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ABSTRACT

Social network analysis has attracted increasing attention
in recent years. In many social networks, besides friendship
links amongst users, the phenomenon of users associating
themselves with groups or communities is common. Thus,
two networks exist simultaneously: the friendship network
among users, and the affiliation network between users and
groups. In this paper, we tackle the affiliation recommen-
dation problem, where the task is to predict or suggest new
affiliations between users and communities, given the current
state of the friendship and affiliation networks. More gener-
ally, affiliations need not be community affiliations - they can
be a user’s taste, so affiliation recommendation algorithms
have applications beyond community recommendation. In
this paper, we show that information from the friendship
network can indeed be fruitfully exploited in making affili-
ation recommendations. Using a simple way of combining
these networks, we suggest two models of user-community
affinity for the purpose of making affiliation recommenda-
tions: one based on graph proximity, and another using la-
tent factors to model users and communities. We explore
the two classes of affiliation recommendation algorithms sug-
gested by these models. We evaluate these algorithms on two
real world networks - Orkut and Youtube. In doing so, we
motivate and propose a way of evaluating recommenders, by
measuring how good the top 50 recommendations are for the
average user, and demonstrate the importance of choosing
the right evaluation strategy. The algorithms suggested by
the graph proximity model turn out to be the most effective
and efficient. This use of link prediction techniques for the
purpose of affiliation recommendation is, to our knowledge,
novel.
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1. INTRODUCTION
There has been an explosion in the number of online social

networks and their active members. This wealth of informa-
tion in the social networks has driven prolific work on the
analysis of the networks, understanding the processes that
explain the evolution of the networks, modeling the spread
of behavior through the networks, predicting their future
state and so on.

Users of a social network tend to affiliate with commu-
nities. In some social networks, the groups are identified
more by the preferences of the members of the social net-
work than by direct declaration: e.g. the genre of movies
that a set of customers tend to patronize more often in Net-
flix. Online social networks like Facebook, Orkut and Live
Journal are more interesting examples because the affiliation
networks here are explicitly established by the members of
the network. Thus, two networks exist simultaneously: the
friendship network among users, and the affiliation network
between users and groups.

The problem. Group formation and evolution in social net-
works[1], and co-evolution of social and affiliation networks[13]
have been recently studied. One of the interesting challenges
in social network analysis is the affiliation recommendation
problem, where the task is to recommend communities to
users. The fact that the social and affiliation networks “co-
evolve” suggests that a better solution to the affiliation rec-
ommendation problem can be obtained if the friendship net-
work is considered along with the affiliation network. This
problem setting has applications beyond community recom-
mendation. Affiliations, for example, can be interpreted in
general as a user’s taste for an item. Neither is it limited
to social networks. For example, in biology, the friendship
network can correspond to a network among genes, whereas
the affiliation network can correspond to a network between
genes and traits/ diseases, and the affiliation recommenda-
tion problem can be viewed as one of identifying genes af-
fecting the expression of a disease.

Contributions. We consider how one can model the inter-
play between users and communities in both the networks
simultaneously. An ideal unifying model would not only
explain the current state of the networks, but also help in
predicting future relationships among the nodes. Using a



simple way of combining these networks, we suggest and ex-
plore two ways of modeling the networks for the purpose of
making affiliation recommendations. The graph proximity
model is based on estimating the affinity between a user and
a community by considering their proximity as nodes in a
combined graph, while the latent factors model is based on
the proposition that community affiliations arise from inter-
actions of user and group factors. Each of these network
models suggests affiliation recommendation algorithms.

We evaluate these algorithms on social networks from
Orkut consisting of 9,123 users and 75,546 communities,
and Youtube consisting of 16,575 users and 21,326 communi-
ties. We propose a way of evaluating affiliation recommenda-
tions, by measuring how good the top 50 recommendations
per user are, and demonstrate the importance of designing
the right evaluation strategy. Of the algorithms proposed,
those suggested by the graph proximity model turn out to
be the most effective and efficient. This use of link predic-
tion techniques for the purpose of affiliation recommenda-
tion is, to our knowledge, novel. We show that information
in the friendship network can be used effectively for affilia-
tion recommendation. We also observe that the benefit we
derive from the social network in affiliation recommendation
is strongly contingent on how the problem is modeled and
what algorithms are used.

Overview. We now provide a brief overview of the orga-
nization of the paper. In Section 2, we consider a network
formed by merging the friendship and affiliation networks
and introduce two models of the behaviour of nodes in this
network: the graph proximity model, and the latent factors
model, and explore recommendation algorithms that arise
from these models. In Section 3, we consider how the pro-
posed models and algorithms relate to prior work. Then, in
Section 4, we describe our chosen evaluation strategy, and
using experiments on real world networks, we evaluate the
effectiveness of various algorithms in affiliation recommenda-
tion in practical scenarios. Finally, in Section 5, we conclude
with a summary of our findings, and a discussion of future
lines of research in this direction.

2. MODELS
In this section, we first establish the notation used, and

then pose the affiliation recommendation problem as a rank-

ing problem. Then we describe a natural way of combining
the friendship and affiliation networks into a single graph.
In the subsections that follow, we describe affiliation recom-
mendation approaches based on the graph proximity model
and those based on the latent factors model.

Notation. We use Nu to denote the total number of users
in the affiliation network and Ng to denote the total number
of communities in the affiliation network. A ∈ R

Nu×Ng de-
notes the user × group adjacency matrix of affiliation net-
work A. S ∈ R

Nu×Nu denotes the user × user adjacency
matrix of friendship network S. Other notation will be in-
troduced as needed.

As a ranking problem. The task is to recommend affil-
iations to a given user. This problem can be posed as a
problem of ranking various affiliations in the order of the
user’s interest in joining them. The methods we describe

here to solve this problem rely on assigning scores to vari-
ous affiliations in order to rank them. The task of an affil-
iation recommendation algorithm can be viewed as one of
generating an Nu × Ng score matrix.

2.1 Prediction on the Combined Graph
Consider the adjacency matrices A and S. For now, we

assume S to be symmetric (or equivalently S to be undi-
rected), although a non-symmetric extension to our model
can be easily obtained. Clearly, S corresponds to an undi-

rected graph among users and

»

0 A
AT 0

–

corresponds to an

undirected bipartite graph between users and groups. De-
spite the heterogeneity of the two types of“links”, it is rather
natural to consider a graph C between all the users and
groups, with the combined adjacency matrix

C =

»

λS A
AT 0

–

,

where the heterogeneity of two types of links is reduced to a
single parameter λ ≥ 0, that controls the ratio of the weight
of friendship to the weight of group membership. Clearly
when λ = 0, the user-user friendship ceases to play a role in
this joint graph, and it simply degenerates to the bipartite
affiliation graph.

As in the case of prediction with a single graph, the pre-
diction on C can be carried out from the following two per-
spectives:

• Graph Proximity Model: We assume that the en-
tire graph is known, and that the prediction of new or
unobserved links is based on an estimated proximity
in C between nodes.

• Latent Factors Model: We model the graph as a
matrix, some of whose zero entries are actually ones,
while modelling all entries as the product of latent fac-
tors.

We will elaborate on the two perspectives in the following
two subsections.

2.1.1 Graph Proximity Model

As described earlier, the affiliation network can be mod-
elled by a graph. The graph proximity model assumes that
the probability of there arising a link between two nodes in
a graph is based on an estimated proximity between the two
nodes. The proximity of two vertices can be calculated as
the weighted sum of the number of paths connecting the two
with varying lengths. This is the underlying mechanism of
many link prediction models in the context of social network
analysis. Consider the widely-used Katz measure[8] on the
friendship network S. The proximity is given by

Katz(S; β) = βS + β
2S2 + β

3S3 + · · · .

where the weights of paths decay exponentially with the
length.

A simple extension of Katz to the bipartite graph A is

Katz(A; β) = (βAAT + β
2(AAT )2 + β

3(AAT )3 + · · · )A

= βAAT A + β
2(AAT )2A + · · · . (1)

where in the co-occurrence matrix AAT , two users i and j

are considered connected if i and j belong to at least one



same group, i.e. (AAT )ij > 0. In this case, we consider the
paths of the following types

user i
AA

T

−−−→ j · · ·
AA

T

−−−→ k
A
−→ to group n

The intuition in considering AAT A is if user i shares some
community with user j, it is likely that i will join some
other community j belongs to. The higher order terms can
be interpreted in a similar way.

Consider the following Katz-measure proximity matrix on
the combined graph C

katz(C; β) = βC + β
2C2 + β

3C3 + · · · .

The user-community block of the above matrix is simply

katz(C; β)12 = βA+β
2
λSA+β

3(λ2S2A+AAT A)+· · · (2)

Clearly (2) generalizes the normal Katz on the bipartite
graph A by also considering some paths like

user i
S
−→ j

A
−→ group n (in C2)

and

user i
S
−→ j

AA
T

−−−→ k
A
−→ j group n (in C4).

katz(C; β)12 can then be used as the score matrix.
Since the computation of the Katz matrices as described

above is expensive, we consider a truncated Katz matrix,

tKatz(T, k, β) =
k

X

i=1

β
i
T

i
.

For computing the Katz matrices for the graphs described
by A or C, a conservative estimate of the computational
cost is O(Nu × nnz), where nnz is the number of non-zeros
in (AAT )k.

2.1.2 Latent Factors Model

We now describe the latent factors model, consider the op-
timization problem it tries to solve, and examine some of its
properties. In this model, the zeros in the adjacency matrix
of the affiliation network, A may be viewed as being unob-
served entries with a huge prior belief in favor of them being
actually zero. Every user i and community j are assumed to
have a low dimensional representations ui, gj . The affinity
of a user i to a community j is assumed to correspond to
uT

i gj . In other words, users and communities with a high
inner product are assumed to be connected to each other;
that is to say:

Ai,j ≈ u
T
i gj .

In matrix form, we express this as

A ≈ UT G,

where U ∈ R
d×Nu is the matrix of user factors and G ∈

R
d×Ng is the matrix of group factors. Note that rank(U) ≤

d, rank(G) ≤ d, d ≪ Nu, Ng.
To get factors which account for both the observed entries

in A as well as the interactions in S we consider the following
generalized combined network,

C′(λ,D) =

»

λS A
AT D

–

, (3)

where D is the derived similarity between groups which is
not observed. Note that C = C′(λ, 0). Also, we approxi-
mate C′ as an interaction of user and group factors of the

individual graphs. i.e.

C′(λ,D) ≈

»

UT

GT

–

ˆ

U G
˜

.

The same set of user factors drive both the friendship and
affiliation network creations. We therefore want to find the
user factors U and the group factors G such that the recon-
struction error on the observed entries in C′,

‖UT U − λS‖2 + 2‖UT G − A‖2 + ‖GT G − D‖2 (4)

is minimized.

Role of λ. Intuitively, in equation (4), λ controls the con-
tribution of S in deciding the user factors. The larger the
λ, the learned factor model describes the friendship network
S better, and correspondingly the affiliation network is de-
scribed less well.

Choice of D. The derived similarity between the communi-
ties D in the combined matrix C′ can be approximated using
proximity between communities in the graph corresponding
to C′. It follows that a potential choice is D = AT A, which
is simply the number of users which any two communities
share. One may also consider weighing the contribution of
D with λ, which is the weight factor learnt for S. We will
see later that the experiments suggest that the choice of D is
not very important, and that the information from D, when
derived from A, is redundant.

2.2 Solution to the optimization problem
The analytical solution to the minimizing {U,G} of the

objective function in (4) is given by the SVD of C′. Specif-
ically,

argmin
U,G{‖UT U − λS‖2 + 2‖UT G − A‖2 +

‖GT G − D‖2} = SVD(C′
, d) (5)

where SVD(C′, d) denotes the rank-d singular value decom-
position of matrix C′, i.e, C′ ≈ UΣGT , where Σ is the d×d

matrix of singular values, U is the matrix of d leading left
singular vectors, and G is the matrix of d leading right sin-
gular vectors. We can interpret the low rank approximation
UΣGT as the score matrix.

3. RELATED WORK
Increasing attention to recommendation systems in gen-

eral can be attributed primarily to commercial enterprises
like Netflix and Amazon, where making good recommenda-
tions for the customers is important for business. A huge
body of literature studies the problem of group recommen-
dation, where the problem is to recommend items or prod-
ucts to a group of users in a friendship network. Affiliation
recommendation for users of a friendship network, however,
is relatively new and less studied.

3.1 Joint matrix factorization models
We now examine the relationship of the latent factors

model proposed in this paper to a variety of other mod-
els proposed recently. Bader and Chew[2], in the context of
information retrieval, tackle the problem of applying LSA
to multi-lingual corpora. In such corpora, one has access
to term-similarity information along with term-document
matrices corresponding to various languages. In order to



derive low dimensional term and document factors which
account for information from both these sources, they form
a joint matrix similar to our combined adjacency matrix C
and compute its SVD. However, unlike this work, [2] does
not deal with the item recommendation problem, and it does
not view this joint matrix as arising out of a pair of networks.

We will now consider two other joint matrix factorization
models: One class of models uses a probabilistic collabo-
rative filtering to approach the problem, whereas another
tackles the problem of combining information from multiple
sources from the perspective of joint matrix factorization.

3.1.1 Probabilistic Collaborative Filtering Models

Collaborative filtering is a natural way to approach the
affiliation recommendation problem. Typically collaborative
filtering is applied to user-item preference problems. This
is based on the simple idea that users with similar tastes
behave similarly.

This approach has recently been applied to the affiliation
recommendation problem by Chen et al[4]. The authors
examined the use of Latent Dirichlet Allocation (LDA) in
affiliation recommendation. The LDA approach does not use
information from the friendship network among users. So,
here we briefly examine the relationship between the latent
factors model we propose and this LDA based approach,
while ignoring the friendship network aspects of our model.

Consider the objective (4) we are trying to minimize. In
the proposed model, if we ignore the constraint that the
user factors U do not result in too large a deviation from S,
we are essentially trying to find a low rank approximation
to A in terms of the Frobenius norm. The solution which
minimizes that objective is given by the SVD of A. This
is the Latent Semantic Analysis approach (LSA), which has
long been exploited for similar problems in the area of in-
formation retrieval. pLSA, or probabilistic LSA [6], instead
proposes a statistical model for the process generating A
and then learns the model parameters which are most likely
to have generated the observations in A. These parameters
can then be used in finding a low rank approximation to A,
in terms of the KL divergence. It can thus be viewed as the
probabilistic version of LSA. LDA, where Dirichlet priors
are added to pLSA’s generative model, can be viewed as the
Bayesian version of pLSA. Thus, the LDA based approach
to the affiliation recommendation problem may be viewed as
trying to find a low rank approximation to A, albeit from a
probabilistic, Bayesian perspective, while ignoring informa-
tion from S.

Combinatorial collaborative filtering[5] is another work
in the same vein. Unlike the LDA based approach, how-
ever, the probabilistic model of user-community relation-
ships used in this work utilizes information not only from
A, but also from text descriptions of various communities.
Next, we examine a couple of closely related matrix factor-
ization models.

3.1.2 Linked Matrix Factorization Models

Tang et al have proposed Linked Matrix Factorization
(LMF) [12] as a way of combining information from mul-
tiple graphs on the same set of entities, in order to make
more accurate inferences. However, they tackle a different
problem, namely, clustering. The link between their network
model and ours is established by the objective functions that
we optimize. The LMF model tries to simultaneously find

a low rank approximation for the adjacency matrix of each
network, using matrix factorization. Each such matrix fac-
torization has a source-specific factor matrix, Λ(m), and a
factor matrix, P, that is shared by all the sources. The ob-
jective function of LMF is effectively to minimize the quan-
tity,

M
X

i=1

‖A(m) − PΛ(m)PT ‖2
F

Comparing this to (4), we see that U, which represents
the user factors, is shared by the two sources of information,
i.e., A and S. However, an important distinction is that
we have two graphs which share only one set of entities in
common, whereas in LMF, each source of information is a
network on exactly the same set of users.

Singh and Gordon have proposed a model for relational
learning called Collective Matrix Factorization[11]. They
suggest a generalized framework for inferring relations, given
a set of entities and observed relations among them. This
model factors multiple source matrices simultaneously, and
uses common factors for approximation whenever the same
entity participates in multiple relations. It allows different
loss functions for each matrix approximation, and combines
the information from multiple relations using weights which
reflect the relative importance for each relation. This essen-
tially generalizes the idea of Linked Matrix Factorization.
The Latent Factors Model proposed in this paper uses the
parameter λ to determine the contribution of the friendship
network S in generating the user factors.

The above mentioned papers use optimization techniques
based on the alternating least squares approach, we use SVD
which efficiently solves the optimization problem posed by
the latent factors model.

3.2 Co-evolution of social and affiliation net-
works

Researchers have studied the effects of friendship ties on
affiliations in other contexts, like the growth and evolution
of social networks[1], and spread of influence through a so-
cial network[7, 3]. They tend to model the dependence of a
user joining a group on the number of friends the user al-
ready has in the group. Zheleva et al[13] proposed a unified
model for the generation of social and affiliation networks,
and observed that the social network is one of the factors
that influences the evolution of affiliation network. Our
idea that friendship network combined with the affiliation
network can be exploited in making affiliation recommenda-
tions is inspired by this line of research.

4. EXPERIMENTAL EVALUATION
We first introduce the datasets on which we conduct our

experiments, and describe the experiment setup. We then
describe our methodology for comparing the performance of
various algorithms at the affiliation recommendation task.
Finally, we discuss the results of experiments which apply
the algorithms based on both the graph proximity model
and the latent factors model in performing affiliation rec-
ommendation.

4.1 Data
We use two popular online social networks Orkut and

Youtube, both operated by Google, for our experiments. The



users of both the social networks explicitly identify them-
selves as belonging to some communities or groups. Thus,
for each of the networks we have adjacency matrix A that
identifies the memberships of the users in the groups and
adjacency matrix S that identifies friendships among users.
For our experiments, we used data gathered by Mislove et
al [9]. We compare the predictive ability of the algorithms
using sub-networks extracted from these large networks 1.
The statistics for these networks are presented in Table 1.

Feature Orkut Youtube
Nu 9123 16575
Ng 75546 21326
Average number of groups per user 55.8 10.5
Minimum number of groups per user 4 4
Mode of number of groups per user 6 4
Average number of users per group 6.7 8.1
Mode of number of users per group 2 1
Minimum number of users per group 1 1
Average number of friends per user 46 11.7
Mode of number of friends per user 2 1

Table 1: Details about the datasets used in experi-
ments.

4.2 Experiment setup
For every user u, let Eu = {(u, v) | Au,v = 1} denote the

affiliations of u, as observed in a given affiliation network
A. Invariably in all the experiments, we set aside a subset

of these affiliations E
(t)
u ⊂ Eu as test data (we use |E

(t)
u | =

30%|Eu|). The remaining affiliations E
(tr)
u = Eu \ E

(t)
u are

used as training data for the recommendation algorithms.
All of our recommendation algorithms require “learning”

parameters for some model of the affiliation process, and
hence for the purposes of learning the parameters, we use

a set of validation edges E
(v)
u ⊂ E

(tr)
u (we use |E

(v)
u | =

30%|E
(tr)
u |). During the validation process, we compare

different model parameters based on the number of cor-
rect edges among 25Nu recommendations 2 made using the
model.

4.2.1 Evaluation method

We now describe our methodology for evaluating the per-
formance of an affiliation recommendation algorithm. We
first introduce notions of interest, such as precision, sensitiv-
ity, specificity, ROC and AUC. We then describe the way in
which we evaluate the performance of a recommendation al-
gorithm based on its top 50 recommendations to the average
user. We then demonstrate the importance of choosing the
right evaluation method for the community recommendation
task by showing that using a different, but less appropriate,
evaluation strategy yields different results.

Three commonly used measures of quality of solutions in
information retrieval and classification tasks are Precision,
Recall or Sensitivity and Specificity. Precision measures the
exactness or fidelity of the prediction while Sensitivity mea-
sures the completeness of the prediction. Suppose that the
1We extracted a small connected component from the large
network for the propose of experimentation.
2This is chosen because, in Section 4.2.1, we argue that a
predictive model should be judged based on the quality of
its top few recommendations.

recommendation algorithm makes n recommendations to a
user. Then, Precision is defined as the ratio of the number of
correctly identified positives (true positives) to n, and Sen-

sitivity is the ratio of the number of correctly identified pos-

itives to the total number of positives i.e. |E
(t)
u |. Specificity,

on the other hand, measures the ability of the recommender
to exclude uninteresting affiliations from the recommenda-
tions it makes. It is defined as the fraction of such “neg-
ative affiliations” correctly excluded from the recommenda-
tion. All three of these performance measures range from 0
to 1.

Often, one is interested in evaluating the performance of
a recommendation algorithm not for a single value of the
number of recommendations n, but for the entire range of
n. For a given recommendation algorithm and a user, sen-
sitivity is a non-decreasing function of n, while specificity is
a monotonically non-increasing function of n. The relation-
ship between the increase in sensitivity, as n increases, with
the decrease in specificity is of interest in comparing the
quality of recommendations. For a good recommendation,
as n increases, sensitivity increases without a big drop in
specificity. The Reciever Operating Characteristics (ROC)
curve, which is a plot of sensitivity vs (1 - specificity) for
all values of n, is a common way of comparing the perfor-
mance of classification algorithms over the entire range of n

(or equivalently cutoff scores). Area under the ROC curve,
or AUC, is then used as a way to compare different clas-
sification algorithms: the greater the AUC, the better the
algorithm’s sensitivity vs 1-specificity tradeoff.

Consider a social network website, like Orkut or Face-
book; or a vendor like Netflix which sells movies. They
would be interested in making, let us say, five pages of rec-
ommendations to their users, but not much more than that:
certainly not a hundred. Also, irrespective of whether a user
participates in five communities or seventy, the social net-
working website would probably want to make roughly the
same number of recommendations per user. So, we choose to
evaluate the recommendation algorithms we propose based
on their top 50 recommendations. We do this by examining
a slice of the ROC curve formed by measuring the sensitiv-
ity and specificity the recommendation algorithm achieves
for an average user at regular intervals between n = 1 and
n = 50. To do this, for a given n, we compute the sensitivity
and specificity for every user in the network, and take the
mean of these values to be the average sensitivity and aver-
age specificity. We then plot the average sensitivity vs 1 -
average specificity curve, as in Figure 2. Note that compar-
isons made using this method are statistically robust, as the
sensitivities and specificities of recommendation algorithms
are averaged over, for example, 9500 users in Orkut and
16000 users in Youtube.

Let k(nu) be the number of“good recommendations”made
by a recommendation algorithm for a user u, when it makes
nu recommendations to that user. Then, the above “per

user” sensitivity measure calculates N−1
u

P

u

k(nu)

|E
(t)
u |

. In our

experiments, we will use ∀u : nu = 50.

Contrast this with finding the“global”sensitivity
k′(n)

P

u
|E

(t)
u |

,

where k′(n) denotes the number of “good recommendations”
made by a given recommendation algorithm while making
n predictions in total. For a fixed n, this “global” sensi-



tivity is proportional to precision, and is a commonly used
measure of performance of link prediction algorithms in the
context of social network analysis. Note that, in this case,
while n =

P

u
nu, there is no guarantee that, for two given

users u and v, nu = nv; indeed the recommendation al-
gorithm, when asked to make n recommendations, may not
make any recommendations at all for some users. Therefore,
this measure of goodness of a recommendation algorithm is
not equivalent to the “per user” sensitivity described earlier.

Also, judging identical algorithms on identical datasets,
using this alternate evaluation method can yield very differ-
ent rankings of recommendation algorithms, as illustrated
by comparing Figure 1 with Figure 2. Hence, the choice of
an appropriate method for evaluating affiliation recommen-
dations is an important one.

(a) Orkut dataset

(b) Youtube dataset

Figure 1: Comparison of recommendation algo-
rithms using“global sensitivity”yields results differ-
ent from Figure 2 while making

P

u
Eu recommen-

dations in total (See Section 4.2.1).

4.3 Results and Discussion
In this section, we report and analyse the performance of

the various recommendation algorithms, based on the graph
proximity model and latent factors model discussed in Sec-
tion 2. We compare the performance of the graph proximity
based methods with latent factors based methods based on
the average sensitivity and average specificity metrics intro-
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(a) Orkut dataset
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(b) Youtube dataset

Figure 2: Comparison of recommendation algo-
rithms based on graph proximity and latent factors
models, as described in Section 4.2.1. The leading
slice of the ROC curve is shown. The graph proxim-
ity based predictors consistently outperform latent
factors based predictors in the two datasets. See
Section 4.3 for discussion.

duced earlier, for a given number of recommendations in the
range [5,50] (in steps of 5).

The results are reported in Figure 2. Consider the per-
formance of the recommendation algorithms on the Orkut
dataset in Figure 2 (a). SVD(A) gives the lowest perfor-
mance of all the methods. SVD(C) performs better than
SVD(A), which is expected given that it uses information
from the friendship network S in addition to the information
from affiliation network A. For the average user, the graph
proximity model based methods significantly outperform la-
tent factors based methods as observed from the figure. In
particular, we see that tKatz(C) performs much better than
tKatz(A), which in turn outperforms latent factor based
methods. We see that the information in the friendship net-
work indeed proves highly beneficial to making affiliation
recommendations and graph proximity based methods ex-
ploit this information the most.

Another interesting comparison of latent factor methods
based on the choice of D in constructing the combined net-
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Figure 3: Comparison of latent factors based al-
gorithms for various choices of D, for the Orkut
dataset. See Section 4.3 for discussion.

work C′ given in (3), is presented in Figure 3. We observe
that the choice of D does not appear to make any signifi-
cant difference in the performance of the recommendation
algorithm. In the plot, D2 denotes using AT A for D in C′

while D3 denotes using λAT A, where λ is also the weight
associated with S in the combined graph. Though, in case of
the Orkut dataset, we see that SVD(C′,D) performs slightly
better than SVD(C), the choice of D 6= 0 does not affect the
performance. In case of Youtube (plots not shown), our ex-
periments indicate that D is not useful at all. The potential
choices for D do not perform any better than D = 0.

The summary of performances of the algorithms on the
Youtube dataset is shown in Figure 2 (b). We observe that
the case for Youtube is similar to that of Orkut, in that
graph proximity based algorithms significantly outperform
latent factors based algorithms. In particular, tKatz(C) is
highly successful compared to the other methods.

The best parameters learnt by the various algorithms are
presented in Table 2. Note that the best parameter β =
10−12 implies that the calculated tKatz measure was effec-
tively using the common neighbors method. In other words,
users and communities connected by path lengths 5 or more
are not useful in making affiliation recommendations.

Algorithm Orkut Youtube
SVD(C) d = 50, λ = 0.8 d = 90, λ = 1

SVD(C′(λAT A)) d = 60, λ = 0.6 d = 70, λ = 1

tKatz(A) β = 10−12 β = 10−12

tKatz(C) β = 0.01, λ = 0.2 β = 0.1, λ = 0.4

Table 2: Best parameters learned by the recommen-
dation algorithms using validation.

We see that the recommendation algorithms perform con-
sistently across the two datasets, and the evaluations are
robust as the specificities and sensitivities are averaged over
9000 users in Orkut and 16000 users in Youtube.

5. CONCLUSION AND FUTURE WORK
In this paper, we have tackled the affiliation recommen-

dation problem, where the task is to recommend new affilia-

tions to a given user, given the current state of the friendship
and affiliation networks. We show that information from
the friendship network can indeed be fruitfully exploited in
making affiliation recommendations. This auxiliary source
of information was hitherto not used in making community
recommendations.

Using a simple way of combining these networks, we sug-
gested two ways of modeling the networks for the purpose
of making affiliation recommendations (Section 2). The first
of these approached the problem from the graph proxim-
ity viewpoint, whereas the second modelled the interactions
of users and groups in the two networks using latent fac-
tors derived from optimizing towards a joint matrix factor-
ization objective. We studied the algorithms suggested by
these models on real world networks (Section 4). We moti-
vated and proposed a way of evaluating recommenders, by
measuring how good the top 50 recommendations are, and
demonstrated the importance of choosing the right evalua-
tion strategy. Algorithms suggested by the graph proximity
model turn out to be the most effective, based on experi-
ments on large real world data-sets. These results show that
the application of techniques from social network link predic-
tion in affiliation and item recommendation is a promising
one.

5.1 Future Work
There is the intriguing possibility of using an affiliation

network for link prediction in the friendship network. Dis-
covering techniques and models which do this effectively
seems to be a challenging research avenue. Our early ex-
periments at doing this indicate that this is a much harder
problem. The reasons for this are not yet clear, and this
question seems fertile for further exploration.

Within the ambit of the affiliation recommendation prob-
lem itself, one may research the ways of fruitfully using
even more sources of information. For example, Chen et
al[5] use information from textual description of communi-
ties along with the affiliation network to make affiliation
recommendations. It might be useful to consider the so-
cial network together with this auxiliary information. Also,
predictors based on latent factors model and the graph prox-
imity model may be suited for different types of users, and
creating a meta-predictor which combines predictions from
both classes of predictors is another attractive research di-
rection. Scalability is a challenge in using predictors based
on the graph proximity models on massive datasets - both
in terms of memory and in terms of computational cost[10],
and developing efficient predictors based on the graph prox-
imity model will be part of future work.
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