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Abstract

In this paper, we introduce a generic framework

for semi-supervised kernel learning. Given pair-

wise (dis-)similarity constraints, we learn a ker-

nel matrix over the data that respects the pro-

vided side-information as well as the local ge-

ometry of the data. Our framework is based

on metric learning methods, where we jointly

model the metric/kernel over the data along with

the underlying manifold. Furthermore, we show

that for some important parameterized forms of

the underlying manifold model, we can estimate

the model parameters and the kernel matrix ef-

ficiently. Our resulting algorithm is able to in-

corporate local geometry into the metric learning

task; at the same time it can handle a wide class

of constraints. Finally, our algorithm is fast and

scalable – unlike most of the existing methods, it

is able to exploit the low dimensional manifold

structure and does not require semi-definite pro-

gramming. We demonstrate wide applicability

and effectiveness of our framework by applying

to various machine learning tasks such as semi-

supervised classification, colored dimensionality

reduction, manifold alignment etc. On each of

the tasks our method performs competitively or

better than the respective state-of-the-art method.

1. Introduction

Over the years, kernel methods have become an impor-

tant tool in many machine learning tasks. Success of these

methods is critically dependent on selecting an appropriate

kernel for the given task at hand using the provided side-

information. To this end, there have been several recent ap-

proaches to learn a kernel function, e.g., (Zhu et al., 2005;

Lanckriet et al., 2004; Davis et al., 2007; Ong et al., 2005).
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In most real-life applications, the volume of available data

is huge but the amount of supervision available is very lim-

ited. This necessitates semi-supervised methods for kernel

learning that also exploit the geometry of the data. Addi-

tionally, the side-information can be provided in a variety

of forms, e.g., labels, (dis-)similarity constraints, and click

through feedback. Thus, a generic framework is required

for semi-supervised kernel learning that is able to handle

different types of supervision, while exploiting the intrinsic

structure of the unsupervised data. Furthermore, the learn-

ing algorithm should be fast and scalable to handle large

volumes of data. While existing kernel learning algorithms

have been shown to perform well across various applica-

tions, most fail to satisfy some of these basic requirements.

In this paper, we propose a framework for semi-supervised

kernel learning that is based on a generalization of exist-

ing work on metric learning (Davis et al., 2007; Wein-

berger et al., 2006; Globerson & Roweis, 2005), as well as

data-dependent kernels (Zhu et al., 2005; Sindhwani et al.,

2005). Metric learning provides a flexible method to learn

a task-dependent distance function (kernel) over the data

points using the provided distance constraints. However, it

is critically dependent on the existing feature representation

or a pre-defined similarity function, and does not take into

account the manifold structure of the provided data. On

the other hand, data-dependent kernel learning approaches

exploit the intrinsic structure of the provided data, but typ-

ically do not specialize to a given task.

Our framework incorporates the intrinsic structure in the

data, while learning a task-dependent kernel. Specifically,

we jointly model a task-dependent kernel as well as a data-

dependent kernel that reflects the local geometry or mani-

fold structure of the data. We show that for some important

parameterizations of the set of data-dependent kernels, our

formulation admits convexity, and the proposed optimiza-

tion algorithm efficiently learns an appropriate kernel func-

tion for the given task. Our algorithm is fast, scalable, does

not involve semi-definite programming, and crucially, is

able to exploit the low dimensional structure of the under-

lying manifold that is often present in real-world datasets.

Our proposed framework is generic and can be easily tai-
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lored for a variety of tasks. In this paper, we apply our

method to the task of classification (inductive and trans-

ductive setting), automatic model selection for standard

kernel functions, and semi-supervised manifold learning.

For each application, we empirically demonstrate that our

method can achieve comparable or better performance than

the respective state-of-the-art.

2. Previous Work

Existing kernel learning methods can be broadly divided

into two categories. The first category includes primarily

task-dependent approaches, where the intrinsic structure in

the data is assumed, and the goal is to maximally tune the

kernel to the provided side-information for the given task,

e.g., class labels for classification, must (cannot)-link con-

straints for semi-supervised clustering. Prominent meth-

ods include metric learning (Davis et al., 2007), multiple

kernel learning (Lanckriet et al., 2004; Sonnenburg et al.,

2006), hyper-kernels (Ong et al., 2005), hyper-parameter

cross validation (Seeger, 2008), etc.

The other category of kernel learning methods consist of

data-dependent approaches, which explicitly model the ge-

ometry of the data, e.g., underlying manifold structure.

These methods appear in both unsupervised and semi-

supervised learning scenarios. For the unsupervised case,

(Weinberger et al., 2004) proposed a method to recover the

underlying low dimensional manifold by learning a kernel

over it. More generally, (Bengio et al., 2004) show that a

large class of manifold learning methods are equivalent to

learning certain types of kernels. For the semi-supervised

setting, data-dependent kernels are used to enforce smooth-

ness on a graph or a similar structure composed from all of

the data. Like in the unsupervised case, the kernel captures

the manifold and/or cluster structure of the data, and af-

ter integrated a regularized classification model, often pro-

vides good generalization performance (Sindhwani et al.,

2005; Chapelle et al., 2003; Seeger, 2002).

Our proposed method combines the two kernel learning

paradigms, thereby exploiting the geometry of the data

while retaining the task-specific feature. Related work in

this direction is limited and largely focuses on learning pa-

rameters for a specific family of data-dependent kernels,

e.g., spectral kernels (Zhu et al., 2005; Sun et al., 2008;

Lafferty & Lebanon, 2005). In comparison, our method

is based on a non-parametric information-theoretic met-

ric/kernel learning method and is more flexible. Further-

more, existing methods are typically designed for a partic-

ular application only, e.g., semi-supervised classification,

and are not able to handle different type of constraints, such

as distance constraints. In contrast, our proposed frame-

work can handle a variety of constraints and is applicable

to various machine learning tasks (see Section 6).

3. Methodology

Given a set of n points {x1, x2, . . . , xn} ∈ R
d, we seek

a positive semi-definite kernel matrix K that can be later

used for various tasks, e.g. classification, retrieval, etc. Our

goal is two-fold: 1) use the provided supervision over the

data, 2) exploit the unlabeled or unsupervised data, i.e., we

want to learn a kernel that respects the underlying mani-

fold structure in the data while also incorporating the side-

information provided. Previous kernel learning approaches

typically handle this problem by learning a spectral ker-

nel K =
∑

i αiviv
T
i , where the vectors vi are the low-

frequency eigenvectors of the Laplacian of a k-NN graph.

However, constraining the eigenvectors to be unchanged

severely restricts the class of kernels that can be learned.

A contrasting task-dependent approach to kernel learning

is based on the metric learning paradigm, where the goal is

to learn a kernel K that is “close” to a pre-defined baseline

kernel K0 and satisfies the provided pairwise (or relative)

constraints that are specific to the task at hand. Formally,

K is obtained by solving the following problem:

minK D(K, K0), s.t. K ∈ K,

where K is a convex set of kernel K that satisfy

Kii + Kjj − 2Kij ≤ u (i, j) ∈ S,

Kii + Kjj − 2Kij ≥ l (i, j) ∈ D,

K � 0. (1)

In the above S is the given set of similar points, D is the

given set of dis-similar points, and D(·, ·) is a distance

function for comparing two kernel matrices. We will de-

note the set of kernel that satisfy (1) as the set of task-

dependent kernel. Although flexible and effective for vari-

ous problems, this framework does not account for the un-

labeled data and their geometry. As a result, large amount

of supervision is required to capture the intrinsic structure

in the data.

In this paper, we propose a geometry-aware metric learning

(G-ML) framework that combines both the data-dependent

and task-dependent kernel learning approaches. Our model

maintains the flexibility of the metric learning based ap-

proach while exploiting the intrinsic structure in the data,

and as we shall show later, engenders multiple competitive

machine learning models.

3.1. Geometry-aware Metric Learning

In this section, we describe our geometry-aware metric

learning (G-ML) model, where we learn the kernel K , as

well as the kernel M that explicitly exploits the intrinsic

structure in the data through the optimization problem:

min
K,M

D(K, M), s.t. K ∈ K, M ∈ M, (2)

where the set M is a parametric set of kernels that capture

the intrinsic geometry of the labeled as well as unlabeled
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data and D(·, ·) is a distance function over matrices. The

above optimization problem computes kernel K that satis-

fies task specific constraints (1) and is also close to kernel

M , thus incorporating data geometry into the kernel K (see

Figure 1). Later in the section, we give a few interesting ex-

amples of the set M.

A key component of our framework is the distance func-

tion D(K, M) that is being used. In this work, we

use the LogDet matrix divergence, Dℓd(K, M), as the

distance function, where Dℓd(K, M) = tr(KM−1) −
log det(KM−1) − n. The LogDet divergence is a Breg-

man matrix divergence that is typically defined over posi-

tive definite matrices and its definition can be extended to

the case when the range space of matrix K is the same as

that of M . Previously, (Davis et al., 2007) showed the effi-

cacy of LogDet as a matrix divergence for kernel learning,

and pointed out its equivalence to metric learning (called

information-theoretic metric learning, or ITML).

Now, we give an important example of the set M based on

spectral learning methods (Zhu et al., 2005) that captures

the underlying structure in the data. First, define a graph

G over the data points that captures local structure of data,

e.g., a k-NN graph or an ǫ-ball graph. Let W be the adja-

cency matrix of G, D be the degree matrix, L be the graph

Laplacian1 L = D − W , and V = [v1, v2, . . . , vr] be the

r eigenvectors of L (typically r ≪ n) corresponding to the

smallest eigenvalues of L: λ1 ≤ · · · ≤ λr. Then, the set

M we consider is given by:

M =

{

r
∑

i

αiviv
T
i | α1 ≥ α2 ≥ · · · ≥ αr ≥ 0.

}

(3)

where the order constraints α1 ≥ α2 ≥ · · · ≥ αr ≥ 0
further ensure smoothness (the eigenvector vi is known to

be smoother than vi+1).

For this particular choice of M, the kernel K is obtained

by solving the following optimization problem:

min
K,α1,α2,...,αr

Dℓd(K, M)

s.t. K ∈ K, M =

r
∑

i

αiviv
T
i ,

α1 ≥ α2 ≥ · · · ≥ αr ≥ 0.

(4)

Solving above problem yields {α1, α2, . . . , αr} in the cone

α1 ≥ α2 ≥ · · · ≥ αr ≥ 0 and a feasible kernel K that is

close to M =
∑r

i αiviv
T
i (see Figure 1). Slack variables

can be incorporated in our framework to ensure that the set

K is always feasible, even under noisy constraints.

3.2. Alternative M

In the above subsection, we discussed an example of M as

a particular subset of spectral kernels. However our frame-

work is general and depending on the application it can ad-

mit other parametric sets also. For example, consider the

1We can also use the normalized Laplacian I−D
−

1

2 WD
−

1

2 .

Figure 1. Illustration of G-ML. The shadowed polygon stands for

the feasible set of kernels K specified by the task dependent pair-

wise constraints. The cone stands for data-dependent kernels that

exploits the intrinsic geometry of the data. Using a fixed M0

would lead to sub-optimal kernel K
′, while the joint optimization

(as in (2)) over both M and K leads to a better solution K
∗.

set:

M = {S − S(I + TS)−1TS| T =

r
∑

i

θiviv
T
i ,

θ1 ≥ · · · ≥ θr ≥ 0.} (5)

where S is a fixed given kernel and the vectors vi are eigen-

vectors of the graph Laplacian L. This set generalizes the

data-dependent kernel proposed by (Sindhwani et al., 2005)

by replacing the graph Laplacian with a more flexible T .

Note that M given by (5) reduces to M given by (3) in

the limit ‖S−1‖ → 0. This set of kernel is interesting in

that, unlike most spectral kernels that are usually evaluated

in a transductive setting, the kernel value can be naturally

extended to unseen samples as

M(x, x′) = S(x, x′) − S(x, .)(I + TS)−1TS(., x′)

As will be shown in Section 4, the set M given by (3)

as well as (5) both lead to convex sub-problems for find-

ing T with fixed K . In general, the convexity holds if

{v1, · · · , vr} are orthogonal, which allows us to extend our

model to other manifold learning models (Bengio et al.,

2004), such as Isomap or LLE. The set M can also be

adapted to perform automatic model selection for super-

vised learning, for example we can tune the parameter for

the RBF kernels by letting

M =

{

α exp(−
||xi − xj ||

2

2σ2
) | α > 0, σ > 0

}

, (6)

where α and σ are parameters to be learned by G-ML.

4. Algorithm

In this section, we analyze properties of the proposed op-

timization problem (4) and propose a fast and scalable al-

gorithm. First, note that although the constraints specified

in (4) are all linear, the objective function Dℓd(K, M) is

not jointly convex in K and M . However, the problem can

be shown to be convex individually in K and M−1. Here

and in the remainder of the paper, whenever the inverse of

a matrix does not exist, we use its Moore-Penrose inverse.
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Algorithm 1 Geometry-aware Metric Learning(G-ML)

Optimization procedure when M is given by (3)

Input: X : input d × n matrix, S: similarity constraints

D: dis-similarity constraints, α0: initial α

γ: slack parameter, r: number of eigenvectors

Output: K , M
1: G =kNN-graph(X), W =Affinity matrix of G
2: L = D − W , L =

∑n
i µiviv

T
i

3: M =
∑r

i α0
i viv

T
i

4: repeat

5: K = ITML(M, S, D, γ) //(Step A)

6: α = FindAlpha(K, v1, v2, . . . , vr) //(Step B)

7: M =
∑

i αiviv
T
i

8: until convergence

function α = FindAlpha(K, v1, v2, . . . , vr)
Cyclic projection method to solve (4) with fixed K

1: αi = vT
i Kvi, 1 ≤ i ≤ r

2: ν = 0, i = 0
3: repeat

4: c = min(νi, (αi+1 − αi)/2)
5: νi = νi − c, αi+1 = αi+1 − c, αi = αi + c
6: i = mod (i + 1, n)
7: until convergence

It is easy to see that on fixing M , the problem is strictly

convex in K as Dℓd(K, M) is known to be convex in K
(Davis et al., 2007). The following lemma shows that (4)

is also convex in the parameters 1
αi

, 1 ≤ i ≤ r, when K is

fixed.

Lemma 1. Assuming K to be fixed, Problem (4) is convex

in β1 = 1/α1, β2 = 1/α2, . . . , βr = 1/αr.

Proof. Since M−1 =
∑

i βiviv
T
i , where βi = 1

αi

, the fact

that Dℓd(K, M) = Dℓd(M
−1, K−1) is convex in M−1

implies convexity in βi, ∀i. Furthermore, the constraints

α1 ≥ α2 ≥ · · · ≥ αr ≥ 0 can be equivalently written as a

set of linear constraints βr ≥ · · · ≥ β2 ≥ β1 > 0.

Now, we describe our proposed alternating minimization

algorithm for solving (4). Our algorithm is based on in-

dividual convexity of (4) w.r.t K and M−1. It iterates

by fixing M (or equivalently α1, α2, . . . , αr) to solve for

K (denoted Step A), and then fixing K to solve for

α1, α2, . . . , αr (Step B). In Step A, to find K , we use the

cyclic projection algorithm where at each step we project

the current solution onto one of the constraints. The pro-

jection problem that needs to be solved at each step is:

min
K

Dℓd(K, Kt), s.t. Kii + Kjj − 2Kij ≤ u,

i.e., projection w.r.t. single (dis-)similarity constraint. As

shown in (Davis et al., 2007), the above problem can be

solved in closed form using a one-rank update to Kt. Fur-

thermore, the update can be computed in just O(nk) oper-

ations, where r ≪ n is the rank of the kernel M . Now in

Step B, to obtain α1, α2, . . . , αr, we solve the equivalent

optimization problem:

min
β1,β2,...,βr

Dℓd(
∑

i

βiviv
T
i , K−1)

s.t. βr ≥ βr−1 ≥ · · · ≥ β1 ≥ 0,

where βi = 1/αi. This problem can also be solved using

cyclic projection, where at each step the current solution

is projected onto one of the inequality constraints. Every

projection step can be performed in just O(k) operations.

In summary, we have presented a highly scalable and easy

to implement algorithm (Algorithm 1) for solving (4). Fur-

thermore, the objective function value achieved by our al-

gorithm is guaranteed to converge.

Alternative M As mentioned in Section 3.2, an alternate

set M given by (5) induces an natural out-of-sample ex-

tension. Although it is not further pursued in this paper,

we would like to point out that, similar to (4), this alterna-

tive set M also leads to a convex optimization problem for

computing M when K is fixed.

Lemma 2. Assuming K to be fixed, Problem (4) is convex

in θ1, θ2, . . . , θr.

Proof. Restricting the kernel function to the provided sam-

ples, we get M = S − S(I + TS)−1TS. Using the

Sherman-Morrison-Woodbury formula, M−1 = S−1 + T.
Now, Dℓd(K, M) is convex in M−1. Using the property

that a function g(x) = f(a + x) is convex if f is convex,

Dℓd(K, M) is convex in T . As T is a linear function of

θi, 1 ≤ i ≤ r, Dℓd(K, M) is convex in θ1, · · · , θr.

Using the above lemma, we can adapt Algorithm 1 to ob-

tain a suboptimal solution to (2) where M is given by (5).

Unlike the kernels in (3) and (5), the set M given by (6)

does not admit a convex subprolem when fixing K . How-

ever, since only two parameters are involved, we can still

adapt our alternative minimization framework to obtain a

reasonably efficient method for optimizing (2) using M
specified in (6).

5. Discussion

5.1. Connection to Regularization Theory

Now, we present a regularization theory based interpreta-

tion of our methodology for estimating kernel K (Prob-

lem (4)). Using duality theory, it can be shown that the

general form of the solution to (4) is given by:

K = (
∑

i

α−1
i viv

T
i +

∑

(i,j)∈S

γS
ij(ei − ej)(ei − ej)

T

−
∑

(i,j)∈D

γD
ij (ei − ej)(ei − ej)

T )−1 (7)

with γS
ij , γ

D
ij ≥ 0 and ei being the vector with the

ith entry one and rest zeros. Let f : X → R be
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a real valued function over the feature space and f =
[f(x1), f(x2), · · · , f(xn)]T , we then have

fT K−1f = fT

(

∑

i

1

αi
viv

T
i

)

f +
∑

(i,j)∈S

γS
ij(fi − fj)

2

−
∑

(i,j)∈D

γD
ij (fi − fj)

2 (8)

where the first term addresses the overall smoothness of

function f on the graph, while the last two terms mea-

sures the violation of pairwise constraints. Formulation

(8) generalizes the joint regularization framework proposed

by (Sindhwani et al., 2005) to include non-positive defi-

nite term (dis-similarity term
∑

(i,j)∈D
γD

ij (fi−fj)
2 in our

case) in the regularization, while the overall positive def-

initeness is still ensured either explicitly through another

constraint (K � 0) or implicitly through the particular op-

timization algorithm (Bregman projection in our case).

5.2. Connection to Gaussian Processes(GP)

Next, we present an interesting connection of our method

to that of GP based methods for estimating M . Let K =

Φ(X)Φ(X)T , where Φ(X) = [φ(x1)φ(x2) · · · φ(xn)]
T

and φ(xi) ∈ R
m is the feature space representation of point

xi. As in standard GP based methods, assume that each of

the feature dimension of φ(xi)’s are jointly Gaussian with

mean 0 and covariance M that needs to be estimated. Thus,

the likelihood of the data is given by:

L =
1

(2π)n/2|M |1/2
exp

(

−
1

2
tr
(

Φ(X)T M−1Φ(X)
)

)

.

It is easy to see that maximizing the above given likelihood

is equivalent to minimizing Dℓd(K, M) with fixed K . As-

suming a parametric form for M =
∑

i αiviv
T
i , GP based

spectral kernel learning is equivalent to learning M using

our method. Furthermore, typical GP based methods use

one-rank target alignment kernel K = yyT , where yi is the

label of i-th point. In contrast, we use a more robust learned

kernel K that not only accounts for the labels, but also the

similarity in the data points itself, i.e. our learned kernel K
is less likely to overfit to the provided labels and is appli-

cable to a wider class of problems where supervision need

not be in the form of labels.

6. Applications

In this section, we describe a few applications of our

geometry-aware metric learning framework (G-ML) for

kernel learning. Besides enhancing existing metric/kernel

learning methods, our method also extends the application

of kernel learning to a few previously inapplicable tasks as

well. In particular, we will demonstrate the effectiveness of

our framework on a variety of classification and manifold

learning tasks.

6.1. Classification

First, we describe application of our method to the task of

classification. Depending on the given problem, we have

two scenarios: 1) supervised case where the test points are

unknown in the training phase, and 2) semi-supervised case

where the test/unlabeled points are also part of the train-

ing. For both the cases, pairwise similarity/dis-similarity

constraints are obtained using the provided labels over the

data, and the k nearest neighbor classifier with the learned

kernel K is used for predicting the labels. In the super-

vised learning scenario, we apply G-ML to the task of au-

tomatic model selection by learning the parameters for the

baseline kernel M . For semi-supervised learning, G-ML

jointly learns the kernel K and the eigenvalues of the spec-

tral kernel M , thereby taking into account the geometry of

the unlabeled data. Note that the optimization step for M
(step B) is similar to the kernel-target alignment technique

for selecting a spectral kernel (Zhu et al., 2005). However,

(Zhu et al., 2005) treat the kernel as a long vector, while our

method respects the two-dimensional structure and positive

definiteness of the matrix M .

6.2. Manifold Learning

G-ML is applicable to semi-supervised manifold learning

where the task is to learn and exploit the underlying man-

ifold structure using the provided supervision (pairwise

(dis-)similarity constraints). In particular, we apply G-ML

to the task of non-linear dimensionality reduction and man-

ifold alignment. In contrast to other metric learning meth-

ods (Xing et al., 2002; Davis et al., 2007) that learns the

metric over the ambient space, G-ML learns the metric on

the manifold, where {vi} are the approximate coordinates

of the data on the manifold (Belkin & Niyogi, 2003).

Colored Dimensionality Reduction Here we consider

the semi-supervised dimensionality reduction task where

we want to retain both the intrinsic manifold structure of

data and the (partial) label information. G-ML naturally

merges the two sources of information; the learned ker-

nel K incorporates the manifold structure (as expressed in

{αi} and {vi}) while reflecting the provided side informa-

tion (expressed through constraints). Hence, the leading

eigenvectors of K should provide a better low-dimensional

representation of the data. In absence of any constraints,

this dimension reduction model degenerates to Laplacian

Eigenmaps (Belkin & Niyogi, 2003). Furthermore, com-

pared to (Song et al., 2007), our model is able to learn a

more accurate embedding of the data (Figure 4).

Manifold Alignment Finally, we apply our method to

the task of manifold alignment, where the goal is to align

previously disconnected (or weakly connected) manifolds

according to some common property. For example, con-

sider images of different objects under a particular transfor-

mation, e.g. rotation, illumination, scaling etc, which will

form a low-dimensional manifold called Lie group. The
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Figure 2. 4-NN classification error via kernels learned using our

method (G-ML) and ITML (Davis et al., 2007). The data-

dependent kernel M is the RBF kernel. Clearly, G-ML is able

to achieve competitive error rate while learning the kernel width

for M , while ITML requires cross validation.

goal is to estimate information about the transformation of

the object in the image, rather than the object itself. We

show that G-ML accurately represents the corresponding

Lie group manifold by aligning the image manifold of dif-

ferent objects under the same transformation (captured by a

joint graph Laplacian). This alignment is achieved through

learning the kernel K by constraining a small subset of im-

ages with similar transformations to have small distance.

7. Experimental Results

In this section, we evaluate our method for geometry-aware

metric learning (G-ML) on the applications mentioned in

the previous section. Specifically, we apply our method

to the task of classification, semi-supervised classification,

non-linear dimensionality reduction, and manifold align-

ment. For each task we compare our method with the re-

spective state-of-the-art methods.

7.1. Classification: Supervised Learning

First, we apply our G-ML framework to the task of clas-

sification in a supervised learning scenario (Section 6.1).

For this task, we consider the feasible set M for M to be

scaled Gaussian RBF kernels with unknown scale α and

kernel width σ, as in (6). Unlike the spectral kernel case,

the sub-problem for finding α and σ is non-convex and a lo-

cal optimum for the non-convex subproblem is found with

conjugate gradient descent (Matlab function fminsearch).

The resulting K is then used for k-NN classification. We

evaluate our method (G-ML) on four standard UCI datasets

(iris, wine, balance-scale and ionosphere). For each

dataset we use 20 points for training and the rest for test-

ing. Figure 2 compares 4-NN classification error incurred

by our method to that of the state-of-the-art ITML method

(Davis et al., 2007). For ITML, the kernel width of Gaus-

sian RBF M is selected using leave-one-out cross valida-

tion. Clearly, G-ML is able to automatically select a good

kernel width, while ITML requires slower cross validation

to obtain a similar width parameter.

7.2. Classification: Semi-supervised Learning

Next, we evaluate our method for classification in the

semi-supervised setting (Section 6.1). We evaluate our

method on four datasets that fall in two broad cate-

gories: a) text classification: two standard subsets of 20-

newsgroup dataset, namely, baseball-hockey (1993 in-

stances/ 2 classes), and pc-mac (1943/2). b) digit clas-

sification: two subsets of USPS digits dataset, odd-even
(4000/2) and ten digits (4000/10). Odd-even involves

classifying odd “1, 3, 5, 7, 9” vs. even “0, 2, 4, 6, 8” digits,

while ten digits is the standard 10-way digit classification.

To form the k-NN graph, we use cosine similarity over tf-

idf representation for text classification datasets and RBF-

kernel function over gray-scale pixel values for the digits

dataset. We compare G-ML (k-NN classifier with k = 4)

with three state-of-the-art semi-supervised kernels: non-

parametric spectral kernel (Zhu et al., 2005), diffusion ker-

nel (Kondor & Lafferty, 2002), and maximal-alignment

kernel (Lanckriet et al., 2004). For all four semi-supervised

learning models we use 10-NN unweighted graphs on all

the datasets. The non-parametric spectral kernel uses the

first 200 eigenvectors (Zhu et al., 2005), whereras G-ML

uses the first 20 eigenvectors to form M . For the three com-

petitor semi-supervised kernels, we use support vector ma-

chines (one-vs-all classification). We also compare against

three standard kernels: RBF kernel (bandwidth learned us-

ing 5-fold cross validation), linear kernel, and quadratic

kernel. We use the diffusion kernel K = exp(−tL) with

t = 0.1 for initializing our alternating minimization algo-

rithm. Note that the various parameter values are set arbi-

trarily without optimizing and do not give an unfair advan-

tage to the proposed method.

We report the classification error of G-ML averaged over

30 random training/testing splits; the results of competing

methods are from (Zhu et al., 2005). The first row of Fig-

ure 3 compares error incurred by various methods on each

of the four datasets, the second row shows the test error rate

at each iteration of G-ML using 30 labeled examples (ex-

cept for 10 digits dataset where we use 50 examples), while

the third row shows the same for 70 labeled examples (100

examples for 10 digits). Clearly, on all the four data sets,

G-ML gives comparable or better performance than state-

of-the-art semi-supervised learning algorithms and signifi-

cantly outperforms the supervised learning algorithms.

7.3. Colored Dimensionality Reduction

Next, we apply our method to the task of semi-supervised

non-linear dimensionality reduction. We evaluate our

method on standard USPS digits dataset, and compare it
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Figure 3. Top row: Classification error for various methods on four standard datasets using different number of labeled samples. Note

that G-ML consistently performs comparably or better than the best semi-supervised learning methods and significantly outperforms the

supervised learning methods. Middle Row and Bottom row: Classification error rate with 30 labeled samples and 70 labeled data (50,

100 for 10 digits) as the number of iterations increase. In both the cases G-ML improves over the initial (diffusion) kernel .
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Figure 4. Two dimensional embedding of 2007 USPS digits using different methods. Color of the dots represents different classes of

digits (color coding is provided in the top row). We observe that compared to other methods, our method separates the respective

manifolds of different digits more accurately, e.g. digit 4. (Better viewed in color)

to the state-of-the-art colored Maximum Variance Unfold-

ing (colored MVU) (Song et al., 2007) method which also

performs dimensionality reduction for labelled data. We

also compare our method to ITML (Davis et al., 2007) that

does not take the local geometry into account and Lapla-

cian Eigenmaps (Belkin & Niyogi, 2003) that does not ex-

ploit the label information. For visualization, we reduce

the dimensionality of the data to two and plot each of the 10

classes of digits with different color (Figure 4). For the pro-

posed G-ML method, we use 200 samples to generate the

pairwise constraints, while colored MVU is supplied with

all the labels. Note that other than digit 5, G-ML is able to

separate manifolds of all the digits in the two-dimensional

embedding. In contrast, colored MVU is unable to clearly

separate manifolds of digits 4, 5, 8, and 2 while using more

labels than the proposed G-ML method.

7.4. Manifold Alignment

In this experiment, we evaluate our method for the task

of manifold alignment (Section 6.2) on two datasets, each

associated with a different type of transformation. The

first dataset consists of images of two subjects sampled

from the Yale face B dataset, each with 64 different il-

lumination conditions (varying angles of two illumination

sources). Note that the images of each of the subjects lie on

an arbitrary oriented two-dimensional manifold. In order

to align the two manifolds, we randomly sample 10 must-

links for the images with the same illumination conditions.

The top row of Figure 5 shows three-dimensional embed-

ding of the images using Laplacian Eigenmaps (Belkin &

Niyogi, 2003), proposed G-ML method at various itera-

tions, and ITML method with RBF kernel as the baseline

kernel (Davis et al., 2007). We observe that G-ML is able

to capture the manifold structure of the Lie group and suc-

cessfully align them within five iterations. Next, we apply
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Figure 5. Manifold alignment results (Yale Face). Top Row: 3-dimensional embedding of the images of two subjects with different

illumination. Middle Row: the retrieval result for two queries based on kernel learned using G-ML. Bottom Row: the retrieval result

for the same two queries using ITML kernel. We observe that G-ML is able to capture the local geometry of the manifold, which

is further confirmed by the illumination retrieval results, where unlike ITML, G-ML is able to retrieve similar illumination images

irrespective of the subject. (Better viewed in color)

our method to the task of illumination estimation, where

the goal is to retrieve the image with the most similar illu-

mination to the given query image. As shown in the middle

row of Figure 5, G-ML is able to accurately retrieve sim-

ilar illumination images irrespective of the identity of the

person. The ITML method, which does not capture the lo-

cal geometry of the unsupervised data, is unable to align

the data points w.r.t. the illumination transform and hence

unable to accurately retrieve similar illumination images.
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Figure 6. This plot shows recall as a function of number of re-

trieved images, for G-ML, ITML, and Diffusion Kernel (DK).

To give a quantitative evaluation of manifold alignment, we

also performed a similar experiment on a subset of COIL-

20 data datasets, which contains images of three subjects

with different degree of rotation (72 points uniformly sam-

pled from 0∼360 degree). Images of each subjects should

lie on a circular one-dimensional manifold. We apply our

method to retrieve images with similar “angle” to a given

query image. Figure 6 shows that with 10 randomly chosen

similarity-constraints, our method is able to obtain recall of

0.47, significantly outperforming the ITML (0.24) and the

diffusion kernel (Kondor & Lafferty, 2002) method (0.23).
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