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Abstract

Correctly identifying associations of genes with diseases has long been a goal in biology. With the
emergence of large-scale gene-phenotype association datasets in biology, we can leverage statistical and
machine learning methods to help us achieve this goal. In this paper, we present two methods for pre-
dicting gene-disease associations based on functional gene associations and gene-phenotype associations
in model organisms. The first method, the Katz measure, is motivated from its success in social network
link prediction, and is very closely related to some of the recent methods proposed for gene-disease asso-
ciation inference. The second method, called Catapult (Combining dATa Across species using Positive-
Unlabeled Learning Techniques), is a supervised machine learning method that uses a biased support
vector machine where the features are derived from walks in a heterogeneous gene-trait network. We
study the performance of the proposed methods and related state-of-the-art methods using two different
evaluation strategies, on two distinct data sets, namely OMIM phenotypes and drug-target interactions.
Finally, by measuring the performance of the methods using two different evaluation strategies, we show
that even though both methods perform very well, the Katz measure is better at identifying associations
between traits and poorly studied genes, whereas Catapult is better suited to correctly identifying
gene-trait associations overall.

Introduction

Correctly predicting new gene-disease associations has long been an important goal in computational
biology. One very successful strategy has been the so-called guilt-by-association (GBA) approach, in
which new candidate genes are found through their association with genes already known to be involved
in the condition studied. This association can in practice be derived from many different types of data.
Goh et al. [1] construct a network where genes are connected if they are associated with the same
disease, whereas Tian et al. [2] combine protein interactions, genetic interactions, and gene expression
correlation, and Ulitsky and Shamir [3] combine interactions from published networks and yeast two-
hybrid experiments.

One of the most commonly used kinds of association is derived from direct protein-protein interac-
tions, such as the ones curated by the Human Reference Protein Database (HPRD) [4]. The last few years
have seen a number of methods, such as CIPHER [5], GeneWalker [6], Prince [7] and RWRH [8], that
have extended the association from just direct protein interactions to more distant connections in various
ways. One kind of network that has proven to be particularly useful for predicting biological function is
the functional interaction network, where a pair of genes is connected based on the integrated evidence
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from a wide array of information sources, as seen by Lee at al. [9]. These have been used to associate
genes with phenotypes in model organisms [10,11] and in humans [12,13]. A recently published network,
HumanNet, has been used to refine predictions from genome-wide association studies [14]. Since func-
tional gene interaction networks aggregate many different types of information, they can achieve much
greater coverage than pure protein-protein interaction networks.

Alternatively, we can think of the gene-disease association problem as a supervised learning problem,
where each gene-disease pair is represented by a number of derived features (explicitly or implicitly
using a kernel function) and then a classifier is learned to distinguish “positive” (or known) associations
from “negative” ones, using previously studied gene-disease associations, and unknown gene-disease pairs
as training data. Such an approach is taken by the recent ProDiGe method [15], which integrates a
wide variety of heterogeneous data sets and uses support vector machines (SVMs) to identify potential
gene-disease associations.

In the past decades, the growth of gene-phenotype associations in model species has been explosive,
which suggests an alternative way to find candidate genes for human diseases. McGary et al. [16] used
this treasure trove of information to find surprising connections between model species phenotypes and
human diseases by looking for pairs of human diseases and model phenotypes that share a higher than
expected number of orthologous genes. In this way, a number of new, and often surprising, model
systems were found for human diseases. For instance, the human neural crest related developmental
disorder Waardenburg syndrome shares gene modules with gravitropism (the ability to detect up and
down) in plants, and mammalian angiogenesis has been found to involve the same pathways as lovastatin
sensitivity in yeast. This model species information represents yet another form of functional connection
that can be used for gene-phenotype association.

In this paper, we first propose two distinct but related GBA methods. One is based on the Katz
method [17] that has been successfully applied for link prediction in social networks. The method is
based on integrating functional gene interaction networks with model species phenotype data and com-
puting a measure of similarity based on walks of different lengths between gene and phenotype node
pairs. The second method, which we call Catapult (Combining dATa Across species using Positive-
Unlabeled Learning Techniques) is a supervised learning method, wherein we represent gene-phenotype
pairs in a feature space derived from hybrid walks through the heterogeneous network used by Katz. The
supervised learning method falls under a class of learning methods called Positive-Unlabeled learning
methods (ProDiGe [15] also belongs in this class) since the learning task has only positive and unlabeled
examples (and no negative examples). The method naturally generalizes the computation of Katz on a
heterogeneous network by learning appropriate feature weights.

To determine if a computational method truly associates genes with diseases, biological validation of
the predicted associations – often by knockout studies in model systems, or through sequencing of patients
– is needed. Since these can be expensive and hard to do in a high throughput way, it is common to
measure the performance of GBA methods through cross-validation. Recent work has shown that a large
fraction of the performance of GBA methods can be attributed to the multifunctionality of genes [18].
A priori, it is not clear exactly how the construction of the training and the test data sets affects the
measured performance of a method. We show that Katz and Catapult outperform the state-of-the-art,
as measured by standard cross-validation. Furthermore, we show that standard cross-validation is not
always an appropriate yardstick for comparing the performance of methods, and that when an alternative
method for cross-validation is used — measuring how well the methods do in predicting genes that have
no previous disease (or drug) associations, simpler walk-based methods often achieve better performance
than supervised learning counterparts. We also observe that the qualitative performance of the methods
correlates better with the latter evaluation strategy. We evaluate the two proposed methods, and compare
to state-of-the-art network-based gene-disease prediction approaches on two completely distinct sources
of data, namely OMIM phenotypes and gene-drug interactions.
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Results and Discussion

Conceptually, gene-disease association data can be thought of as a bipartite graph, where each gene
and each disease is a node, and there is an edge between a gene node and a disease node if there is
a known association between the gene and the disease. Similarly, we can form bipartite graphs from
gene-phenotype association data of different species. By connecting a phenotype with a human gene
if any ortholog of the human gene is associated with the phenotype, we obtain a bipartite network
between human genes and phenotypes of different species. We can also obtain a phenotype-phenotype
network for a given species, where a (weighted) edge (i, j) indicates that phenotype i is “similar” to
phenotype j. Adding a gene-gene interaction network completes a heterogeneous network of human genes
and phenotypes in a wide variety of species. It is straightforward to define analogous heterogeneous
network for gene-drug interactions, by replacing gene-disease associations data of humans with gene-drug
associations. More limited heterogeneous networks have been considered previously in the context of
gene-disease predictions, like the network of protein-protein interactions and human diseases [8], and in
the context of gene-drug predictions [19]. Through a holistic view of the networks, otherwise unobserved
ways of interactions between genes are revealed (via shared phenotypes), and independent information
hidden in the model organism data can be leveraged for discovering novel associations between genes and
human diseases or drugs. By integrating functional information from orthologs in multiple species, we
also implicitly encode the functional relationships between homologous genes in the humans, which also
contributes to our predictive performance. A visualization of the heterogeneous network consisting of
gene-gene network and gene-phenotype networks of a few model species is presented in Figure 1.

In this setting, it is natural to view the problem of predicting gene-phenotype associations as a problem
of finding similarities between nodes in a heterogeneous graph. Posing the problem in this way comes
with the significant advantage that we can leverage a large body of work in machine learning and network
analysis that deals with the problem of finding similar nodes in a graph [20,21]. In particular, we adapt
the Katz method [20] to the heterogeneous setting. As an extension of this work, we also introduce a
supervised learning framework, Catapult. Catapult learns the importance of features associated with
node pairs, where the features are derived from walk-based similarity measures between nodes.

Katz on the heterogeneous network

The Katz measure is a graph-based method for finding nodes similar to a given node in a network [17]. It
has been shown to be successful for predicting friends in social networks [20]. In this paper, we show the
effectiveness of the method for the task of recommending genes for a given phenotype or drug. Suppose
we are given an undirected, unweighted graph with a (symmetric) adjacency matrix A, where Aij = 1
if node i and node j are connected, and Aij = 0 otherwise. One way to find the similarity between
two (not necessarily connected) nodes i and j is to count the number of walks of different lengths that
connect i and j. This has a natural connection to matrix powers since (Al)ij is exactly the number of
walks of length l that connect i to j. Hence (Al)ij gives a measure of similarity between the nodes i and
j. We want to obtain a single similarity measure that summarizes the similarities suggested by different
walk lengths. For example, we could choose any sequence βl of non-negative coefficients and define the
similarity

Sij =
k∑
l=1

βl(Al)ij ,

where β is a constant that dampens contributions from longer walks. In matrix notation, the similarity
matrix S (that captures similarities between all pairs i and j) may be written as:

S =
k∑
l=1

βlA
l . (1)
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As observed by a recent survey article [21], we can regard S as a matrix function F (A) where F is defined
through the series expansion in (1). Note that we may allow k →∞, as long as βl → 0 as l→∞. Specific
choices for βl yield a variety of concrete similarity measures. A choice of βl = βl leads to the well-known
Katz measure [17]:

Skatz =
∑
l≥1

βlAl = (I − βA)−1 − I , (2)

where β is chosen such that β < 1
‖A‖2 . In the case where the connections in the graph are weighted

such that Aij is the strength of the connection between nodes i and j, we can generalize the idea of
walks using this matrix framework, by simply using the weighted adjacency matrix instead of the binary
matrix. Different ways of constructing the matrix A together with the appropriate normalizations of
the matrix lead to methods of the type used by PRINCE [7], RWRH [8], GeneMANIA [11], and by the
famous PageRank algorithm used for web page ranking [22]. However, we do not necessarily have to
consider sum over infinitely many path lengths. Paths of shorter lengths often convey more information
about similarity between a given pair of nodes, and contributions from longer paths become insignificant.
This suggests that we can consider a finite sum over path lengths, and typically small values of k (k = 3
or k = 4) are known to yield competitive performance in the task of recommending similar nodes [23].

LetG denote the gene-gene network, let P denote the bipartite network between genes and phenotypes,
and let Q denote the phenotype-phenotype network. In particular, P = [PHs PS ] is a composite of the
gene-disease network of humans, written PHs, and the gene-phenotype networks of other species, written
PS . Similarly,

Q =
[
QHs 0

0 QS

]
,

where QHs is the similarity matrix of human diseases, and QS is that of phenotypes of other species. In
our experiments, we set QS = 0, since we do not have information about similarity between phenotypes
of other (non-human) species. The construction of the matrices G,P and QHs will be discussed in detail
in the Methods section. We form a heterogeneous network over the gene and phenotype nodes, similar to
RWRH (which we will review briefly in the Methods section). The adjacency matrix of the heterogeneous
network may be written as:

C =
[
G P
P> Q

]
, (3)

Recall the general formula for the truncated Katz similarity measure when specialized to the combined
matrix C:

SKatz(C)ij =
k∑
l=1

βl(Cl)ij . (4)

From here on, we will drop the “truncated” and refer to this simply as the Katz measure. Note that
for smaller values of β, higher order paths contribute much less. It has been shown that restricting the
sum to a small k, i.e. a few higher order paths, works well in practice, in network link prediction and
recommender systems [23]. Letting k = 3, the block of the Katz score matrix SKatz(C) corresponding to
similarities between gene nodes and human disease nodes, written SKatzHs (C), can be expressed as:

SKatzHs (C) = βPHs + β2(GPHs + PHsQHs) + β3(PPTPHs +G2PHs +GPHsQHs + PHsQ
2
Hs) (5)

where PHs and QHs denote the gene-phenotype and phenotype-phenotype networks of humans respec-
tively. We use equation (5) to compute scores for the Katz method in our experiments.

In case of the drugs data set, we use the gene-drug network D, instead of PHs in equation (5). We
do not have similarity information for drugs, and so we set Q = 0 for experiments on the drug data set.
Nonetheless, we use phenotype information from multiple species, in the composite matrix P = [D PS ],
in order to infer similarities between gene and drug nodes, where the matrix D represents the known
associations between genes and drugs (replacing PHs above in the gene-disease example).
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CATAPULT: A supervised approach to predicting associations

The fixed choice of parameters involved in the Katz and random walk based approaches, as in equation
(4), provides a reasonable initial approach. However, to improve performance we would like to learn the
weights based on the heterogeneous network itself. That is, instead of using the exponential damping
weights βl, we can try to learn the relative importance of paths of different lengths. To this end, we
frame the problem of predicting potential gene-phenotype associations as a supervised learning problem,
in which we want to learn a classifier (or ranking) function whose input space consists of gene-phenotype
pairs and output is a score for each gene-phenotype pair. In particular, by appropriately defining the
feature space for gene-phenotype pairs, we will see that learning a classifier in the constructed feature
space is tantamount to learning coefficients for Katz on the heterogeneous network computed as in
equation (5).

For any given phenotype, it is very hard to verify that a gene is not associated in some way with the
phenotype. Our learning strategy is therefore guided by the fact that absence of evidence is not evidence
of absence. While a biological experiment can give clear evidence for the existence of a certain gene–
phenotype association, a lack of evidence for a connection does not imply that such a connection does not
exist. Biologists therefore tend to report positive associations between genes and phenotypes. However,
the reported list of gene–phenotype associations is not exhaustive. Because negative associations rarely
get reported, we treat all gene–phenotype pairs for which no positive association has been reported as
unlabeled, with the prior assumption that most of them are in fact negative associations. Our data set
therefore has the following two key characteristics:

1. For each phenotype, we only have a partial list of the associated genes. That is, we only know of
positive associations; we do not have negative associations available to us.

2. There is a large number of unlabeled gene-phenotype pairs with the prior knowledge that most of
them are, in fact, negative associations.

Classical supervised learning methods require both positive and negative examples, and therefore fall
short in our case. Positive-Unlabeled learning (PU learning for short) methods are natural for this setting.
The general idea of PU learning methods is to identify a set of negatives from the unlabeled examples and
train a supervised classifier using the positives and the identified negatives. Liu et al. [24] study different
ways of choosing negatives from unlabeled examples. Biologists believe that only a few of the large
number of unobserved associations are likely to be positive. A random sample is likely to consist mostly
of negatives, which suggests that we could randomly choose a set of examples and use the random sample
as “negative” examples to train a supervised classifier. As the examples are not known to be negative, it
may be helpful to allow the classifier to not heavily penalize the mistakes on “negatives” in the training
phase. We therefore learn a biased support vector machine classifier using the positive associations and a
random sample of unlabeled associations. Recently, Mordelet et al. [25] proposed ProDiGe that also uses
a random sample of unlabeled examples as a negative sample to train a biased support vector machine
against a set of known positives. The support vector machine is biased in the sense that false negatives
(known positives classified as negatives) are penalized more heavily than the false positives (“negatives”
classified as positives). The bias makes sense because the positive examples are known to be positive,
while the negatives are arbitrary and hence false positives are not to be penalized too heavily. Note that,
in principle, we could use any PU learning method (for instance, the weighted logistic regression model
proposed in [26]) to obtain a classifier for gene-phenotype pairs.

Figure 2 demonstrates simple walk-based features derived from the heterogeneous network. Gene-
phenotype pairs are represented using the walk-based features, and classified using a biased support
vector machine in our Catapult algorithm.
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Functional data outperforms protein-protein interactions

To see how the Katz and Catapult methods compare to the state-of-the-art, we measured their recovery
of genes using a cross-validation strategy similar to the one used by Mordelet and Vert [15], on two different
data sets — gene-disease associations from the Online Mendelian Inheritance in Man (OMIM, [27]), and
a recent drug-gene interaction data set [19]. These data sets can both be thought of as large collections
of gene-trait pairs, either as gene-disease pairs for the OMIM data, or target-drug pairs for the drug data
set.

We compared Katz and Catapult to four recent methods:

1. The recently proposed ProDiGe method [15], which is a support vector machine based method
that calculates similarity scores for gene pairs using a wide variety of information sources including
21 different gene-gene functional interaction networks and phenotype similarities.

2. RWRH [8], which, like Katz uses walks on a heterogeneous gene-disease graph to prioritize genes.
It differs from the Katz method chiefly in how the heterogeneous network is normalized. We discuss
the relationship in more detail in the Supplementary Material.

3. We include PRINCE [7] for completeness, since it is the state-of-the-art to which both RWRH
and ProDiGe were compared.

4. Finally, some recent work [18] has shown that simply by ranking based on the degree centrality of a
gene (how often it interacts with other genes, or is involved in diseases) can be a very competitive
ranking strategy. We therefore predict genes for diseases (or drugs) using a simple degree-based
list, where all genes are ranked by how many diseases (drugs) they are known to be connected to,
regardless of which disease (drug) the predictions are made for.

For cross-validation, we use the same testing framework as the one used by Mordelet and Vert [15]:
split the known gene-trait pairs into three equally sized groups. We hide the associations in one group
and run our methods on the remaining associations, repeating three times to ensure that each group
is hidden exactly once. A clarification on the correctness of the cross-validation procedure while using
heterogeneous information sources is in order: We do not create any gene-phenotype associations beyond
those that are directly experimentally observed. We incorporate data from other species by orthology,
but link it directly to the corresponding human gene, and do not create gene nodes for the orthologous
species. Moreover, the only phenotype-phenotype linkages we include are across human disease pairs and
are derived solely from MimMiner text mining of OMIM records [28] —there is no incorporation of gene
sequence information whatsoever, only a measure of similarity of the clinical features of the diseases.
Thus, there is no circularity created by homology in the data during cross-validation. For each trait in
our data set, we order all the genes by how strongly the method predicts them to be associated with the
trait. Finally, for every gene-trait pair (g, t) in the hidden group we record the rank of the gene g in the
list associated with trait t. We use the cumulative distribution of the ranks as a measure for comparing
the performances of different methods, i.e. the probability that the rank (at which hidden gene-trait
pair is retrieved) is less than a threshold k. The motivation of using this performance measure is that a
method that has a higher probability of recovering a true association in the top-k predictions for a given
disease is desired. Recent methods including ProDiGe [15] have adopted this performance measure for
comparison.

The results are presented in Figure 4. Note that the vertical axis in the plots give the probability
that a true gene association is recovered in the top-k predictions for various k values in the horizontal
axis. For example, we observe that the Katz method has over 15% probability of recovering a true gene
in the top-100 predictions for a disease, whereas PRINCE is only 5% likely to retrieve a true association
in the top-100 predictions. Under this evaluation method, both Katz and Catapult, which make use of
much more extensive data sets than the other methods, are quite likely to recover the hidden gene among
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the top 100 genes. As can be seen from Figure 4, Katz and Catapult perform better than any of the
previously studied state-of-the-art gene-disease association methods for the OMIM data set. Catapult
also performs well on the drug data set, ranking the hidden gene 14th or lower a remarkable 50% of the
time. RWRH, which like Katz and Catapult is a walk based method that allows paths through the
gene-disease (or, for the drug data set, gene-drug) network, also does quite well.

ProDiGe allows sharing of information between phenotypes using the similarities between OMIM
phenotypes, and also integrates a wide variety of functional information in a supervised machine learning
framework and performs reasonably well on the OMIM phenotypes. The PRINCE method, which allows
some sharing of information between OMIM diseases that are phenotypically similar, performs worse
than the other random-walk based methods. Since we have no similarity information available for the
drug data, ProDiGe and PRINCE essentially use only the gene similarity information in the drug data
case. Notice that the simple degree-based method does the worst of all methods in case of OMIM
phenotypes, which suggests that recommendations given by walk-based methods are more relevant and
differ significantly from simple ranking by number of known associations.

To see if the improvement in performance of Katz and Catapult stems from the more extensive
network used, or, in Catapult’s case, the increased sophistication of the machine learning method, we
evaluated network based RWRH and PRINCE methods using the more extensive HumanNet network
instead of the HPRD network originally used. As can be seen in Figure 5, Catapult still does better
than the previous state-of-the-art using this cross-validation framework, consistently in both the OMIM
and drug data sets.

Precision-Recall measure. We also evaluate and compare the different methods using the more
familiar precision and recall measures. Precision measures the fraction of true positives (genes) recovered
in the top-k predictions for a trait. Recall is the ratio of true positives recovered in the top-k predictions
for a trait to the total number of true positives in the hidden set. The plot of precision vs recall rates
for different values of thresholds k ranging 1 ≤ k ≤ 200 is presented in Figure 6. Note that we are more
interested in small values of k, similar to the results corresponding to the rank cdf measure presented
in Figures 4, 5 and 9. Our experimental setup is identical to that in Figure 5, i.e. using HumanNet for
all the relevant methods. The comparisons on both OMIM and drug data sets observed from Figure 6
are identical to Figure 5. In particular, Catapult performs much better in case of the drug data, and
is competitive to Katz and RWRH methods at very small values of k (in the range 1 ≤ k ≤ 20) and
performs much better outside the regime, in case of the OMIM data. Note that we observe identical
behavior for Catapult in the left panel of Figure 5. The performance of the other methods are similarly
consistent across the two performance measures.

Focusing on the gene linkage neighborhood. The results so far are on measuring how well a
candidate gene can be predicted genome wide. Another common scenario is where a linkage interval is
known for a disease, but the causal disease linked gene has not been identified. To simulate this setting,
we use an approach similar to the one taken in [7]. For each known gene-disease pair (g, t), we construct
a simulated linkage interval by taking all genes within 10 million basepairs from either end of the gene g
(containing a median of 84 genes), and record the rank at which gene g is predicted for trait t when g is
masked. As can be seen in Figure 7, Catapult again performs the best.

When do Catapult and GBA methods fail? It is important to know if there is a set of phenotypes
for which Catapult, and other network-based GBA methods, do not perform well. To understand the
same, we looked at the phenotypes for which Catapult attained the poorest (average) recall rate. In
particular, we ordered the phenotypes by the (mean) recall rate for the hidden genes (in three-fold
validation). We find that the bottom-most phenotypes in the ordering are precisely the ones for which
there is only one known gene. Note that the training data for these phenotypes did not have the
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known gene. The only information for the phenotypes comes from the phenotype-phenotype similarities.
However, there are some phenotypes for which even phenotype similarities are not known. In such cases,
all GBA or network-based methods will fail. The results are presented in Figure 8 (left panel). We
observe that all network-based methods perform poorly. Nonetheless, we observe a gradation in the
performances of different methods, and Catapult does slightly better. The difference in performance
is not surprising given that some methods use the heterogeneous network fully (Catapult and Katz)
but others only partially (ProDiGe, PRINCE and RWRH). All the methods do substantially better on
phenotypes with more than one known gene (right panel). A qualitative analysis of the methods discussed
next, however, shows that the boost in performance may not necessarily reflect that the predictions made
by the methods are pertinent to the phenotypes. This connection between the size of sets and how easy
they are to predict has also been observed in the context of GO annotations, see for instance [29].

Top predictions by supervised methods are enriched for highly connected
genes

To get a qualitative view of how the connectedness of genes influences the rankings, we plotted the degree
distribution of the genes in the OMIM and the drug data sets in Figure 3, and compared the results with
the list of top candidates from Catapult (see Table 3) and Katz (see Table 4).

The results for Catapult all seem very reasonable, from a biological standpoint. For example, Cata-
pult identifies APOE, which even though is not linked to “Susceptibility to Alzheimer’s disease” OMIM
record (MIM:104300), is well known to be associated with Alzheimer’s disease and is associated with two
other OMIM records involving Alzheimer’s (MIM:104310 and MIM:606889). BRCA1 is associated with
“Breast-ovarian cancer, familial 1” (MIM:604370), not the record we show in Table 3 (“Breast cancer,
susceptibility to”, MIM:114480), even so, it is ranked very highly among the candidate genes for breast
cancer. Many of the other candidate genes listed are similarly very likely to be involved in the etiology of
the diseases, like TP53 and KRAS for many cancers. Indeed, what might be the most surprising about
the results is how completely unsurprising they seem. Furthermore, there is a very high degree of overlap
between the top predictions. Indeed, almost all the top 10 candidate genes for the eight diseases shown
are shared between at least two of the eight diseases for Catapult. Moreover, when studying the results
for the same diseases for ProDiGe, given in [15], we see the same pattern as we see for Catapult – a
strong enrichment for genes that are already known to be associated with many diseases. For example,
EGFR is predicted as a top ten candidate gene for gastric cancer by ProDiGe, as well as by Catapult
(Table 3) and the Katz method (Table 4). In case of Alzheimer’s disease, our methods and ProDiGe all
predict APOE in the top ten.

However, the top predictions for both Catapult and ProDiGe seem to be governed more by what
method is being tested than by what disease is being studied. For example, ProDiGe ranks EXT1 in the
top ten for six out of the eight diseases studied, and Catapult ranks TP53 in the top ten for five of the
diseases. In contrast, the results for the Katz measure (Table 4) exhibit a much lower degree of overlap
between the top predictions. There is still a certain number of predictions shared, particularly between
the different cancers and insulin resistance (type 2 diabetes). However, there is a good reason to believe
that these shared genes actually reflect a common etiology, since epidemiological studies have shown
a connection between the type 2 diabetes and cancers, in particular breast and colorectal cancer [30].
Overall, the predictions seem to reflect the relevance of a gene to the specific disease more than the overall
likelihood that a gene is associated with any disease.

For example, many of the top ranked genes for Alzheimer’s disease are related to amyloid precursor
protein, APP, in various ways, such as APLP2 and APLP1, which are homologs of APP, CTSB, also
known as amyloid precursor protein secretase, LRP1, which is necessary for clearance of APP plaques, and
APOE, apolipoprotein E. A recent review of the role APP and its interaction partners play in Alzheimer’s
disease can be found in [31]. CAV1 has also recently been studied in relation to APP and Alzheimer’s
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disease [32]. Another interesting candidate Alzheimer’s disease is BDKRB2, bradykinin receptor B2.
BDKRB2 is highly expressed in the central nervous system according to the Human Protein Atlas, and
modulation of BKRB2 results in a cellular state highly enriched for amyloid β peptide in a skin fibroblast
cell line from a patient with early onset familial Alzheimer’s disease [33].

We see a similar pattern with more specific predictions that still seem well supported by the literature
for most of the other diseases in Table 4. For example, the association of MYH11 with leukemia,
through inversion of a region on chromosome 16 and the formation of a CBFB–MYH11 chimera, is well
known and was first identified in [34]. However, it is not associated with the OMIM record shown in
Table 4. For schizophrenia, the top ranked candidate gene, DRD2, is well known to be associated with
schizophrenia (under MIM:126450), and a recent study has highlighted a potential role for ADRA2B in
schizophrenia [35].

Validation on singletons highlights methods that detect novelty

The cross-validation evaluation shown in Figures 4 and 5 clearly shows that Catapult is better at
recapitulating the genes known to be involved in a disease than any of the other methods. However,
recapitulation of previously known results is rarely the goal in biology. We therefore seek a measure that
would reflect how suited a method is for correctly identifying associations between diseases and genes
that are less well studied.

There are two ways one could envision for doing this in a cross-validation framework – either one
could hide all associations between a given gene and diseases, thereby hoping to put it on equal footing
with genes still unstudied, or one restricts the cross-validation to genes that are only associated with a
single phenotype. There are clear advantages to both approaches. The former approach allows us to
do validation on a larger set, namely all known gene-disease associations, and thereby reach stronger
statistical strength. The latter approach has more subtle, but in our opinion greater, advantage. The
biases that favor already well studied genes are not only present in the gene-disease association data, but
also in the data that we use for constructing the networks and the model species data sets. This gives
rise to small differences between genes that have been the well studied genes and the poorly characterized
genes. By only looking at the least studied genes in our data set for which we do have known gene-
disease associations, we can minimize the risk that any signal that we detect is merely some general
characteristic of well studied genes, and instead evaluate how well a method can detect truly novel
gene–disease associations.

We tested all the methods using cross-validation restricted to genes with only a single disease (or drug)
association (which we call singletons, shown in yellow in Figure 3). The results of this cross-validation
are presented in Figure 9. Catapult still does much better than ProDiGe (the only other supervised
method) but does worse than the unsupervised methods, in contrast to Figure 5 (that uses the same
setting for all the methods). The PRINCE and ProDiGe methods are consistent with (and sometimes
perform slightly better than) the three-fold cross-validation evaluation. RWRH and the Katz measure
perform better than the supervised learning methods ProDiGe and Catapult in this evaluation sheme.
The fact that PRINCE performs so well on singletons when evaluated on drug data is surprising, given
that the only information it uses is the HumanNet gene network. Simpler random-walk based methods
in general perform better than the supervised counterparts, and do so consistently in two completely
distinct data sets. Furthermore, we find that the qualitative results of the methods (Tables 3 and 4)
indicate that the supervised Catapult tends to emphasize the same “common” genes much more than
the Katz measure does, which is consistent with the difference in performance we observe between the
cross-validation on the full set of gene-disease associations and cross-validation restricted to the singleton
genes.

The differences in performance between the full test set and the singletons raise the question of what we
really are trying to do when we predict gene-phenotype associations. Ultimately, the correct evaluation
criterion for gene-phenotype association predictions must be successful laboratory confirmation of the
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predictions. However, lacking that, we often resort to different cross-validation schemes to measure how
well a method does. We have here shown that even quite modest changes in the evaluation scheme can
alter the relative performance of the methods tested. In the case of Catapult and the Katz measure, this
is likely because the tendency of “common” genes to be involved in diseases in general is a property that
the supervised Catapult can easily detect and make use of, which strongly boosts its performance on the
full data set but does nothing for its performance on the singleton genes. By actively restricting the use of
features that are characteristic of “common” genes (For instance by the restricting the maximum allowed
path length), we can counteract this tendency at the cost of performance in the full cross-validation (data
not shown).

Conclusions

We have proposed two methods for inferring gene-phenotype associations, Katz and Catapult. Katz
is motivated by social network link prediction and Catapult is a supervised extension to Katz which
learns the weights for walks that have different lengths and that involve different kinds of data. While
Catapult significantly outperforms other state-of-the-art gene-phenotype association methods using a
conventional cross-validation evaluation strategy, such a cross-validation strategy does not necessarily
reflect the properties of a scenario in which one wants to predict novel gene-phenotype associations
involving less studied genes.

To address such cases, we propose a cross-validation approach restricted to relatively little studied
genes. In this framework the Katz method and the related RWRH and PRINCE methods do better
than the supervised methods, indicating that if the objective is to find new gene-disease or gene-drug
associations involving genes not yet well studied, these approaches are more appropriate.

We therefore conclude that comparisons of gene-phenotype methods do not necessarily lead to a
simple ordering from best to worst. If the goal of a researcher is to find new directions for research or find
previously unknown biology, she might not want to use methods that perform the best in a conventional
cross-validation framework. For instance, she might prefer a method like the Katz measure, which does
better when tested on genes only associated with a single disease, to a method like Catapult, which
emphasizes genes that are important in general. In the future, it is therefore important that descriptions
of new gene-phenotype association methods include a careful discussion on how the method is intended
to be used.

Materials and Methods

Gene Networks

We use two sources of gene-gene interactions in our experiments.

1. HumanNet [14]: A large-scale functional gene network which incorporates multiple data sets,
including mRNA expression, protein-protein interactions, protein complex data, and comparative
genomics (but not disease or phenotype data). HumanNet contains 21 different data sources, which
are combined into one integrated network using a regularized regression scheme trained on GO
pathways. The edges in the network have non-negative edge weights, and there are 733,836 edges
with non-zero weights.

2. HPRD network [36]: Most of the published work on predicting gene-disease associations [5–8, 37]
use the HPRD network. The network data was downloaded from [4]. The edges in the HPRD
network are unweighted, and the network is much sparser than HumanNet. In particular, the HPRD
network has 56,661 associations compared to 733,836 (weighted) associations for HumanNet.



11

Phenotypes from other (non-human) species

We collected gene-phenotype associations from literature and public databases for eight different (non-
human) species: plant (Arabidopsis thaliana, from TAIR [38]), worm (Caenorhabditis elegans from
WormBase [39, 40]), fruit fly (Drosophila melanogaster from FlyBase [41]), mouse (Mus musculus from
MGD [42]), yeast (Saccharomyces cerevisiae [10, 43–45]), Escherichia coli [46], zebrafish (Danio rerio
from ZFIN [47]), and chicken (Gallus gallus from GEISHA [48]). We determined orthology relation-
ships between genes in model species and human using INPARANOID [49]. Detailed description on
the extraction of most datasets can be found in [16] and the resulting dataset has been summarized in
Table 1.

E. coli phenotypes were obtained from the file ‘coli FinalData2.txt’ on May 20, 2011 [46]; we sorted
each gene’s phenomic profile by score, taking both the top and bottom forty conditions and assigning
them to the gene. Thus, we considered each condition to be a phenotype, and the genes associated with
that phenotype were those genes whose growth was most affected (either positively or negatively) in the
corresponding condition. As a proxy for chicken phenotypes, tissue specific mRNA expression patterns
were derived from GEISHA in situ hybridization annotations, which were kindly provided in XML format
on June 24, 2011. Genes were sorted into multiple bins by stage, by location, and by location and stage
together. If there were more than fifty genes in a specific location and more than three at a specific stage
at that location, a new phenotype was created (“anatomical location at stage x”); regardless, each location
became a phenotype. Worm phenotypes [40] were divided into two datasets, ‘green-broad’ and ‘green-
specific’, based on the broad and specific phenotypes. GO biological processes from TAIR and ZFIN were
processed in the same manner. We kept only those annotations with evidence codes IMP, IDA, IPI, IGI,
TAS, NAS, IC, and IEP. For TAIR, we used ‘ATH GO GOSLIM.txt’, downloaded on August 23rd, 2010;
and for ZFIN, we obtained GO biological processes from geneontology.org (‘gene association.zfin.gz’) on
April 26th, 2011.

Evaluation data

We perform experiments on two types of data sources:

• OMIM Phenotypes: We obtained new OMIM data from the Online Mendelian Inheritance in
Man (OMIM) project [27] on August 11, 2011. OMIM phenotypes have become the standard
data set for the evaluation of prediction of gene-disease associations [5–8,15,37]. All the compared
methods use similarities between phenotypes [28] to form the (weighted) phenotype-phenotype
network QHs.

• Drug data: This includes four benchmark data sets of Drug-Target interactions in humans in-
volving enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors, first
studied in [50]. Refer to Table 2 for statistics on the data sets. The data sets were made available
by [19] and downloaded from [51].

Problem setup and Notation

Let G denote the set of human genes and for each species i ∈ S = {Hs, At, Ce, Dm, Dr, Ec, Gg, Mm, Sc},
let Pi denote the set of phenotypes for the species. Refer Table 1 for descriptions of the species and a
summary of the data sets. Also, let D denote the set of drugs (i.e. the four benchmark data sets
mentioned in Table 2). For each species i ∈ S, we constructed a gene-phenotype association matrix
Pi ∈ R|G|×|Pi|, such that (Pi)gp = 1 if gene g is associated with phenotype p or 0 otherwise. For methods
using multiple species, we used PS = [PAt PCe PDm . . . PSc] and recall that P = [PHs PS ] in equation
(5). Similarly, we constructed a drug-gene interaction matrix D using drugs data where Dgd = 1 if gene
g is known to be associated with drug d (note that d can be one of enzymes, ion channels, GPCRs or
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nuclear receptors) and Dgd = 0 otherwise. Using the two types of gene-gene interaction data HPRD and
HumanNet, we constructed matrices GHPRD ∈ {0, 1}|G|×|G|, and GHumanNet ∈ R|G|×|G| respectively. We
constructed a phenotype-phenotype network QHs ∈ R|PHs|×|PHs| (i.e. corresponding to humans) using
OMIM phenotype similarities [28]. For experiments with drug data, we did not have access to any such
similarity score for drug pairs, so we set the drug-drug network to 0. The same is the case for other species
data as well, and we set the corresponding entries in Q to be 0, both for the experiments with OMIM
and for the drug data. Following the approach by Vanunu et al. [7], we apply a logistic transformation
to the similarities QHs, i.e. L(x) = 1

1+exp(cx+d) where x represents an entry of QHs. For setting c and d,
see [7]. We use the transformed QHs network in all our experiments.

The CATAPULT algorithm

Catapult uses a biased SVM framework to classify gene-phenotype pairs of humans with a single training
phase, thereby making use of the relation between different phenotypes. Recent work [25] uses the bagging
technique to obtain an aggregate classifier using positive and unlabeled examples. In this approach, one
draws a random bootstrap sample of a few unlabeled examples from the set of all unlabeled examples and
trains a classifier treating the bootstrap sample as negatives along with the positive examples. Bagging
helps to reduce the variance in the classifier that is induced due to the randomness in the “negative”
samples. Let T be the number of bootstraps, let A be the set of positives (i.e. gene-phenotype pairs
that correspond to known associations), let n+ denote the number of examples in A, and let U denote
the set of unlabeled gene-phenotype pairs. We train a biased SVM, where we use a penalty C− for false
positives and relatively larger penalty C+ for false negatives.

The bagging algorithm that trains and combines several biased SVM classifiers used by Catapult is
as follows:

initialize θ = 0, s(x) = 0,∀x ∈ U , and n(x) = 1,∀x ∈ U .
for t = 1, 2, . . . , T :

1. Draw a bootstrap sample Ut ⊆ U of size n+.

2. Train a linear classifier θt using the positive training examples A and Ut as negative examples by
solving:

min
θ′∈Rd

1
2‖θ
′‖2 + C−

∑
i∈Ut

ξi + C+

∑
i∈P ξi (6)

subject to ξi ≥ 0,∀i ∈ A ∪ Ut,
〈Φ(xi), θ′〉 ≥ 1− ξi,∀i ∈ A, and
−〈Φ(xi), θ′〉 ≥ 1− ξi,∀i ∈ Ut.

3. For any x ∈ U \ Ut update:
(i) n(x)← n(x) + 1.
(ii) s(x)← s(x) + 〈θt,Φ(x)〉.

return s(x)← s(x)/n(x), ∀x ∈ U .

We train a biased SVM given in equation (6) during each iteration using all the known positive
examples in A and a randomly chosen set of “negatives” Ut ⊆ U . Positive and negative examples may
not be linearly separable, and the usual approach in SVMs is to penalize each example based on how far
it is from meeting its margin requirement, through the use of slack variables ξi. The scoring function for
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iteration t is proportional to the distance of the point x from the hyperplane and is given by the standard
dot product,

〈θt,Φ(x)〉

where θt is the normal to the hyperplane learned using the random bootstrap at the tth iteration and
Φ(x) is the feature vector corresponding to x. For small number of boostraps, say T in the range 10-
100, n(x) = T for most of the unlabeled examples and thus the procedure in effect scores (most of the)
unlabeled examples using the average hyperplane 1

T

∑
t θt. We set T = 30 in our experiments. Recall

that, in our framework, an instance x corresponds to a gene-phenotype pair. In contrast to the traditional
SVM classifiers that classify a pair as positive or negative based on the sign of 〈θt,Φ(x)〉, we use the value
as a score under the assumption that the further a point is on the positive side of the hyperplane, the
more likely it is to be a true positive.

Parameters. In equation (6), C+ and C− are the penalties on misclassified positives and negatives
respectively. Typically, C+ > C−. The weights control the relative widths of the margins on either sides
of the hyperplane. As C+ increases from 0 to∞, the margin on the side of the positive examples shrinks,
and as C+ →∞, the classifier attempts to make no mistake on the positive examples. The ratio C+/C−
determines the “weight” of a positive example, and we want this to be high. In our experiments, we set
C− = 1 and C+ = 10, which is found to be the best by cross-validation. The cross-validation procedure
for tuning parameters is given as follows:

1. Sample a fraction (70%) of the positives from the training data points (gene-disease associations)
to form the validation set V.

2. Split the validation set into 5 folds: V1,V2, . . . ,V5.

3. C− ← 1.

4. for log(C+) in [−3,−2,−1, 0, 1, 2, 3]:

for i = 1 to 5:

(a) Fix Vi to be the test set and the remaining 4 folds,
⋃
j 6=i Vj , to be the training set.

(b) Train Catapult with the positive training set A =
⋃
j 6=i Vj , and the current (C+, C−) values

in equation (6). (Note that an equal number of “negative” examples are randomly sampled
from the unlabeled gene-disease associations.)

(c) Obtain the recall rate Ri of Catapult on the hidden test set, i.e. fraction of true positives
in Vi identified in the top k predictions, where k = |Vi|.

Let RC+ = (1/5)
∑5
i=1Ri.

5. Return C+ = argmaxC+
RC+ and C−.

Using the cross-validated values of C+ and C− for a particular train-test split (Fixing C− = 1, log10 C+

was varied in the range −3,−2,−1, 0, 1, 2, 3 and log10 C+ = 1 was typically the best), we train the model
on the training data and evaluate on the test data. This is done three times corresponding to 3 random
train-test splits of the full gene-disease associations data.
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Features derived from hybrid walks. Before applying any supervised machine learning approach,
we need to construct features for gene-phenotype pairs. The features that we use are all based on paths in
the heterogeneous network. Recall that in the Katz measure, the weights for combining the contributions
from walks of different lengths are fixed beforehand. We observe from equation (5) that, for a given
length of walk, there are multiple ways of obtaining hybrid walks, as given by the terms in the series.
For a given gene-phenotype pair, different walks of the same length, and walks of different lengths can
be used as features for the pair. Thus learning a biased SVM provides an efficient way to learn the
weights, and could help improve on the prediction performance over a particular choice of weights, say,
(β, β2, β3, . . . ) as in the Katz measure. Clearly, the dimensionality of the feature space is exponential in
k, the length of the walk, and makes us vulnerable to the curse of dimensionality because the examples
are limited. However, taking a cue from the fact that the weights of increasing walk lengths need to be
heavily damped, we ignore higher order terms and thereby keep the dimensionality of the feature space
small.

Relationship between the learned θ and β. The complete set of features used by Catapult and
the corresponding weights learned are listed in Table 5. The features relate to the expression for the Katz
method given in (5). In particular, the term involving PPT can be written as PPT =

∑
i∈S PiP

T
i , where

S = {Hs, At, Ce, Dm, Dr, Ec, Gg, Mm, Sc}. The Katz method weighs terms involving paths of length
l by βl, and does not distinguish between species or between sources. As an example of distinguishing
by source, consider the terms corresponding to l = 2 in the expression (5), i.e. GPHs and PHsQHs. The
Katz method weighs both the types of paths by β2 whereas the Catapult method learns two different
weights θi = 1.23 and θj = 39.63 corresponding to the two features, as observed from Table 5. For
distinguishing by species, consider the term PPTPHs corresponding to l = 3 in (5). In this case, Katz
method uses β3, whereas Catapult learns a set of 9 different weights corresponding to different species,
i.e. PPTPHs =

∑
i∈S PiP

T
i PHs. We observe from Table 5 that different species contribute differently

towards the final prediction. Furthermore, we also observe from our experiments using species-wise
features not only lends interpretability but also improves the accuracy of the predictions, as compared
to combining features corresponding to same walk lengths (Note that all Catapult results shown in the
paper use the features listed in Table 5, and results for combining features are not shown).

Random Walks with Restart on Heterogeneous network

Random Walks with Restart on Heterogeneous network (RWRH) is an algorithm for predicting gene-
disease associations proposed by Li and Patra [8]. RWRH performs a random walk on a heterogeneous
network of gene interactions (HPRD) and human diseases (we used OMIM phenotypes and the drug
data described above). The method constructs a heterogeneous network using GHPRD, PHs and QHs
networks and runs a personalized PageRank computation, a popular choice for ranking documents and
web pages, on the network. The random walk is started from a set of seed nodes, which for a phenotype
p is the set of genes known to be associated with p, and gene nodes are ranked by the probability that a
random walker is at a given gene, under the steady state distribution for the random walk. In particular,
RWRH [8] considers the following heterogeneous network:

C̃ =
[

G̃ λPHs
λP>Hs Q̃Hs

]
(7)

where G̃ is the gene-gene interactions matrix, Q̃Hs is the phenotype-phenotype similarity matrix, and λ is
the probability that the random walker jumps from a gene node to a phenotype node (or vice versa). The
matrices G̃, Q̃Hs, PHs and PTHs are normalized by row-degree. The rows of the matrices G̃ and Q̃Hs scaled
by a factor of (1 − λ), as appropriate, so that C̃ is a row-stochastic matrix, i.e.

∑
j C̃ij = 1, ∀i. In [8],

PHs is the gene-disease association matrix corresponding to OMIM phenotypes, Q̃Hs is the corresponding
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similarity matrix, and G̃ is derived from GHPRD. Genes are ranked for a given disease p using the steady
state vector s∗, the solution to the equation:

s = (1− γ)C̃T s + γp0 (8)

where p0 is the restart vector (indicator vector of the set of seed nodes known to be associated with p)
and γ is the restart probability. In our experiments, we use OMIM phenotypes matrix PHs as well as
the gene-drug interaction matrix D, and two types of gene-gene matrices to derive G̃. Recall that in the
latter case, we do not have similarity information for drugs, and therefore we set drug-drug similarity
matrix to 0. It is also straightforward to incorporate phenotype data from multiple species in the method,
by replacing PHs with P = [PHs PS ], analogous to our Katz method.

PRINCE

The PRINCE method, proposed by Vanunu et al. [7], is another graph-based method that can be thought
of as a special case of RWRH. Here, the random walk is only over the gene interaction network instead
of the heterogeneous network. The phenotype similarities are incorporated in the restart vector. The
vector of scores computed by PRINCE for a given phenotype p can be expressed as

sPRINCE = (I − γG)−1p̃ (9)

where p̃ is the smoothed phenotype, i.e. p̃i = (QHs)qp where q is the phenotype most similar to p such
that gene i is known to be associated with disease q and γ is the restart probability. Note that, similarly,
the scores computed by RWRH can be written succinctly as

sRWRH = (I − γC̃)−1p (10)

where C̃ is defined in equation (7). We show the relationship between the Katz method and other random-
walk based methods (PRINCE and RWRH) in the Supplementary Material. The absence of similarity
information for other (non-human) species phenotypes and drugs renders direct extension of PRINCE
to multiple species data inconsequential. We must emphasize here that PRINCE does not allow walks
through the gene-phenotype interaction network or the phenotype-phenotype interaction network. As a
result, availability of other species data becomes irrelevant when predicting genes for a given disease (or
other drug data in case of predicting for a given drug).

ProDiGe

The ProDiGe method, proposed by Mordelet and Vert [15], makes use of positive-unlabeled learning and
a multiple kernel learning framework to integrate information from multiple types of gene interaction
data and phenotype similarities. Kernels are defined over pairs of genes and pairs of phenotypes, and
the kernel value for a pair of gene-phenotype pairs is derived using the individual gene and phenotype
kernels. In particular, let Kgene(g, g′) denote the kernel for genes, and Kphenotype(p, p′) denote that for
phenotypes. Then, the kernel for the pairs ((g, p), (g′, p′)) is simply,

Kpair((g, p), (g′, p′)) = Kgene(g, g′)×Kphenotype(p, p′) (11)

The gene-phenotype pairs are then classified using a support vector machine using the constructed kernel.
Note that ProDiGe [15] does not use any other species phenotype information, but only the OMIM
phenotypes. In our experiments on OMIM phenotypes, we used the kernels Kgene and Kphenotype provided
by Mordelet [15] downloaded from:
http://cbio.ensmp.fr/ jvert/svn/prodige/html/prodige-0.3.tar.gz. For the drug data, we used
a simple Dirac kernel (since kernel matrices need to be positive definite) for Kdrug(d, d′), i.e.

Kdrug(d, d′) =

{
1 if d = d′,

0 otherwise.



16

Implementation

We implemented all the methods in Matlab. Our implementation of Catapult can be downloaded
from the Catapult home page: http://marcottelab.org/index.php/Catapult. A web interface for
querying recommendations for a given phenotype is also accessible from the page. Obtaining fea-
tures for all gene-phenotype pairs takes about 20 minutes. Training Catapult is much faster, and
takes a few seconds per iteration of the algorithm on our cluster machines (2.8 GHz processor, 32GB
RAM). The sourcecodes for Li and Patra’s RWRH method and ProDiGe were obtained from the respec-
tive project home pages http://www3.ntu.edu.sg/home/aspatra/research/Yongjin BI2010.zip and
http://cbio.ensmp.fr/~jvert/svn/prodige/html/prodige-0.3.tar.gz. For PRINCE, we use MAT-
LAB code kindly provided by Oded Magger.
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Figure Legends
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Figure 1. The combined network in the neighborhood of a human disease. The local network
around the human disease diabetes insipidus and two genes highly ranked by Catapult, AQP1 (top
ranked candidate) and MYBL2 (ranked as number 40). AQP1 is ranked higher than MYBL2 because
there are more paths from diabetes insipidus to AQP1 than to MYBL2, both through model organism
phenotypes and through the gene–gene network. Only genes and phenotypes that are associated to
both diabetes insipidus and the predicted genes AQP1 and MYBL2 are shown.
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g2!
g3!

g7!

g6!

g5!

g4!

d1!

Figure 2. Katz features are derived by constructing walks of different kinds on the graph.
In the figure above, the disease node d1 is connected to the gene node g6 by one walk of length 2 (solid
red line) and three walks of length 3 (dotted, dashed and dashdotted red lines). This can be quickly
calculated from the adjacency matrix C of the graph: If Cij = 1 when there is a link between nodes i
and j, and 0 otherwise, the number of paths of length n between genes i and j is (Cn)ij . In the
example above,
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Figure 3. Distribution of the number of known genes in OMIM diseases (left) and drugs
(right). The bar corresponding to the genes on which we did the singleton validation is shown in
yellow.
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Catapult

Katz (all species)
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Figure 4. Empirical cumulative distribution function for the rank of the withheld gene
under cross-validation. Left panel corresponds to evaluation of OMIM phenotypes, and the right
corresponds to drug data. The vertical axis shows the probability that a true gene association is
retrieved in the top-k predictions for a disease. Katz and Catapult methods use all species
information, and the HumanNet gene network. PRINCE and RWRH methods are implemented as
proposed in [7] and [8] respectively, using the HPRD gene network. ProDiGe method is implemented
as discussed in Methods section. Catapult (solid red) does much better across the data sets under this
evaluation scheme. In general, the methods get high precision rates in case of the drug data. PRINCE
method that does not allow walks through species phenotypes, and OMIM phenotypes in particular,
performs much worse than other random-walk based methods. ProDiGe allows sharing of information
between phenotypes using the similarities between OMIM phenotypes and performs reasonably well,
whereas there is no such sharing possible in case of the drug data due to the absence of drug
similarities. The simple degree-based method performs poorly in general. ProDiGe and PRINCE
essentially use only the gene network information in case of the drug data.
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Figure 5. Comparison only using HumanNet. Empirical cumulative distribution function for the
rank of the withheld gene under cross-validation. Left panel corresponds to evaluation of OMIM
phenotypes, and the right corresponds to drug data. The vertical axis shows the probability that a true
gene association is retrieved in the top-k predictions for a disease. Katz and Catapult methods use all
species information, and all the methods use the HumanNet gene network. PRINCE and RWRH
methods are implemented as proposed in [7] and [8] respectively, but using HumanNet. ProDiGe
method is implemented as discussed in Methods section. Again, as in Figure 4, Catapult (solid red)
does the best. An important observation to be made from the plots is that PRINCE and RWRH
methods perform relatively much better than in Figure 4, where HPRD network was used. (Note that
there is no change to the ProDiGe, Katz and Catapult methods; they have identical settings as in
Figure 4).
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Figure 6. Precision-Recall curves for three-fold cross validation. Left panel corresponds to
evaluation of OMIM phenotypes, and the right corresponds to drug data. The vertical axis shows the
precision rate, i.e. fraction of true positives in the top-k predictions. The horizontal axis shows the
recall rate, i.e. ratio of true positives recovered in the top-k predictions to the total number of positives
for a phenotype (or a drug) in the hidden set. The plots show precision-recall values at various
thresholds k, in the range 1 ≤ k ≤ 200 and the value at a given k is averaged over all the phenotypes
(drugs). The plots use the same experimental setup as in Figure 5, and we observe that the comparisons
illustrated by precision-recall measure are consistent with the rank cdf measure in Figure 5.
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Figure 7. Empirical cumulative distribution function for the rank of withheld genes from
OMIM phenotypes, restricted to genes in a small linkage neighborhood of the withheld
genes.. The vertical axis shows the probability that a true gene association is retrieved in the top-k
predictions for a disease. The Katz and Catapult methods use all species information, and all the
methods use the HumanNet gene network. PRINCE and RWRH are implemented as proposed in [7]
and [8] respectively but using the HumanNet gene network. The ProDiGe method is implemented as
discussed in the Methods section. We observe that Catapult performs the best. RWRH and Katz
methods are competitive as well. The results are consistent with our observations from Figure 5.
.
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Figure 8. Empirical cumulative distribution function for the rank of withheld genes from
OMIM phenotypes with single known gene (left panel) and more than one known gene
(right panel). The vertical axis shows the probability that a true gene association is retrieved in the
top-k predictions for a disease. The Katz and Catapult methods use all species information. PRINCE
and RWRH are implemented as proposed in [7] and [8] respectively, using HPRD network. The
ProDiGe method is implemented as discussed in the Methods section. In case of phenotypes with only
one known gene (left panel), the only information is the phenotype-phenotype similarity. From the left
panel, we note that all network-based methods perform poorly. Nonetheless, we observe a gradation in
the performances of different methods, and that Catapult does slightly better. All the methods do
substantially better on phenotypes with more than one known gene (right panel).
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Catapult

Katz (all species)

ProDiGe
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PRINCE

Diseases Drugs

Figure 9. Empirical cumulative distribution function for the rank of withheld singleton
genes. Left panel corresponds to evaluation of OMIM phenotypes, and the right corresponds to drug
data. The vertical axis shows the probability that a true gene association is retrieved in the top-k
predictions for a disease. The Katz and Catapult methods use all species information, and all the
methods use the HumanNet gene network. PRINCE and RWRH are implemented as proposed in [7]
and [8] respectively, but using the HumanNet gene network. The ProDiGe method is implemented as
discussed in the Methods section. We have not included the degree based list from Figure 5, since all
the singleton genes are always given degree 0 during cross-validation. Catapult (solid red) does much
better than ProDiGe (the only other supervised method) but does worse compared to walk-based
methods than in Figure 5 (that uses the same setting for all the methods). PRINCE and ProDiGe are
consistent with (and sometimes perform slightly better than) the full cross-validation evaluation.
RWRH and the Katz measure perform better than the supervised learning methods ProDiGe and
Catapult in this evaluation scheme. The fact that PRINCE performs so well on singletons in the drug
data case is surprising, given that the only information it uses is the HumanNet gene network.
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Tables

Table 1. Species used

Index Species # Phenotypes # Associations
1 Human (Hs) 3,209 3,954
2 Plant (At) 1,137 12,010
3 Worm (Ce) 744 30,519
4 Fly (Dm) 2,503 68,525
5 Zebrafish (Dr) 1,143 4,500
6 E.coli (Ec) 324 72,846
7 Chicken (Gg) 1,188 22,150
8 Mouse (Mm) 4,662 75,199
9 Yeast (Sc) 1,243 73,284

Different species used for inferring gene-phenotype associations in the proposed methods Katz and
Catapult, and sizes of the gene-phenotype networks for the species, restricted to orthologs of human
genes. The total number of human genes with any kind of phenotype annotation is 12331.

Table 2. Benchmark Drug data sets used for evaluation.

Index Type # Drugs # Associations
1 Enzymes 445 2,926
2 Ion Channels 210 1,476
3 GPCRs 223 635
4 Nuclear Receptors 54 90



27

Table 3. Top predictions for Catapult.

Leukemia Alzheimer disease Insulin resistance Prostate cancer
MIM:601626 MIM:104300 MIM:125853 MIM:176807

FGFR3 (2261) ACE2 (59272) INSR (3643) TP53 (7157)
FGFR2 (2263) COL1A1 (1277) INS (3630) RB1 (5925)
KRAS (3845) COL1A2 (1278) PTEN (5728) CTNNB1 (1499)
TP53 (7157) KRAS (3845) TP53 (7157) BRCA1 (672)
EGFR (1956) EGFR (1956) CTNNB1 (1499) KRAS (3845)
FGFR1 (2260) TP53 (7157) KRAS (3845) PIK3CA (5290)
PTPN11 (5781) AGT (183) AKT1 (207) AKT1 (207)
CTNNB1 (1499) PLAT (5327) CREBBP (1387) INSR (3643)
INSR (3643) APOE (348) EGFR (1956) NRAS (4893)
CREBBP (1387) PTGS2 (5743) PIK3CA (5290) RAD51 (5888)

Schizophrenia Breast cancer Gastric cancer Colorectal cancer
MIM:181500 MIM:114480 MIM:137215 MIM:114500

BDNF (627) PTEN (5728) FGFR3 (2261) KRAS (3845)
NRG1 (3084) RB1 (5925) FGFR1 (2260) PTEN (5728)
CBS (875) NRAS (4893) NRAS (4893) CTNNB1 (1499)
NOS2 (4843) BRCA1 (672) HRAS (3265) HRAS (3265)
MTR (4548) HRAS (3265) EGFR (1956) CREBBP (1387)
HTR2C (3358) INSR (3643) ERBB3 (2065) RB1 (5925)
HTR2B (3357) CTNNB1 (1499) CTNNB1 (1499) FGFR3 (2261)
SLC6A4 (6532) EGFR (1956) BRAF (673) INSR (3643)
FGFR2 (2263) FGFR3 (2261) PTEN (5728) EGFR (1956)
MAT1A (4143) FGFR2 (2263) TP53 (7157) FGFR2 (2263)

Top 10 predictions not in the training set by Catapult for the eight OMIM phenotypes with the
highest number of gene associations. Any gene which is among the top 10 candidates for more than one
disease is marked in bold. Catapult does make a great number of very reasonable predictions as
observed below. For example, it seems quite likely that both insulin receptor (INSR, 3643) and insulin
(INS, 3630) should be associated with insulin resistance, and that many growth factor receptors have
been associated with various cancers.
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Table 4. Top predictions for the Katz measure.

Leukemia Alzheimer disease Insulin resistance Prostate cancer
MIM:601626 MIM:104300 MIM:125853 MIM:176807

IL3 (3562) APLP2 (334) INS (3630) BRCA1 (672)
SOCS1 (8651) HSPA8 (3312) AKT1 (207) TP53 (7157)
GRB2 (2885) CTSB (1508) INSR (3643) RAD51 (5888)
NOP2 (4839) LRP1 (4035) GRB2 (2885) EGFR (1956)
CSF2RB (1439) NID1 (4811) IGF1R (3480) ATM (472)
PPM1L (151742) APOE (348) CTNNB1 (1499) AKT1 (207)
PTPN6 (5777) BDKRB2 (624) CREBBP (1387) MAX (4149)
MYH11 (4629) PLAUR (5329) PIK3CA (5290) CDK1 (983)
PPM1E (22843) APLP1 (333) TYK2 (7297) PIK3CA (5290)
PPM1B (5495) CAV1 (857) GPD1 (2819) CSNK2A1 (1457)

Schizophrenia Breast cancer Gastric cancer Colorectal cancer
MIM:181500 MIM:114480 MIM:137215 MIM:114500

DRD2 (1813) BRCA1 (672) GRB2 (2885) PTEN (5728)
AHCY (191) IRS1 (3667) EGFR (1956) CTNNB1 (1499)
ADRA2B (151) MRE11A (4361) NRAS (4893) CDK1 (983)
XRN2 (22803) INSR (3643) IRS1 (3667) GSK3B (2932)
MAT1A (4143) CHEK1 (1111) MAPK1 (5594) CDC20 (991)
MAT2A (4144) ATR (545) PTPN11 (5781) PCNA (5111)
CHI3L2 (1117) PTEN (5728) HRAS (3265) EGF (1950)
TSNAX (7257) MAPK1 (5594) MAP2K2 (5605) PTTG1 (9232)
DDC (1644) MAPK3 (5595) MAP2K1 (5604) IGF1R (3480)
MAOB (4129) UBE2I (7329) SOS1 (6654) FOXO3 (2309)

Top 10 predictions not in the training set by Katz for the same eight OMIM phenotypes as in Table 3.
Any gene which is among the top 10 candidates for more than one disease is marked in bold. The Katz
method shows a weaker link between the number of diseases previously associated with a gene and its
presence in the list, while still giving a number of very likely candidates.
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Table 5. Weights by Catapult.

Type Feature Learned weights Feature Learned weights

PHsP
T
HsPHs 31.04 PHsP

T
HsG

2PHs 8.97
Human PHsP

T
HsGPHs 2.60 GPHsP

T
HsGPHs 5.98

GPHsP
T
HsPHs 1.00 G2PHsP

T
HsPHs 3.31

PAtP
T
AtPHs 8.09 PAtP

T
AtG

2PHs 0.74
Plant PAtP

T
AtGPHs 1.06 GPAtP

T
AtGPHs 2.18

GPAtP
T
AtPHs 1.20 G2PAtP

T
AtPHs 0.65

PCeP
T
CePHs 5.75 PCeP

T
CeG

2PHs 0.33
Worm PCeP

T
CeGPHs 0.69 GPCeP

T
CeGPHs 0.55

GPCeP
T
CePHs 0.62 G2PCeP

T
CePHs 0.29

PDmP
T
DmPHs 4.58 PDmP

T
DmG

2PHs 0.90
Fly PDmP

T
DmGPHs 0.93 GPDmP

T
DmGPHs 1.36

GPDmP
T
DmPHs 0.72 G2PDmP

T
DmPHs 0.55

PDrP
T
DrPHs 8.28 PDrP

T
DrG

2PHs 1.16
Zebrafish PDrP

T
DrGPHs 0.77 GPDrP

T
DrGPHs 2.68

GPDrP
T
DrPHs 0.52 G2PDrP

T
DrPHs 0.69

PEcP
T
EcPHs 1.67 PEcP

T
EcG

2PHs 0.19
E. coli PEcP

T
EcGPHs 0.30 GPEcP

T
EcGPHs 0.75

GPEcP
T
EcPHs 0.29 G2PEcP

T
EcPHs 0.12

PGgP
T
GgPHs 3.76 PGgP

T
GgG

2PHs 0.32

Chicken PGgP
T
GgGPHs 0.30 GPGgP

T
GgGPHs 1.35

GPGgP
T
GgPHs 0.23 G2PGgP

T
GgPHs 1.82

PMmP
T
MmPHs 15.03 PMmP

T
MmG

2PHs 1.54
Mouse PMmP

T
MmGPHs 1.35 GPMmP

T
MmGPHs 2.13

GPMmP
T
MmPHs 0.83 G2PMmP

T
MmPHs 0.70

PScP
T
ScPHs 5.55 PScP

T
ScG

2PHs 0.30
Yeast PScP

T
ScGPHs 0.61 GPScP

T
ScGPHs 0.59

GPScP
T
ScPHs 0.56 G2PScP

T
ScPHs 0.25

Gene network GPHs 1.23 G3PHs 0.57
G2PHs 3.52 G4PHs 0.36

Phenotype network PHsQHs 39.63 PHsP
T
HsG

2PHsQHs 4.28
PHsP

T
HsPHsQHs 21.02 GPHsP

T
HsGPHsQHs 2.56

PHsP
T
HsGPHsQHs 1.70 G2PHsP

T
HsPHsQHs 1.43

GPHsP
T
HsPHsQHs 0.64

Weights learned for different features by Catapult using the biased SVM with bagging procedure,
using the HumanNet gene network. Two important observations are: (1) Features corresponding to
longer path lengths receive relatively much smaller weights (note that path length can be deduced from
the number of terms in the feature, for example, PHsPTHsPHs has path length 3, while PHsPTHsGPHs
has path length 4). (2) Features corresponding to different species receive different weights, in
particular, features derived from mouse phenotypes get the highest weights, which makes sense given
the relative evolutionary proximity between humans and mice. The relative weights of different
information sources are not straightforward to interpret. However, we can see that some higher order
features are informative.
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Supplementary Material

Relationship between Katz on the heterogenous network and RWRH

Restricting P to human phenotypes, i.e. letting P = PHs, weighing P and P> by λ in the heterogeneous
network C where 0 < λ < 1 is the jump probability, in equation (3), and appropriately normalizing the
matrices by row-degrees and scaling, we get the heterogeneous network construction C̃, in equation (7),
used in the RWRH method [8]. The RWRH method, when extended to our heterogenous network, turns
out to be equivalent to the Katz measure provided the columns of the combined matrix C are normalized
appropriately. The equivalence is shown below. Let CN denote the normalized matrix, with the different
blocks weighted as described above. Then, the column corresponding to a gene g in the matrix CN (i.e.,
one of the first |G| columns), written CN:,g, is given by:

CN:,g =

[
λ

G:,g
‖G:,g‖1

(1− λ) P>g,:
‖Pg,:‖1

]
,

and the column corresponding to a phenotype p in the matrix CN (i.e., one of the remaining |PHs|
columns), written CN:,p, is given by:

CN:,p =

(1− λ) P>:,p
‖P:,p‖1

λ
Q>:,p
‖Q:,p‖1

 .
Note that if a gene g is not known to be associated to any phenotype (i.e. ‖Pg,:‖ = 0) then we will simply
use λ = 1 for g. Case ‖Q:,p‖ = 0 is handled similarly. Then we consider the evolution:

sT+1 = βCNsT + (1− β)CN:,p

where CN:,p is simply a probability distribution with equal mass on all genes known to be associated with
a phenotype p of interest, and mass on the diseases related to p . The genes are then ranked in the order
of the mass that is assigned to them under the steady state distribution s of this evolution. The steady
state vector s should satisfy

s = βCNs + (1− β)CN:,p

which readily yields
s = (1− β)[I − βCN ]−1CN:,p .

Thus the score matrix computed by RWRH can be written as1,

β[I − βCN ]−1CN = βCN + β2(CN )2 + β3(CN )3 + . . . .

which is exactly Katz but on the normalized matrix CN instead of C itself.

Relationship between Katz on the heterogenous network and PRINCE

Examining the computation of Katz on heterogeneous network closely yields an interesting connection
to PRINCE. As k →∞ in equation (4) and for appropriate choice of β, let

Skatz(C) = (I − βC)−1 =
[
SGG SGP

(SGP )> SPP

]
,

1Multiplying either sides of the equation by constant factor β/(1− β) does not affect the ranking of candidates.
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where it can be shown that

SGP = Skatz(G)P
[
I − (Q+ P>Skatz(G)P )

]−1
. (12)

Note how the Katz similarity matrix Skatz(G) = (I − βG)−1 for the gene-gene network G itself appears
in the expression above. The expression above takes into account all kinds of paths in the combined
network that start in gene nodes and end up in human phenotype nodes. The corresponding score matrix
computed by PRINCE [7] method can be generalized as

SPRINCEGP = SKatz(G)PQ . (13)

Note that it is a form of generalization — PRINCE “smoothes” a given phenotype using its most similar
neighbor, whereas the term PQ in equation (13) combines all the neighbors linearly. Also note that
the expression should strictly have PHs and QHs instead of P and Q as PRINCE [7] uses only human
phenotypes data. However, using P and Q in equation (13) enables comparison to the expression cor-
responding to the Katz method given in equation (12). Clearly, Katz on the heterogeneous network C
generalizes PRINCE method. In particular we observe that while PRINCE relies on the matrix Q to
obtain “smoothed” phenotypes by sharing information across phenotypes, Katz on the heterogeneous
network uses a combination of Q and P>Skatz(G)P .


