convex problem and requires an iterative proce-
dure to reach a local minimum. In the Decorrelated-
kmeans approach, computing the representative vectors
(the equivalent of M-step) requires solving a convex
problem and the optimal solution can be written down
in closed form. Hence, estimation of representative
vectors is more accurate and efficient for Decorrelated-
kmeans.

Decorrelated-kmeans is a discriminative approach,
while Convolutional-EM is a generative model based
approach. Thus, the model assumptions are more strin-
gent for the latter approach. This is observed empiri-
cally also, where Decorrelated-kmeans works well for
all the datasets, but Convolutional-EM suffers on one



of the real-life datasets. (b) Let the means of the obtained clustering be

o _ ) ) my, ..., my. Project the input matri¥X’ onto the
On the flip side, there is no natural interpretation of the space orthogonal to the one spanned by the means
“representative” vectors given by Decorrelated-kmears. O ma,...,myto getx’.

the other hand, the means given by Convolutional-EM can
naturally be interpreted as giving a part-based representa
of the data. This argument is illustrated by Figure 2. The

(c) Cluster the columns ofX’ to obtain a new
set of labels, and compute the cluster means

representative vectors obtained from Decorrelated-ksean ML,y T
partition the data into two clusters accurately. But, theg’'d (d) Repeat steps (b),(c) with meafis,, . . . , my.
give any intuitive characterization of the data. In cortiras (e) Until convergence, repeat steps (a)-(d).

Convolutional-EM is able to recover the four clusters in the
data generated by the addition of two mixtures of Gaussiags; Implementation Details: All the methods have been

) implemented in MATLAB. The implementation of MCVQ
4 Experiments was obtained from the authors of [16]. Lee and Seung’s
We now provide experimental results on synthetic as wellalgjorithm[15] is used for NNMA. Experiments were per-
real-world datasets to show the applicability of our metfermed on a Linux machine with a 2.4 GHz Pentium IV pro-
ods. For real-world datasets we consider a music datasetsor and 1 GB main memory. For the real-world datasets,
from the text-mining domain and a portrait dataset from tle report results in terms of accuracy with the true labets. A
computer-vision domain. We compare our methods agaittst number of clusters can be high in the synthetic datasets,
the factorial learning algorithms Co-operative Vector Quawe report results in terms of normalized mutual information
tization (CVQ)[8] and Multiple Cause Vector QuantizatioNMI) [19]. For all the experiments, accuracy/NMl is aver-
(MCVQ)[16]. We also compare against single-clusterirgged over 100 runs.
algorithms such ag-means and NNMA. We will refer
to the methods of Sections 3.1, 3.2 as Dec-kmeans (o2 Synthetic Datasets:For our experiments we generate
Decorrelated-kmeans) and Conv-EM (for Convolutionadynthetic datasets as a sum of independent components.

EM) respectively. Let X and Y be samples drawn from two independent
We also compare our methods against two simpigixtures of multivariate Gaussians. To evaluate our method
heuristics: in various settings, we generate the final datageby

. ] combining X and ) in three different ways. By viewing
1. Feature Removal (FR)n this approach, we first clus- v angy as thecomponentsf the datasets, and clustering

ter the data using-means. Then, we remove the COpased on these components we get two different clusterings
ordinates that have the masgirrelationwith the labels ¢ the gata.

in the obtained clustering. Next, we cluster the data

again using the remaining features to obtain the alternat. Concatenated dataset: This dataset is produced by
tive clustering. The correlation between a feature and simply concatenating the features af and ), i.e.,

the labels is taken to be proportional to the total weight z - [ X
of the mean vectors for the feature and inversely pro- Yy

portional to the entropy of the particular feature in the . .
mean vectors. Formally: 2. Partial overlap dataset: In this dataset we allow a few
of the features oft’ and)’ to overlap. Specifically, let

b I e o1 |
i) = Zi] 14 . X = %, and) = 9 ],where)(l, Xy, Y1 and
S (L jog i Y, all have the same dimensionality. Then, we form
2 (Zl“; 921“2) &1
. ) ) Z=| X+
wherey; is thei-th dimension of thg-th cluster. V

2. Orthogonal Projection (OPR)This heuristicis motivated 3. Sum dataset: In this dataset, all of the feature¥ ahd
by principal gene shaving[12]. The heuristic proceeds ) overlap,i.e.Z = X + ).

by projecting the data onto the subspace orthogonal to

the means of the first clustering and uses the projectBcPur experiments the dimensionality af and) was set
data for Computing the second C|ustering_ to 30 and there werg000 data pOintS. We label eaCh;

andy; according to the Gaussian from which they were
(a) Cluster the data using a suitable method of clusampled. Thus, eachis associated with two true-labels.
tering. Both our methods produce two disparate clusterings, and



Figure 3: NMI achieved by various methods on the Cofigure 4: NMI achieved by various methods on the Overlap
catenated Dataset. Top figure shows NMI for the first cluSataset. Top figure shows NMI for the first clustering and
tering and bottom figure shows NMI for the second clustdsettom figure shows NMI for the second clustering. Dec-
ing. Overall, Dec-kmeans achieves the highest NMI, whikeneans and Conv-EM achieves similar NMI. Both achieve

MCVQ also performs well on this dataset. higher NMI than MCVQ or CVQ.
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N8umber1%f Clulszters (g)
we associate each clustering with a unique true-labelidg an
report NMI with respect to that true-labeling. We use the
same procedure for CVQ and MCVQ. Férmeans and sumptions of MCVQ.
NNMA?2, which produce just one clustering, we report the Figure 5 shows the NMI achieved by various methods
NMI of the clustering with respect to the true-labellings. on the Sum dataset. For this dataset also, both Conv-EM
Figure 3 compares the NMI achieved by various methnd Dec-kmeans perform comparably and both the methods
ods on the Concatenated dataset. It can be seen fromdtigieve significantly higher NMI than other methods. In-
figure that Conv-EM and Dec-kmeans outperfatrmeans terestingly, NMI for MCVQ is even lower than the single-
and NNMA for both the clusterings, achieving an averagtustering algorithmsi-means and NNMA). This could be
improvement of50 — 60% in NMI. Similarly, both Conv- because the modeling assumption of MCVQ — each dimen-
EM and Dec-kmeans achieve significantly higher NMI thagion in the data is generated by exactly one factor — is com-
CVQ. Note that the Concatenated dataset satisfies MCV@Ietely violated in the Sum dataset. Note that, although CVQ
assumption that each dimension of the data is generated fisrdesigned to model the Sum datasets, it performs poorly
one of the two factors. This is empirically confirmed by theompared to Conv-EM and Dec-kmeans. This trend can be
results, as MCVQ not only outperforms CVQ but also peattributed to the fact that due to the lack of regularization
forms competitively with Conv-EM and Dec-kmeans. CVQ selects one of the many possible solutions to its opti-
Figure 4 compares the NMI for various methods on thmization problem, which may or may not correspond to good
Overlap dataset. Clearly, Conv-EM and Dec-kmeans pédisparate clusterings.
form better than both CVQ and MCVQ. Note that when the  Also note that Conv-EM does not perform significantly
number of clusters is small, NMI of MCVQ with respect tietter than Dec-kmeans, even though the datasets fit the
both the clusterings drops to aroufid. This is probably Conv-EM model well. This is probably because of the non-
because the overlap dataset does not satisfy the modelcaswex nature of the optimization problem for the M-step
in Conv-EM, due to which which the maximum likelihood

—_— _ , estimation gets stuck in a local minimum.
As NNMA is useful for the non-negative data only, we made thtad

non-negative by choosing the means sufficiently far awayfooigin.
4.3 Real-World Datasets



Figure 5: NMI achieved by various methods on the Sufable 1: Accuracy achieved by various methods on the
Dataset. Top figure shows NMI for the first clustering andusic dataset, which is a collection of text documents. Dec-
bottom figure shows NMI for the second clustering. De&means performs the best on this dataset. CVQ and MCVQ
kmeans and Conv-EM achieves similar NMI. NMI achievegerform very poorly compared to Conv-EM

by MCVQ is very low.

Method\ Type Composer| Genre

el | e beemeans] NNMA 1.00 0.40
o k-means 0.89 0.41

g IR Keans Feature Removal 0.97 0.64
P - 3 Orthogonal Projectior]  0.99 0.66
g CVQ 097 | 057
N MCVQ 0.91 0.53
R e S-ENU l Conv-EM 1.00 | 0.65
o <>:,' T \%} Dec-kmeans 1.00 0.69

A .

s 10 12 14
umber of Glusters () 4.3.2 Portrait Dataset: The Portrait dataset consists of
- ——— 324 images obtained from Yale Face Dataset B [7]. Each

o e £ image in the dataset is a portrait of one of three people,én on
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e
T

o
©

of each image i64 x 64. As a first step we reduce

o
©

L N—<Z:—_§_/§V§em of three poses in different backgrounds. The dimensignalit

2 a . the dimensionality of the data t800 by using principal
307 N component analysis. As in the music dataset, the current
5 Q \ Phd . .
R IS P dataset can be clustered in two natural ways - by the personin
Z os \ Pt the picture or the pose. Table 2 shows that Betheans and
os ‘\gr _____________ R Lx-----" ﬁ‘ NNMA perform poorly with respect to both the clusterings.
s EEETT I ra— This shows that in the datasets where there is more than one

natural clustering, traditional clustering algorithmsitzbfail
to find even one good clustering. Hence, it can be beneficial
to use alternative clustering methods even if one is intedes

4.3.1 Music Dataset: The music dataset is a collection of? Obtaining a single clustering.
270 documents, with each document being a review of a cl&ur hypothesis is that unlike the music dataset, there are no
sical music piece taken froamazon.comEach music piece dominant features for any of the clusterings in this dataset
is composed by one of Beethoven, Mozart or Mendelssohfis hypothesis can be justified by observing the poor ac-
and is in one of symphony, sonata or concerto forms. Thggracies of methods like Feature Removal and Orthogo-
the documents can be clustered based on the composdi@frojection. Conv-EM outperforms baseline algorithms
the genre of the musical piece. For the experiments a tefa¥Q and MCVQ significantly, butinterestingly Dec-kmeans
document matrix was formed with dimensionalitys after achieves an even higher accuracysafo and78% for the
stop word removal and stemming. two clusterings.

Table 1 shows that although all the methods are able _
to recover the true clustering for composer, most of tRe Conclusions and Future Work
algorithms perform poorly for the genre based clustering. We address the difficult problem of uncovering disparate
particular,k-means and NNMA perform very poorly for theclusterings from the data in a totally unsupervised setting
clustering based on genre as they produce just one clugteive present two novel approaches for the problem - a decor-
which has high NMI with the clustering based on composerslatedk-means approach and a sum of parts approach. In
Note that in this dataset, the sets of features (words) thze first approach, we introduce a new regularizationkfor
determine clustering with respect to composer and gemmeans to uncover decorrelated clusterings. We provide theo
respectively are almost disjoint. Hence, methods likedreatretical justification for using the proposed decorrelatioea-
Removal and Orthogonal Projection, which try to identifgure. The sum of parts approach leads us to the interesting
disjoint sets of features for the clusterings work fairlyllwe problem of learning a convolution of mixture models and
But, both MCVQ and CVQ algorithm achieve very lowve present a regularized EM algorithm for learning a con-
accuracy as they do not try to fimkcorrelatedclusterings. volution of mixtures of spherical Gaussians. We address
Both our methods outperform the baseline algorithms.  the problem of identifiability for learning a convolution of



Table 2: Accuracy achieved by various methods on the Po[rA—']
trait dataset, which is a collection of images. Dec—kmean[g]
outperforms all other methods by a significant margin. Conv-
EM achieves better accuracy than all other methods, espgt
cially CvQ and MCVQ.

Method\ Type Person| Pose [7
NNMA 0.51 | 0.49
k-means 0.66 | 0.56
Feature Removal 0.56 | 0.48
Orthogonal Projection 0.66 | 0.70 (8]
CVQ 0.53 | 0.51 [9]
MCVQ 0.64 | 0.51
Conv-EM 0.69 | 0.72 [10]
Dec-kmeans 0.84 | 0.78

[11]
mixtures of Gaussians by using a regularization geared for
providing disparate clusterings. We demonstrate the effék?]
tiveness and robustness of our algorithms on synthetic and
real-world datasets. On each of these datasets, we signifi-
cantly improve upon the accuracy achieved by existing fag—3
torial learning methods such as CVQ and MCVQ. Our meth-
ods also outperform the traditional clustering algoritHikes
k-means and NNMA. [14]

For future work, it would be of interest to study the prob-
lem of learning a convolution of mixtures for a more general
class of distributions and look for other settings whererlea [15]
ing convolutions of mixtures could be useful. We also plan
to further investigate the properties of the decorrelatiea- [16]
sure, especially for more general distributions of the data
problem that we do not address in this paper is model %7-]
lection - choosing the number of clusters and the nhumber
of clusterings. Good heuristics for choosing these parame-
ters would be very useful. Also, a more detailed compaFi-B]
son of Conv-EM and Dec-kmeans would be useful; it would
be interesting to understand the comparable performance of
Conv-EM and Dec-kmeans for the synthetic datasets whial]
fit the convolution model well.
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