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Abstract—A description of optimal sequences for direct-spread code-
division multiple access (S-CDMA) is a byproduct of recent characteri-
zations of the sum capacity. This correspondence restates the sequence
design problem as an inverse singular value problem and shows that the
problem can be solved with finite-step algorithms from matrix theory. It
proposes a new one-sided algorithm that is numerically stable and faster
than previous methods.

Index Terms—Algorithms, code-division multiple access (CDMA),
inverse eigenvalue problems, optimal sequences, sum capacity.

I. INTRODUCTION

We consider the problem of designing signature sequences to
maximize the sum capacity of a symbol-synchronous direct-spread
code-division multiple-access (henceforth S-CDMA) system operating
in the presence of white noise. This question has received a tremendous
amount of attention in the information theory community over the
last decade, e.g., [1]–[8]. These papers, however, could benefit from a
matrix-theoretic perspective. First of all, they do not fully exploit the
fact that sequence design is fundamentally an inverse singular value
problem [9]. Second, finite-step algorithms to solve the sequence
design problem have been available in the matrix computations
literature for over two decades [10], [11]. Finally, researchers rarely
mention computational complexity or numerical stability, which are
both significant issues for any software.

This correspondence addresses sequence design using tools from
matrix theory. Our approach clarifies and simplifies the treatment in
comparison with existing information theory literature, and it also al-
lows us to develop a new algorithm whose computational complexity
is superior to earlier methods. In particular, this correspondence deals
with the following issues.

1) We take advantage of the fact that the S-CDMA sequence de-
sign problem is equivalent with the classical Schur–Horn inverse
eigenvalue problem. This perspective provides an efficient route
to understanding the S-CDMA signature design literature. The
power of this approach becomes clear when investigating more
difficult design problems [12].

2) This connection leads us to several finite-step algorithms from
matrix theory. We present numerically stable versions of these
methods and study their computational complexity. Earlier au-
thors were evidently unfamiliar with this work. For example, one
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of the algorithms in [2] seems to be identical with an algorithm
published in 1983 [11].

3) Finally, we leverage our insights to develop a new finite-step
algorithm for designing real S-CDMA signature sequences. This
algorithm is numerically stable, and its time and storage com-
plexity improve over all previous algorithms.

The S-CDMA signature design problem is usually studied in the real
setting. In some related sequence design problems, however, the com-
plex case is richer. Therefore, we have chosen to address the complex
case instead; the real case follows from a transparent adaptation.

II. BACKGROUND

A. Synchronous Direct-Sequence CDMA (DS-CDMA)

Consider the uplink of an S-CDMA system withN users and a pro-
cessing gain of d. Assume that N > d, since the analysis of the other
case is straightforward. Assuming perfect synchronization, the equiv-
alent baseband representation after matched filtering and sampling at
the receiver is given by

yyy[t] =

N

n=1

bn[t] sssn + vvv[t]

where yyy[t] 2 d is the observation during symbol interval t, sssn 2 d

is the signature of user n, bn[t] 2 is the symbol transmitted by user
n, and vvv[t] 2 d is the realization of an independent and identically
distributed complex Gaussian vector with zero mean and covariance
matrix . We assume that the energy of each signature is normalized
to unity, i.e., ksssnk2 = 1 for n = 1; 2; . . . ; N . Define a d � N ma-
trix whose columns are the signatures:

def
= [ sss1 sss2 . . . sssN ]. Let

� to denote the (conjugate) transpose of . Note that ( � )nn = 1
for each n = 1; . . . ; N . Assume that user n has an average power
constraint

wn
def
=

1

T

T

t=1

jbn[t]j
2

where T is the number of symbol periods. Note that each wn

is strictly positive, and collect them in the diagonal matrix
def
= diag(w1; w2; . . . ; wN). It is often more convenient to

absorb the power constraints into the signatures, so we also define the
weighted signature matrix

def
=

1=2. Denote the nth column of
as xxxn. For each n, one has the relationship

( � )nn = kxxxnk
2

2
= wn: (1)

Viswanath and Anantharam have proven in [6] that, for real signa-
tures, the sum capacity of the S-CDMA channel per degree of freedom
is given by the expression

Csum =
1

2d
max
S

log det(Id +
�1 �

): (2)

(In the complex case, the sum capacity differs by a constant factor.) The
basic sequence design problem is to produce a signature matrix that
solves the optimization problem (2). Three cases have been considered
in the literature.

1) The white noise, equal power case was considered by Rupf and
Massey in [1]. Here, the noise covariance matrix and the power
constraint matrix are both multiples of the identity. That is, =
�2 Id, and = w IN .
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2) Later, Viswanath and Anantharam addressed the situation of
white noise and unequal user powers [2]. Here, the power con-
straints form a positive diagonal matrix , and = �2 Id.

3) Most recently, Viswanath and Anantharam have succeeded in
characterizing the optimal sequences under colored noise and
unequal user powers [6]. Here, is an arbitrary positive semi-
definite matrix, and is a positive diagonal matrix.

We discuss each scenario in a subsequent section. The algorithms we
develop can be used to construct optimal signatures for each case. Most
previous work on sum capacity has not considered complex signature
sequences. This note addresses the complex case exclusively because
it subsumes the real case without any additional difficulty of argument.

B. A Sum Capacity Bound

In [1], Rupf and Massey produced an upper bound on the sum
capacity Csum under white noise with variance �2.

Csum �
1

2
log 1 +

Tr

�2 d
(3)

whereTr (�) indicates the trace operator. They also established a neces-
sary and sufficient condition on the signatures for equality to be attained
in the bound (3)

� = � =
Tr

d
Id: (4)

A matrix that satisfies (4) is known as a tight frame [13] or a general
Welch-bound-equality sequence (gWBE) [2]. As we shall see, a tight
frame does not exist for every choice of . (A majorization condi-
tion must hold, as discussed in Section II-E.) A condition equivalent to
(4) is that

� =
Tr

d
(5)

where the matrix represents an orthogonal projector from N onto
a subspace of dimension d. Recall that an orthogonal projector is an
idempotent, Hermitian matrix. That is, 2 = and = �. An or-
thogonal projector is also characterized as a Hermitian matrix whose
nonzero eigenvalues are identically equal to one. In light of (1), the
problem of constructing optimal signature sequences in the present set-
ting is closely related to the problem of constructing an orthogonal pro-
jector with a specified diagonal.

C. White Noise, Equal Powers

Consider the case where the power constraints are equal, viz.
= w IN for some positive number w. Then condition (4) for

equality to hold in (3) becomes

w�1 � = � =
N

d
Id: (6)

A matrix which satisfies (6) is known as a unit-norm tight frame
(UNTF) [13] or a Welch-bound-equality sequence (WBE) [1]. In fact,
there always exist signature matrices that satisfy condition (6), and so
the upper bound on the sum capacity can always be attained when the
users’ power constraints are equal [1]. Equation (6) can also be inter-
preted as a restriction on the singular values of the signature matrix.
Under the assumptions of white noise and equal power constraints, a
matrix yields optimal signatures if and only if

1) each column of has unit-norm and
2) the d nonzero singular values of are identically equal to

N=d.

Therefore, this sequence design problem falls into the category of struc-
tured inverse singular value problems [9]. Note that condition 1) must
hold irrespective of the type of noise.

D. Majorization

The bound (3) cannot bemet for an arbitrary set of power constraints.
The explanation requires a short detour. The kth order statistic of a
vector vvv is its kth smallest entry, and it is denoted as v(k). Suppose that
www and ��� are N -dimensional, real vectors. Then www is said to majorize
��� when their order statistics satisfy the following conditions:

�(1) �w(1)

�(1) + �(2) �w(1) + w(2)

...

�(1) + � � �+ �(N�1) �w(1) + � � �+ w(N�1) and

�(1) + � � �+ �(N) =w(1) + � � �+ w(N): (7)

The majorization relation (7) is commonly written as www ���. Note
that the direction of the partial ordering is reversed in some treatments.
An intuition which may help to clarify this definition is that the ma-
jorizing vector (www) is an averaged version of the majorized vector (���);
its components are clustered more closely together. It turns out that ma-
jorization defines the precise relationship between the diagonal entries
of a Hermitian matrix and its spectrum.

Theorem 1 (Schur–Horn [14]): The diagonal entries of a Hermitian
matrix majorize its eigenvalues. Conversely, if www ���, there exists a
Hermitian matrix with diagonal elements listed by www and eigenvalues
listed by ���.

Schur demonstrated the necessity of the majorization condition in
1923, while Horn proved its sufficiency some thirty years later [14]. A
comprehensive reference on majorization is [15].

E. White Noise, Unequal Powers

The Schur–Horn theorem forbids the construction of an orthogonal
projector with arbitrary diagonal entries. For this reason, (5) cannot
always hold, and the upper bound (3) cannot always be attained.
The key result of [2] is a complete characterization of the sum

capacity of the S-CDMA channel under white noise. Viswanath and
Anantharam demonstrate that oversized users—those whose power
constraints are too large relative to the others for the majorization
condition to hold—must receive their own orthogonal channels to
maximize the sum capacity of the system, and they provide a simple
method of determining which users are oversized. The other users
share the remaining dimensions equitably.
For reference, we include the Viswanath–Anantharam method for

determining the set K of oversized users.

1) Initialize K = ;.
2) Terminate if n=2Kwn � (d� jKj) maxn=2Kwn.
3) Perform the update K  K [ argmaxn=2Kfwng.
4) Return to Step 2.
Suppose that there are m < d oversized users, whose signatures

form the columns of 0. Let the columns of 1 list the signatures of
the (N�m) remaining users, and let the diagonal matrix 1 list their
power constraints. The conditions for achieving sum capacity follow.

1) The m oversized users receive orthogonal signatures:
�
0 0 = Im.

2) The remaining (N � m) signatures are also orthogonal to the
oversized users’ signatures: �

0 1 = 0.
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3) The remaining users signatures satisfy

1 1

�

1 =
Tr 1

d�m
Id�m:

Repeat the foregoing arguments to see that the sequence design
problem still amounts to constructing a matrix with given column
norms and singular spectrum. It is therefore an inverse singular value
problem.

F. Total Squared Correlation

It is worth mentioning an equivalent formulation of the white-noise
sequence design problem that provides a foundation for several itera-
tive design algorithms [3]–[5], [7].

The total weighted squared correlation (TWSC) of a signature
sequence is the quantity

TWSC ( )
def
= = � =

2

F

= k � k2
F

=

N

m;n=1

wm wn jhsssm; sssnij2:

In a rough sense, this quantity measures how “spread out” the signature
vectors are. Minimizing the TWSC of a signature sequence is the same
as solving the optimization problem (2), as shown in [7]. A short alge-
braic manipulation shows that minimizing the TWSC is also equivalent
to minimizing the quantity

� � Tr

d
Id

2

F

:

Inwords, the singular values of an optimal weighted signature sequence
should be “as constant as possible.” It should be emphasized that this

equivalence only holds in the case of white noise.

G. Colored Noise, Unequal Powers

When the noise is colored, the situation is somewhat more compli-
cated. Nevertheless, optimal sequence design still boils down to con-
structing a matrix with given column norms and singular spectrum.
Viswanath and Anantharam show that the following procedure will
solve the problem [6].

1) Compute an eigenvalue decomposition of the noise covariance
matrix = �, where = diag��� for some nonnegative
vector ���.

2) Use AlgorithmA of [6] to determine ���, the Schur-minimal ele-
ment of the set of possible eigenvalues of � + .

3) Form the vector ���
def
= ��� � ���.

4) Compute an auxiliary signature matrix with unit-norm
columns so that � = diag���.

5) The optimal signature matrix is
def
= .

The computation in step (4) is equivalent to producing a d�N matrix
def
= = . The columns of must have squared norms listed by the

diagonal of . The vector ��� must list the d nonzero squared singular
values of . This is another inverse singular value problem.

III. CONSTRUCTING UNIT-NORM SIGNATURE SEQUENCES

Now that we have set out the conditions that an optimal signature se-
quence must satisfy, we may ask how to construct these sequences. It
turns out that some useful algorithms have been available for a long
time. But the connection with S-CDMA signature design has never
been observed.

A positive semi-definite Hermitianmatrix with a unit diagonal is also
known as a correlation matrix [16]. We have seen that the Grammatrix

def
= � of an optimal signature matrix is always a correlation ma-

trix. Moreover, every correlation matrix with the appropriate spectrum
can be factored to produce an optimal signature matrix [16]. Therefore,
we begin with a basic technique for constructing correlation matrices
with a preassigned spectrum.

A. A Numerically Stable, Finite Algorithm

In 1978, Bendel andMickey presented an algorithm that uses a finite
sequence of rotations to convert an arbitraryN �N Hermitian matrix
with trace N into a unit-diagonal matrix that has the same spectrum
[10].We follow the superb exposition of Davies andHigham [16]. Brief
discussions also appear in Horn and Johnson [14, p.76] and in Golub
and van Loan [17, Problems 8.4.1 and 8.4.2].
Suppose that 2 N is a Hermitian matrix with Tr = N . (Let
N denote the set of complexN�N matrices, and let d;N denote the

set of complex d�N matrices.) If does not have a unit diagonal, one
can locate two diagonal elements so that ajj < 1 < akk; otherwise,
the trace condition would be violated. It is then possible to construct
a real plane rotation in the jk-plane so that ( � )jj = 1. The
transformation 7! � preserves the conjugate symmetry and
the spectrum of but reduces the number of nonunit diagonal entries
by at least one. Thus, at most (N �1) rotations are required before the
resulting matrix has a unit diagonal.
The appropriate form of the rotation is easy to discover, but the fol-

lowing derivation is essential to ensure numerical stability. Recall that
a two-dimensional plane rotation is an orthogonal matrix of the form

=
c s

�s c

where c2 + s2 = 1 [17]. The corresponding plane rotation in the
jk-plane is the N -dimensional identity matrix with its jj, jk, kj, and
kk entries replaced by the entries of the two-dimensional rotation. Let
j < k be indices so that

ajj < 1 < akk or akk < 1 < ajj :

The desired plane rotation yields the matrix equation

c s

�s c

�

ajj ajk
a�jk akk

c s

�s c
=

1 ajk
a�jk akk

where c2+ s2 = 1. The equality of the upper-left entries can be stated
as

c2ajj � 2scRe ajk + s2akk = 1:

This equation is quadratic in t = s=c:

(akk � 1) t2 � 2tRe ajk + (ajj � 1) = 0

whence

t =
Re ajk � (Re ajk)2 � (ajj � 1)(akk � 1)

akk � 1
: (8)

Notice that the choice of j and k guarantees a positive discriminant.
As is standard in numerical analysis, the� sign in (8) must be taken to
avoid cancelations. If necessary, one can extract the other root using the
fact that the product of the roots equals (ajj � 1)=(akk � 1). Finally

c =
1p

1 + t2
and s = ct: (9)

Floating-point arithmetic is inexact, so the rotation may not yield
ajj = 1. A better implementation sets ajj = 1 explicitly. Davies and
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Higham prove that the algorithm is backward stable, so long as it is
implemented the waywe have described [16].We restate the algorithm.

Algorithm 1 (Bendel–Mickey): Given Hermitian 2 N with
Tr = N , this algorithm yields a correlation matrix whose eigen-
values are identical with those of .

1) While some diagonal entry ajj 6= 1, repeat Steps 2–4.
2) Find an index k (without loss of generality j < k) for which

ajj < 1 < akk or akk < 1 < ajj .
3) Determine a plane rotation in the jk-plane using (8) and (9).
4) Replace by � . Set ajj = 1.

Since the loop executes no more than (N � 1) times, the total cost
of the algorithm is no more than 12N2 real floating-point operations,
to highest order, if conjugate symmetry is exploited. The plane rota-
tions never need to be generated explicitly, and all the intermediate ma-
trices are Hermitian. Therefore, the algorithm must store onlyN(N +
1)=2 complex floating-point numbers. MATLAB 6 contains a version
of Algorithm 1 that starts with a random matrix of specified spectrum.
The command is gallery(0randcorr0; . . .).

It should be clear that a similar algorithm can be applied to any Her-
mitian matrix to produce another Hermitian matrix with the same
spectrum but whose diagonal entries are identically equal to Tr =N .

The columns of � must form an orthogonal basis for the column
space of

def
= � according to (6). Therefore, one can use a rank-

revealing QR factorization to extract a signature sequence from the
output of Algorithm 1 [17].

B. Direct Construction of the Signature Matrix

In fact, the methods of the last section can be modified to compute
the signature sequence directly without recourse to an additional QR
factorization. Any correlation matrix 2 N can be expressed as the
product � where 2 r;N has columns of unit norm and dimen-
sion r � rank . With this factorization, the two-sided transformation
7! � is equivalent to a one-sided transformation 7! . In

consequence, the machinery of Algorithm 1 requires little adjustment
to produce these factors. We have observed that it can also be used
to find the factors of an N -dimensional correlation matrix with rank
r < N , in which case may take dimensions d�N for any d � r.

Algorithm 2 (Davies–Higham): Given 2 d;N for which
Tr � = N , this procedure yields a d � N matrix with the same
singular values as but with unit-norm columns.

1) Calculate and store the column norms of .
2) While some column has norm ksssjk22 6= 1, repeat Steps 3–7.
3) Find indices j < k for which

ksssjk22 < 1 < kssskk22 or kssskk22 < 1 < ksssjk22 :
4) Form the quantities

ajj = ksssjk22 ; ajk = hsssk; sssji ; and akk = kssskk22 :
5) Determine a rotation in the jk-plane using (8) and (9).
6) Replace by .
7) Update the two column norms that have changed.

Step 1) requires 4dN real floating-point operations, and the re-
maining steps require 12dN real floating-point operations to highest
order. The algorithm requires the storage of dN complex floating-point
numbers and N real numbers for the current column norms. Davies
and Higham show that the algorithm is numerically stable [16].

C. Random Unit-Norm Tight Frames

To generate a random signature sequence using the Davies–Higham
algorithm, one begins with a matrix whose d nonzero singular values

all equal N=d. There is only one way to build such a matrix: Select
for its rows d orthogonal vectors of norm N=d from N . One might
choose a favorite orthonormal system from N , pick d vectors from it,
multiply them by N=d, and use them as the rows of [13].
Following [16], we can suggest amore general approach. Stewart has

demonstrated how to construct a real, orthogonal matrix uniformly at
random [18]. Use his technique to choose a random orthogonal matrix;
strip off the first d rows; rescale them by N=d; and stack these row
vectors to form . Then apply Algorithm 2 to obtain a unit-norm tight
frame. We may view the results as a random UNTF [16]. It should
be noted that the statistical distribution of the output is unknown
[19], although it includes every real UNTF. A version of Algorithm
2 is implemented in MATLAB 6 as gallery(0randcolu0; . . .). An
identical procedure using random unitary matrices can be used to
construct complex signatures.

IV. CONSTRUCTING WEIGHTED SIGNATURE SEQUENCES

Every optimal weighted signature sequence has a Gram matrix
def
= � with fixed diagonal and spectrum (and conversely).

Unfortunately, neither Algorithm 1 nor Algorithm 2 can be used to
build these matrices. Instead, we must develop a technique for con-
structing a Hermitian matrix with prescribed diagonal and spectrum.
This algorithm, due to Chan and Li, begins with a diagonal matrix of
eigenvalues and applies a sequence of plane rotations to impose the
power constraints. Our matrix-theoretic approach allows us to develop
a new one-sided version of the Chan–Li algorithm.

A. A Numerically Stable, Finite Algorithm

Chan and Li present a beautiful, constructive proof of the converse
part of the Schur–Horn theorem [11]. Suppose thatwww and ��� are N -di-
mensional, real vectors for which www ���. Using induction on the
dimension, we show how to construct a Hermitian matrix with diagonal
www and spectrum ���. In the sequel, assume without loss of generality that
the entries of www and ��� have been sorted in ascending order. Therefore,
w(k) = wk and �(k) = �k for each k.
Suppose that N = 2. The majorization relation implies �1 � w1 �

w2 � �2. Let
def
= diag���. We can explicitly construct a plane rotation

so that the diagonal of � equals www.

def
=

1p
�2 � �1

p
�2 � w1

p
w1 � �1

�pw1 � �1
p
�2 � w1

: (10)

Since is orthogonal, � retains spectrum ��� but gains diagonal
entries www.
Suppose that, whenever www ��� for vectors of length N � 1, we

can construct an orthogonal transformation so that �(diag���)
has diagonal entries www.
Consider N -dimensional vectors for which www ���. Let

def
= diag���.

The majorization condition implies that �1�w1 � wN ��N , so it is
always possible to select a least integer j >1 so that �j�1�w1��j .
Let 1 be a permutation matrix for which

�

1 1 = diag (�1; �j ; �2; . . . ; �j�1; �j+1; . . . ; �N ):

Observe that �1 � w1 � �j and �1 � �1 + �j �w1 � �j . Thus, we
may use (10), replacing �2 with �j , to construct a plane rotation 2

that sets the first entry of �

2(diag (�1; �j)) 2 to w1. If we define the
rotation

2
def
=

2 0�

0 IN�2

then

�

2
�

1 1 2 =
w1 vvv�

vvv N�1
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where vvv is an appropriate vector and

N�1 = diag (�1 + �j � w1; �2; . . . ; �j�1; �j+1; . . . ; �N ):

To apply the induction hypothesis, it remains to check that the vector
(w2; w3; . . . ; wN) majorizes the diagonal of N�1. We accomplish
this in three steps. First, recall that �k � w1 for k = 2; . . . ; j � 1.
Therefore,

m

k=2

wk � (m� 1)w1 �
m

k=2

�k

for eachm = 2; . . . ; j � 1. The sum on the right-hand side obviously
exceeds the sum of the smallest (m� 1) entries of diag N�1, so the
first (j� 2)majorization inequalities are in force. Second, use the fact
that www ��� to calculate that

m

k=2

wk =

m

k=1

wk � w1 �
m

k=1

�k � w1

=(�1 + �j � w1) +

j�1

k=2

�k +

m

k=j+1

�k

form = j; . . . ; N . Once again, observe that the sum on the right-hand
side exceeds the sum of the smallest (m � 1) entries of diag N�1,
so the remaining majorization inequalities are in force. Finally, rear-
ranging the relation N

k=1
wk = N

k=1
�k yields

N

k=2

wk = Tr N�1:

In consequence, the induction furnishes a rotation N�1 which sets
the diagonal entries of N�1 equal to the numbers (w2; . . . ; wN).
Define

3
def
=

1 0
�

0 N�1

:

Conjugating by the orthogonal matrix = 1 2 3 transforms the
diagonal entries of to www while retaining the spectrum ���. The proof
yields the following algorithm.

Algorithm 3 (Chan–Li): Letwww and ��� be vectors with ascending en-
tries and such that www ���. The following procedure computes a real,
symmetric matrix with diagonal entries www and eigenvalues ���.

1) Initialize = diag���, and put n = 1.
2) Find the least j > n so that aj�1;j�1 � wn � ajj .
3) Use a symmetric permutation to set an+1;n+1 equal to ajj while

shifting diagonal entries n + 1; . . . ; j � 1 one place down the
diagonal.

4) Define a rotation in the (n; n + 1)-plane with

c =
an+1;n+1 � wn
an+1;n+1 � ann

; s =
wn � ann

an+1;n+1 � ann
:

5) Replace by � .
6) Use a symmetric permutation to re-sort the diagonal entries of

in ascending order.
7) Increment n, and repeat Steps 2–7 while n < N .

This algorithm requires about 6N2 real floating-point operations. It
requires the storage of aboutN(N+1)=2 real floating-point numbers,
including the vectorwww. It is conceptually simpler to perform the permu-
tations described in the algorithm, but it can be implemented without
them.

We have observed that the algorithm given by Viswanath and Anan-
tharam [2] for constructing gWBEs is identical with Algorithm 3.

B. A New One-Sided Algorithm

Algorithm 3 only produces a Gram matrix, which must be factored
to obtain the weighted signature matrix. We propose a new one-sided
version. The benefits are several. It requires far less storage and com-
putation than the Chan–Li algorithm. At the same time, it constructs
the factors explicitly.

Algorithm 4: Suppose that www and ��� are nonnegative vectors of
length N with ascending entries. Assume, moreover, that the first
(N � d) components of ��� are zero and that www ���. The following
algorithm produces a d�N matrix whose column norms are listed
by www and whose squared singular values are listed by ���.

1) Initialize n = 1, and set

= 0

p
�N�d+1

. . . p
�N

:

2) Find the least j > n so that kxxxj�1k22 � wn � kxxxjk22.
3) Move the jth column of to the (n+1)th column, shifting the

displaced columns to the right.
4) Define a rotation in the (n; n + 1)-plane with

c =
kxxxn+1k22 � wn

kxxxn+1k22 � kxxxnk22
; s =

wn � kxxxnk22
kxxxn+1k22 � kxxxnk22

:

5) Replace by .
6) Sort columns (n+ 1); . . . ; N in order of increasing norm.
7) Increment n, and repeat Steps 2–7 while n < N .

Note that the algorithm can be implemented without permutations.
The computation requires 6dN real floating-point operations and
storage of N(d+ 2) real floating-point numbers including the desired
column norms and the current column norms. This is far superior to
the other algorithms outlined here, and it also bests the algorithms
from the information-theory literature. Moreover, the algorithm is
numerically stable because the rotations are properly calculated.

V. CONCLUSION AND FURTHER WORK

We have discussed a group of four algorithms that can be used to
produce sum-capacity-optimal S-CDMA sequences in a wide variety
of circumstances. Algorithm 1 constructs a Hermitian matrix with
a constant diagonal and a prescribed spectrum. This matrix can be
factored to yield an optimal signature sequence for the case of equal
user powers, i.e., a unit-norm tight frame. Alternately, Algorithm 2
can be used to produce the factors directly. In constrast, Algorithm 3
constructs a Hermitianmatrix with an arbitrary diagonal and prescribed
spectrum, subject to the majorization condition. The resulting matrix
can be factored to obtain an optimal signature sequence for the
case of unequal received powers, i.e., a tight frame. We have also
introduced an efficient new variant, Algorithm 4, that can calculate
the factors directly.
Algorithms 1 and 2 can potentially calculate every correlation matrix

and its factors. If they are initialized with random matrices, one may
interpret the output as a random correlation matrix. The factors can be
interpreted as random unit-norm signature sequences.
On the other hand, the output of Algorithms 3 and 4 is not ency-

clopedic. They can construct only a few matrices for each pair (www;���).
These matrices are also likely to have many zero entries, which is unde-
sirable for some applications. In addition, these algorithms only build
real matrices, whereas complex matrices are often of more interest.
One may observe that Algorithms 1 and 3 always change the

diagonal in the -increasing direction. Using this insight, we have
developed generalizations of both algorithms. For more details, refer
to [20].
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Matrix analysis can provide powerful tools for solving related se-
quence design problems. For example, we have developed an iterative
technique that can compute optimal signature sequence which satisfy
additional constraints, such as unimodularity of the components [8].
Related methods can even construct maximum Welch-bound-equality
sequences (MWBEs), which is a more challenging problem [21, Ch. 7].
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Comments on “Symmetric Capacity and Signal Design
for -out-of- Symbol-Synchronous CDMA

Gaussian Channels”
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Vijay K. Bhargava, Fellow, IEEE

Abstract—We show that the signature sequences set that maximizes
the lower bound on symmetric capacity derived in the above paper
also maximizes the sum capacity of Gaussian synchronous code-divi-
sion multiple-access (CDMA) channel. This is done by relying on the
equivalence of the eigenvalues of energy-weighted correlation matrices.
This result establishes the missing link between the above paper and
the sum capacity maximization result by Viswanath et al.

Index Terms—Code-division multiple access (CDMA), signal design, sig-
nature sequences, sum capacity, symmetric capacity.

Consider a discrete-time single-cell synchronous Code-division
multiple access (CDMA) Gaussian channel with K users and pro-
cessing gain N as in [1]–[3]. Let the average input power constraint
on the transmit symbols of user i = 1; . . . ; K be denoted by pi and
D = diagfp1; . . . ; pKg. We assume that additive zero mean, �2 vari-
ance, Gaussian white noise, which is independent of the transmitted
symbols, is corrupting the transmission. Let the signature sequence of
user i be represented by a column vector si 2 RN , and constrain its
power with sTi si = N . Let us arrange these sequences in an N �K
matrix S = [s1; . . . ; sK ]. Denote the set of all such matrices that
satisfy all users signature power constraints with S .
The symmetric capacity of the analyzed channel in bits per chip is

defined as in [2], [3]

Csym(S;D;N; �2) = min
J�f1;...;Kg

1

jJ jN
Csum(SJ ; DJ ; N; �

2) (1)

where Csum(SJ ; DJ ; N; �
2) is the sum capacity when only users in

J are active and J is a nonnull set. Here, SJ is the N � J matrix
fsi : i 2 Jg andDJ is the jJ j�jJ jmatrix diagfpi : i 2 Jg. Note that
the capacity is scaled by 1=2 if baseband transmission is considered.
Authors of [2] addressed the L-out-of-K (LOOK) multiple-access

model, where at most L users out of possible K are simultaneously
active. By assuming that the set of active users is not known a priori
to both the transmitters and the receiver, the authors of [2] tried to
find the signature sequences set that maximizes the user capacity for
any such possible set of active users. If L = K , this amounts to the
maximization of the symmetric capacity. As opposed to the LOOK
model, [3] addresses the special case when all K out of K users are
active and shows that the generalized Welch-bound-equality sequence
set maximizes the sum capacity of that model. Both results rely on
the majorization properties of eigenvalues of the energy-weighted
correlation matrices.
We first review the lower bound on the symmetric capacity proved

in Theorem 3 of [2]. For any vector xxx = fx1; x2; . . . ; xng, let
xxx# = fx[1]; x[2]; . . . ; x[n]g denote its nonincreasing rearrangement,
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