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Abstract. We present one more algorithm to compute the condition number (for inversion)
of an n × n tridiagonal matrix J in O(n) time. Previous O(n) algorithms for this task given by
Higham [SIAM J. Sci. Statist. Comput., 7 (1986), pp. 150–165] are based on the tempting compact
representation of the upper (lower) triangle of J−1 as the upper (lower) triangle of a rank-one matrix.
However they suffer from severe overflow and underflow problems, especially on diagonally dominant
matrices. Our new algorithm avoids these problems and is as efficient as the earlier algorithms.
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1. Introduction. When solving a linear system Bx = r we are interested in
knowing how accurate the solution is. This question is often answered by showing
that the solution computed in finite precision is exact for a matrix “close” to B and
then measuring how sensitive the solution is to a small perturbation. The condition
number of B,

κ(B) = ‖B‖ · ‖B−1‖,

where ‖.‖ is a matrix norm, is one such measure. It has been conjectured that the cost
of computing the condition number with guaranteed accuracy is nearly the same as
solving the linear system itself [10, 9]. For a dense n×n matrix B the cost of solving
Bx = r is O(n3), and the extra cost of computing the condition number accurately
may be unacceptable. In such cases, an estimate of the condition number may be
obtained at a reduced cost [15, 18].

When the coefficient matrix J is tridiagonal, the linear system Jx = r may be
solved in O(n) time. The matrix J−1 is dense in general, and computation of κ(J) by
explicitly forming it would require O(n2) time. However J is completely determined
by 3n−2 parameters, and one may suspect that its inverse can be explicitly expressed
in terms of an equal number of parameters. This is indeed true and J−1 does admit
a more compact representation, namely that the upper (lower) triangle of J−1 is also
the upper (lower) triangle of a rank-one matrix, which in turn is simply represented
by the outer product of two vectors (see [3, 4, 6, 17, 21] and Theorem 2.1 below).
This property of the inverse may be exploited to compute ‖J−1‖1 and hence κ1(J),
in O(n) time; see the beginning of section 3 for details. Note that the 1-norm of a
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matrix B = (βij) is given by

‖B‖1 = max
j

∑
i

|βij |

and that ‖B‖∞ = ‖BT ‖1.
In [17], Higham gives three algorithms to compute ‖J−1‖∞ in O(n) time for a

general tridiagonal matrix J . However all these algorithms suffer from severe overflow
and underflow problems, especially on diagonally dominant matrices. The reason for
these seemingly unavoidable problems is that the intermediate quantities computed by
these algorithms can vary widely in scale [20]. In this paper, we give a new algorithm
that does not suffer from the above mentioned over/underflow problems. The new
algorithm avoids such problems by computing sums of magnitudes of elements of the
inverse itself.

For positive definite J , Higham gives another algorithm in [17] that does not
suffer from over/underflow problems and is shown to be backward stable. However
this algorithm is entirely different from the algorithms for a general tridiagonal. Our
new algorithm works for any tridiagonal and includes positive definite J as a special
case.

The paper is organized as follows. In section 2, we review the structure of the
inverse of a tridiagonal matrix that enables computation of its norm in O(n) time.
In section 3, we present an outline of the algorithms given in [17] and show why
they are unsuitable for general purpose use. We present the basic structure of our
new algorithm in section 4. This algorithm works under the assumption that all
principal leading and trailing submatrices are nonsingular. Section 5 sheds more light
on the structure of the inverse when this assumption fails to hold. This leads to the
improved algorithm of section 6, and in section 7 we give a roundoff error analysis
that suggests its accuracy. This algorithm can overflow and underflow in rare cases,
which is corrected by the algorithms of section 8. Accuracy of our new algorithms
is confirmed by numerical results in section 10. Section 9 is a slight digression and
presents an application of these algorithms for computing eigenvectors.

2. The inverse of a tridiagonal matrix. The results of this section are quite
well known and are repeated here as we will frequently invoke them in later sections.
A square matrix B = (βik) is called a lower(upper) Hessenberg matrix if βik = 0 for
all pairs (i, k) such that i + 1 < k (k + 1 < i). Thus a lower Hessenberg matrix is
nearly a lower triangular matrix but with a nonzero superdiagonal. The following
theorem states that the upper half of the inverse of such a matrix admits a compact
representation.

Theorem 2.1. Let B = (βik) be a nonsingular lower Hessenberg matrix of order
n, and let βi,i+1 6= 0, i = 1, . . . , n−1. Then two column vectors x and y exist such that
the upper half of B−1 equals the upper half of xyT , i.e., (B−1)ik = xiyk for i ≤ k.

Proof. See [21].
Let

J =




a1 c1 0
b1 a2 c2

b2 a3 .
. . .

. . cn−1

0 bn−1 an



.(2.1)
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The tridiagonal matrix given above is said to be unreduced or irreducible if bi 6= 0 and
ci 6= 0 for all i = 1, . . . , n−1. Since a tridiagonal matrix is both a lower and an upper
Hessenberg matrix, we obtain the following theorem on the structure of the inverse
of a tridiagonal matrix.

Theorem 2.2. Let J be a nonsingular unreduced tridiagonal matrix of order n.
Then there exist vectors x, y, p, and q such that

(J−1)ik =

{
xiyk, i ≤ k,
piqk, i ≥ k.

The vectors x and y (similarly p and q) are unique up to scaling by a nonzero
factor. Note that x1 6= 0 and yn 6= 0 since otherwise the entire first row or last column
of J−1 would respectively be zero, contradicting our assumption that J is nonsingular.
The above theorem seems to state that J−1 is determined by 4n− 2 parameters, but
note that there is some redundancy in the representation of the diagonal elements
since xiyi = piqi for 1 ≤ i ≤ n. The following theorem makes it explicit that 3n − 2
parameters are sufficient to determine J−1 uniquely.

Theorem 2.3. Let J be a nonsingular unreduced tridiagonal matrix of order n.
Then there exist vectors x and y such that

(J−1)ik =

{
xiykdk, i ≤ k,
yixkdk, i ≥ k,

where

d1 = 1 and dk =
k−1∏
j=1

cj
bj
, 2 ≤ k ≤ n.

Proof. The key observation is that the nonsymmetric matrix J may be written
as J = DT , where D = diag(di) is as given above and T is symmetric. The result is
then obtained by applying Theorem 2.2 to T−1. See [17] for more details.

When an off-diagonal entry is zero, it is easy to see that the “corresponding”
block of the inverse is zero. For example, if bi = 0 so that

J =

[
J1 C1

0 J2

]
,

then

J−1 =

[
J−1

1 X
0 J−1

2

]
,

where X is a rank-one matrix if ci 6= 0 and zero otherwise. Note that the structure
of X is consistent with Theorem 2.1.

3. Unreliability of earlier algorithms. In this section, we reproduce the three
algorithms given in [17] and explain why they are unsatisfactory when implemented
in finite precision. For more details on the algorithms see [16, 17].

From Theorem 2.2, the ith row sum of J−1 is

|piq1| + |piq2| + · · · + |piqi−1| + |xiyi| + |xiyi+1| + · · · + |xiyn|,
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Algorithm Higham 1
(1)x1 = 1; x2 = −a1/c1;

for i = 3 to n
xi = −(ai−1 ∗ xi−1 + bi−2 ∗ xi−2)/ci−1;

yn = 1/(bn−1 ∗ xn−1 + an ∗ xn);
yn−1 = −an ∗ yn/cn−1;
for i = n − 2 to 1 step −1

yi = −(ai+1 ∗ yi+1 + bi+1 ∗ yi+2)/ci;
(2)Repeat step (1) with xi, yi, bi, and ci replaced

by qi, pi, ci, and bi, respectively.
(3)sn = |yn|;

for i = n − 1 to 1 step −1
si = si+1 + |yi|;

t1 = 1;
for i = 2 to n

ti = ti−1 + |qi|;
γ = max(s1, |pn| ∗ tn);
for i = 2 to n − 1

γ = max(γ, |pi| ∗ ti−1 + |xi| ∗ si);
‖J−1‖∞ = γ;

Algorithm Higham 2
(1) x1 = 1; x2 = −a1/c1;

for i = 3 to n
xi = −(ai−1 ∗ xi−1 + bi−2 ∗ xi−2)/ci−1;

(2) zn = 1; zn−1 = −an/bn−1;
for i = n − 2 to 1 step −1

zi = −(ai+1 ∗ zi+1 + ci+1 ∗ zi+2)/bi;
θ = a1 ∗ z1 + c1 ∗ z2;

(3) sn = |zn|;
for i = n − 1 to 1 step −1

si = si+1 + |zi|;
t1 = 1;
for i = 2 to n − 1

ti = ti−1 + |xi|;
d1 = 1; γ = s1;
for i = 2 to n

di = di−1 ∗ ci−1/bi−1;
γ = max(γ, (|zi| ∗ ti−1 + |xi| ∗ si) ∗ |di|);

γ = γ/|θ|;
‖J−1‖1 = γ;

Fig. 1. Algorithms Higham 1 and Higham 2 compute ‖J−1‖∞ and ‖J−1‖1, respectively.

which can be simplified to

|pi|(|q1| + |q2| + · · · + |qi−1|) + |xi|(|yi| + |yi+1| + · · · + |yn|).(3.1)

By forming the running sums

ti = |q1| + |q2| + · · · + |qi|, si = |yi| + |yi+1| + · · · + |yn|,
all the row sums of J−1 may be computed in O(n) time given the vectors x, y, p, and
q. The vectors x and y (similarly p and q) may be computed by equating the last
columns of JJ−1 = I and the first rows of J−1J = I after setting x1 to 1.

Algorithm Higham 1 (see Figure 1) sets x1 to 1 and solves Jx = y−1
n en for x and

yn. The last n− 1 equations of JT y = x−1
1 e1 are then used to solve for y1, . . . , yn−1.

‖J−1‖∞ is then found by forming the running sums si, ti and computing all the row
sums using (3.1).

Algorithm Higham 2 (see Figure 1) exploits Theorem 2.3 to compute ‖J−1‖1.
The vector x is computed as in the previous algorithm, and the last n− 1 equations
of Jz = θe1 are then used to solve for z = θy. Finally the 1-norm of each column of
J−1, scaled by θ, is computed.

Algorithm Higham 3 (see Figure 2) makes use of the LU factorization of J to
solve for the first row and column of J−1, which give the vectors y and p, respectively
(x1 and q1 are set to 1). Similarly the last row and column of J−1 are also computed
and then scaled by p−1

n and y−1
n to get the vectors q and x, respectively. These four

vectors are then used to compute ‖J−1‖∞ as in Algorithm Higham 1.
All of the above algorithms attempt to compute elements of the vectors x and

y at some point. We show that these vectors are badly scaled especially when the
matrix is diagonally dominant and, hence, well conditioned. Consider the n × n
tridiagonal matrix with all diagonal elements equal to 4 and all off-diagonals equal
to 1. The determinant of this matrix is asymptotical to θn with increasing n, where
θ = 2 +

√
3. By the Cauchy–Binet theorem that gives formulae for the elements

of the inverse (see (4.6) below), x1y1 = xnyn ≈ θ−1 while |x1yn| ≈ θ−n. If we
choose x1 = 1, then |yn| ≈ θ−n and |xn| ≈ θn−1. The overflow threshold in double
precision IEEE arithmetic is 21023 ≈ 10308 [2]. When n = 540, θn−1 > 10308 and due
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Algorithm Higham 3
(1) Compute the LU factorization of J ;
(2) Use the LU factorization to solve for the vectors y and z,

where JT y = e1 and Jz = en.
Similarly, solve for p and r, where Jp = e1 and JT r = en.

(3) Execute step (3) of Algorithm Higham 1 with q = p−1
n r and x = y−1

n z.

Fig. 2. Algorithm Higham 3 computes ‖J−1‖∞.

to overflow all the above algorithms fail in double precision arithmetic. Note that
since |xn/x1| ≈ θn−1 and |yn/y1| ≈ θ−n+1, there is no choice of x1 that can prevent
overflow and underflow for all n. For the strongly diagonally dominant tridiagonal
with ai = 1000, bi = ci = 1, all three algorithms outlined above fail when n is only 105.

These over/underflow problems were recognized by Higham [17], [20, section 14.5],
and consequently the existing LAPACK version 2.0 [1] has software only to estimate
the condition number of a general tridiagonal matrix using Hager’s condition esti-
mator [15, 19]. For positive definite tridiagonals, LAPACK does contain software to
accurately compute the condition number. This is based on an alternate algorithm
given by Higham in [17] that is special to the positive definite case.

4. The new algorithm. As we illustrated above, the vectors x, y, p, and q
that determine the inverse of a diagonally dominant matrix can be badly scaled. In
this section, we present a new algorithm to compute ‖J−1‖1 that computes sums of
magnitudes of elements of J−1 without explicitly forming these vectors. Consequently
our new algorithm does not suffer from over/underflow problems that are inevitable
when x, y, p, and q are used.

Before giving all the details of our new algorithm, we illustrate the ideas on a
5 × 5 case. The structure of the inverse is

J−1 =




∆1 x1y2 x1y3 x1y4 x1y5

p2q1 ∆2 x2y3 x2y4 x2y5

p3q1 p3q2 ∆3 x3y4 x3y5

p4q1 p4q2 p4q3 ∆4 x4y5

p5q1 p5q2 p5q3 p5q4 ∆5


 , ∆i ≡ xiyi = piqi.

Let su(i) denote the 1-norm of column i of the strict upper triangle of J−1. Clearly

su(5) =

(
4∑

i=1

|xi|
)
|y5|

= (su(4) + |∆4|) |y5|
|y4| ,

and so there is a simple recurrence to build up su(i) if ∆i is known. Note that in
the above we assumed that y4 6= 0, and, for now, we will assume that all xi, yi are
nonzero. We can also build the following recurrence for ∆i:

∆i+1 = xi+1yi+1 = ∆i
xi+1

xi

yi+1

yi
.(4.1)
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D+(1) = a1;
for i = 1 to n− 1

L+(i) = bi/D+(i); U+(i) = ci/D+(i);
D+(i + 1) = ai+1 − ci ∗ L+(i);

D−(n) = an;
for i = n− 1 to 1 step −1

U−(i) = ci/D−(i + 1); L−(i) = bi/D−(i + 1);
D−(i) = ai − bi ∗ U−(i);

Fig. 3. Algorithms to compute the triangular decompositions of J.

Having found ∆i, su(i + 1) may be expressed as

su(i + 1) = (su(i) + |∆i|) |yi+1|
|yi| .(4.2)

We will see later that the ratios xi+1/xi and yi+1/yi are easily evaluated. Similarly,

sl(i− 1) = (sl(i) + |∆i|) |qi−1|
|qi| ,(4.3)

where sl(i) denotes the 1-norm of the ith column of the strict lower triangle of J−1.
It turns out that it is possible to express the above recurrences in terms of trian-

gular factorizations of J ; two of them, as it happens. For the moment assume that
the following factorizations exist:

J = L+D+U+,(4.4)

J = U−D−L−,(4.5)

where L+, L− are unit lower bidiagonal, U+ and U− are unit upper bidiagonal, while
D+ and D− are diagonal matrices. Note that in the above, we use “+” to indicate
a process that takes rows in increasing order while “−” indicates a process that
takes rows in decreasing order. Figure 3 details the algorithms for computing these
factorizations. We denote the (i + 1, i) element of L+ by L+(i) and the (i, i + 1)
element of U− by U−(i).

In our upcoming treatment we will extensively use the famous Cauchy–Binet
formula

B · adj(B) = det(B) · I,(4.6)

where adj(B) is the classical adjugate of B and is the transpose of the matrix of
cofactors [24, p. 402], to get expressions for elements of B−1.

Since J is tridiagonal, (4.6) implies that

∆i = xiyi =
det(J1:i−1) · det(J i+1:n)

det(J)
,

where Jr:s denotes the principal submatrix of J in rows and columns r through s.
Hence the assumption that all xi, yi be nonzero is identical to the assumption that
the triangular factorizations (4.4) and (4.5) exist. We will remove this assumption
later.

Since L+en = en and eT1 L− = eT1 , the first row and last column of the inverse
may be expressed as

wT
1 ≡ eT1 J

−1 = eT1 L
−1
− D−1

− U−1
− =

1

D−(1)
eT1 U

−1
− ,

vn ≡ J−1en = U−1
+ D−1

+ L−1
+ en =

1

D+(n)
U−1

+ en.
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Algorithm Nrminv
Compute J = L+D+U+ and J = U−D−L− (see Figure 3).
∆1 = 1/D−(1);
for i = 1 to n− 1

∆i+1 = ∆i ∗ D+(i)
D−(i+1) ;

su(1) = 0;
for i = 1 to n− 1

su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
sl(n) = 0;
for i = n to 2 step −1

sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;
γ = 0;
for i = 1 to n

γ = max(γ, su(i) + sl(i) + |∆i|);
‖J−1‖1 = γ;

Fig. 4. Algorithm Nrminv computes ‖J−1‖1.

The crucial observation is that the ratios of successive entries in w1 and vn are
given by entries in the triangular factorizations. More precisely, the above equations
may be written as

UT
−w1 =

1

D−(1)
e1,(4.7)

U+vn =
1

D+(n)
en.(4.8)

By examining the (i+1)st equation of (4.7) and the ith equation of (4.8), 1 ≤ i ≤ n−1,
we get

−U−(i) =
w1(i + 1)

w1(i)
=

x1yi+1

x1yi
,(4.9)

−U+(i) =
vn(i)

vn(i + 1)
=

ynxi

ynxi+1
.(4.10)

Equations (4.9) and (4.10) may now be substituted in (4.1) and (4.2) to get

∆i+1 = ∆i
U−(i)

U+(i)
= ∆i

D+(i)

D−(i + 1)
, ∆1 =

1

D−(1)
,(4.11)

su(i + 1) = (su(i) + |∆i|) · |U−(i)|, su(1) = 0.(4.12)

Note that the first equation of (4.7) gives w1(1) = ∆1 = 1/D−(1) while the last
equation of (4.8) implies that vn(n) = ∆n = 1/D+(n). Similarly, we get

sl(i− 1) = (sl(i) + |∆i|) · |L+(i− 1)|, sl(n) = 0.(4.13)

Equations (4.11), (4.12), and (4.13) lead to Algorithm Nrminv outlined in Fig-
ure 4. This new algorithm, when implemented in finite precision, delivers correct
answers on the examples of the previous section. It is also more efficient than the
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Table 1
Comparison of arithmetic operations.

Operations × n Divisions Multiplications Additions

Algorithm Higham 1 4 10 7
Algorithm Higham 2 3 8 5
Algorithm Higham 3 7 16 16
Algorithm Nrminv 3 5 6

algorithms of [17]. In Table 1, we list the approximate operation counts in Algo-
rithm Nrminv and compare them to Higham’s algorithms. Note that neither U+ nor
L− is used in Algorithm Nrminv and hence the corresponding division operations
to compute them (see Figure 3) are not counted in Table 1. For more details on
the operation counts for Higham’s algorithms, the reader is referred to discussions of
Algorithms 2, 3, and 5 in his M.Sc. thesis [16].

Recall that for our new algorithm we assumed that the factorizations in (4.4)
and (4.5) exist. In the next section, we shed more light on the structure of the inverse
when triangular factorization breaks down, and in section 6, we present an algorithm
that handles such a breakdown.

Formula (4.11) to compute the diagonal elements of the inverse is not new and has
been known for some time to researchers, especially in boundary value problems. See
Meurant’s survey article [22] for such formulae and more on the behavior of the inverse
of a tridiagonal matrix. More recently, the diagonal of the inverse has been used to
compute eigenvectors of a symmetric tridiagonal matrix [12, 23, 13, 14]. Section 9
briefly explains the connection to eigenvectors.

5. More properties of the inverse. Consider the tridiagonal matrix J of even
order with ai = 0 and bi = ci = 1 for all i. The factorizations (4.4) and (4.5) do not
exist and all the diagonal entries of its inverse equal zero; i.e., xiyi = 0. We now
present a theory that enables us to handle such a case.

Theorem 5.1. Let J be a nonsingular tridiagonal matrix of order n. Then
∆i ≡ (J−1)ii = 0 if and only if either J1:i−1 or J i+1:n is singular.

Proof. This follows from (4.6) which, due to J ’s tridiagonal structure, implies
that

∆i ≡ (J−1)ii =
det(J1:i−1) · det(J i+1:n)

det(J)
.(5.1)

Since ∆i = xiyi, either xi = 0 or yi = 0 when ∆i = 0 (note that xi and yi cannot
both be zero if J is nonsingular because otherwise by Theorem 2.3 J−1 would have
a zero row and column). The following theorem states that yi = 0 when J i+1:n is
singular while xi = 0 when the leading submatrix J1:i−1 is singular.

Theorem 5.2. Let J be a nonsingular unreduced tridiagonal matrix of order n.
Then

su(i) ≡
i−1∑
k=1

|(J−1)k,i| = 0 if and only if J i+1:n is singular.(5.2)

Similarly,

sl(i) ≡
n∑

k=i+1

|(J−1)k,i| = 0 if and only if J1:i−1 is singular.
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Proof. By the Cauchy–Binet formula in (4.6), for k < i,

det(J) · (J−1)k,i = (−1)k+i(ckck+1 · · · ci−1) det(J1:k−1) det(J i+1:n).(5.3)

Letting k = 1 (take det(J1:0) = 1), we see that for an unreduced J , (J−1)1,i = 0 if
and only if J i+1:n is singular. The result (5.2) now follows from (5.3).

Note that if J1:i−1 and J i+1:n are both singular, the above theorems imply that
∆i, su(i) and sl(i) are zero, i.e., J−1 has a zero column! This leads to the following
corollary.

Corollary 5.3. Let J be a tridiagonal matrix of order n. If J is nonsingular,
then J1:i−1 and J i+1:n cannot both be singular for any i = 2, 3, . . . , n− 1.

The tridiagonal structure of J is essential to the above result. To emphasize this,
consider

A =


 0 0 1

0 1 0
1 0 0


 ,

where A1:1 and A3:3 are singular but A is not.
Now we show that for a nonsingular J no two consecutive entries in x or y can

be zero. In particular this implies that both su(i) and su(i + 1) cannot be zero.
Theorem 5.4. Let J be a nonsingular unreduced tridiagonal matrix of order n.

Then the last (first) column or row of J−1 cannot have two consecutive zero entries.
Proof. Suppose that vi−1 = vi = 0, where Jv = en. Then the ith equation

bi−1vi−1 +aivi +civi+1 = 0, where i < n implies that vi+1 = 0. The (i+1)st equation
further implies that vi+2 = 0 and so on. Thus vn−1 = vn = 0 but then the last
equation bn−1vn−1 + anvn = 1 cannot be satisfied.

The following lemma is similarly proved using the three-term recurrence for tridi-
agonal matrices.

Lemma 5.5. Let J be an unreduced (or nonsingular) tridiagonal matrix of order n.
Then no two consecutive leading (or trailing) principal submatrices of J are singular.

Proof. Suppose that J1:i−1 and J1:i are singular. Then, since

det(J1:i+1) = ai+1 det(J1:i) − bici det(J1:i−1)

and

−det(J1:i) + ai det(J1:i−1) = bi−1ci−1 det(J1:i−2),

J1:k is singular for all k = 1, 2, . . . , n. But if J1:1 is zero, then det(J1:2) = −b1c1 6= 0
which leads to a contradiction.

We make extensive use of the following theorem in the next section.
Theorem 5.6. Let J be an unreduced (or nonsingular) tridiagonal matrix of

order n.

If J1:i is singular, then det(J) = det(J1:i+1) det(J i+2:n).(5.4)

Similarly,

if J i:n is singular, then det(J) = det(J1:i−2) det(J i−1:n).(5.5)
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Proof. Suppose that J1:i is singular. Then by Lemma 5.5, J1:i+1 is nonsingular.
The Schur complement of J1:i+1 in J is

S(J1:i+1) = J i+2:n − bi+1ci+1e1e
T
i+1(J

1:i+1)−1ei+1e
T
1 .

By Theorem 5.1, the (i + 1, i + 1) entry of (J1:i+1)−1 must be 0. Hence S(J1:i+1) =
J i+2:n and

det(J) = det(J1:i+1) det(S(J1:i+1)) = det(J1:i+1) det(J i+2:n).

Next we see how to detect the singularity of a leading or trailing principal sub-
matrix. When such a submatrix is singular, triangular factorization is said to break
down. However even in such a case, we can allow the computation in Figure 3 to
proceed by including ±∞ in the arithmetic. We elaborate on this in the next section.

Theorem 5.7. Let J be an unreduced (or nonsingular) tridiagonal matrix of
order n, and let D+ and D− be the diagonal matrices as computed by the algorithms
of Figure 3. Then J1:i is singular if and only if D+(i) = 0 while J i:n is singular if
and only if D−(i) = 0.

Proof. This follows from Lemma 5.5 and the fact that

det(J1:i−1) ·D+(i) = det(J1:i) and det(J i+1:n) ·D−(i) = det(J i:n).

Note that due to Theorem 5.6, the above formulae hold even when triangular factor-
ization “breaks down” before the computation of D+(i) or D−(i).

Finally we give an alternate formula for computing the diagonal elements of J−1.
Other formulae that are computationally better than (5.6) may be found in Corollary 4
of [23].

Theorem 5.8. Let J be a nonsingular tridiagonal matrix of order n that permits
the factorizations in (4.4) and (4.5). Then ∆i ≡ (J−1)ii may be computed as

1

∆i
= D+(i) + D−(i) − Jii.(5.6)

Proof. See Theorem 2 and Corollary 3 of [23].

6. Eliminating the assumptions. In this section, we extend the algorithm
outlined in section 4 to handle breakdown of triangular factorization. The theory
developed in the previous section leads to these extensions.

Triangular factorizations are said to fail, or not exist, if a zero “pivot,” D+(i) or
D−(i), is encountered prematurely. However one of the attractions of an unreduced
tridiagonal matrix is that the damage done by a zero pivot is localized. Indeed if
±∞ is added to the number system, triangular factorization cannot break down and
the algorithms in Figure 3 always map J into unique L+, D+, U+ and U−, D−, L−.
There is no need to spoil the inner loop with tests. It may no longer be true that
J = L+D+U+ or J = U−D−L−, but equality does hold for all entries except for
those at or adjacent to any infinite pivot. The IEEE arithmetic standard [2] allows
such computation to proceed without breakdown, and thus we do not have to worry
about zero pivots. Expressions with ±∞ are not expensive to handle if done by the
hardware; see [11] for a discussion.

If ∆i = 0, i.e., xi = 0 or yi = 0, then equation (4.1) or (4.11) cannot be used
to compute ∆i+1 even in exact arithmetic. Similarly su(i + 1) cannot be computed



786 INDERJIT S. DHILLON

by (4.2) or (4.12) if su(i) = 0. We now derive alternate formulae to compute ∆i+1

and su(i + 1) in such cases.
If J1:i−1 is singular, i.e., D+(i− 1) = 0, then by (5.1) and (5.4),

∆i+1 =
det(J1:i) det(J i+2:n)

det(J)
=

det(J1:i) det(J i+2:n)

det(J1:i) det(J i+1:n)
=

1

D−(i + 1)
,(6.1)

and this gives a formula to compute ∆i+1 when the leading submatrix J1:i−1 is sin-
gular.

Similarly if J i+1:n is singular, i.e., D−(i + 1) = 0, then by (5.1) and (5.5),

∆i+1 =
det(J1:i) det(J i+2:n)

det(J1:i−1) det(J i:n)
=

−D+(i)

bici
.(6.2)

If J i+1:n is singular, then yi and su(i) equal zero. In this case, since yi and yi−1

cannot both be zero by Theorem 5.4, su(i + 1) may be computed from su(i − 1) as
follows:

su(i + 1) = (su(i− 1) + |∆i−1|) |yi+1|
|yi−1| + |(J−1)i,i+1|.

We now simplify the above recurrence. Consider the ith equation of JT (x1y) = e1

when yi = 0, i 6= 1,

ci−1yi−1 + aiyi + biyi+1 = 0

⇒ yi+1

yi−1
=

−ci−1

bi
.

Since we are considering the case when J i+1:n is singular, (5.3) and (5.5) imply that

(J−1)i,i+1 =
−ci det(J1:i−1) det(J i+2:n)

det(J)
=

−ci det(J1:i−1) det(J i+2:n)

det(J1:i−1) det(J i:n)
=

1

bi
.

Thus when J i+1:n is singular, su(i + 1) may be computed as

su(i + 1) = (su(i− 1) + |∆i−1|) |ci−1|
|bi| +

1

|bi| .(6.3)

sl(i− 1) may similarly be computed as follows from sl(i+ 1) when J1:i−1 is singular:

sl(i− 1) = (sl(i + 1) + |∆i+1|) |bi|
|ci−1| +

1

|ci−1| .(6.4)

Equations (6.1), (6.2), (6.3), and (6.4) give formulae for computing ∆i, su(i), and
sl(i) when leading or trailing principal submatrices are exactly singular. By com-
bining these formulae with Algorithm Nrminv of Figure 4, we get Algorithm Nr-
minv Noassump that is given in Figure 5. In exact arithmetic, this algorithm cor-
rectly computes the condition number of the matrix mentioned at the beginning of
section 5 with ai = 0, bi = 1, and n even. In finite precision arithmetic, we might
suspect that this algorithm breaks down when a pivot, D+(i) or D−(i), is tiny but
not exactly zero. We address such issues in section 8. We now do a roundoff error
analysis of our new algorithms assuming no over/underflow and indicate why they are
accurate.
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Algorithm Nrminv Noassump
Compute J = L+D+U+ and J = U−D−L− (see Figure 3).
Set D+(0) = D−(n + 1) = 1.
if (D+(n) = 0 or D−(1) = 0) then ‖J−1‖1 = ∞; return;
for i = 2 to n− 1

if (D+(i− 1) = 0 and D−(i + 1) = 0) then ‖J−1‖1 = ∞; return;
∆1 = 1/D−(1);
for i = 1 to n− 1

if (D+(i) = 0 or D−(i + 2) = 0) then ∆i+1 = 0;
elseif (D−(i + 1) = 0) then ∆i+1 = −D+(i)/bici;
elseif (D+(i− 1) = 0) then ∆i+1 = 1/D−(i + 1);

else ∆i+1 = ∆i ∗ D+(i)
D−(i+1) ;

su(1) = 0;
for i = 1 to n− 1

if (D−(i + 2) = 0) then su(i + 1) = 0;
elseif (D−(i + 1) = 0) then su(i + 1) = (su(i− 1) + |∆i−1|) ∗ | ci−1

bi
| + | 1

bi
|;

else su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
sl(n) = 0;
for i = n to 2 step −1

if (D+(i− 2) = 0) then sl(i− 1) = 0;

elseif (D+(i− 1) = 0) then sl(i− 1) = (sl(i + 1) + |∆i+1|) ∗ | bi
ci−1

| + | 1
ci−1

|;
else sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;

γ = 0;
for i = 1 to n

γ = max(γ, su(i) + sl(i) + |∆i|);
‖J−1‖1 = γ;

Fig. 5. Algorithm Nrminv Noassump computes ‖J−1‖1.

7. Roundoff error analysis. We consider Algorithm Nrminv under the as-
sumption that triangular factorization does not break down. Our model of arithmetic
is that the floating point result of a basic arithmetic operation ◦ satisfies

fl(x ◦ y) = (x ◦ y)(1 + η) = (x ◦ y)/(1 + δ),

where η and δ depend on x, y, ◦, and the arithmetic unit but satisfy

|η| ≤ ε, |δ| ≤ ε

for a given ε, the latter depending only on the arithmetic unit. We shall choose freely
the form (η or δ) that suits the analysis. We also adopt the convention of denoting
the computed value of x by x̂.

We now show that the computed triangular factorizations (4.4) and (4.5) are al-
most exact for a slightly perturbed matrix J+δJ . In particular, we show that the piv-
ots computed by the algorithms in Figure 3, D̂+(i), are small relative perturbations of

quantities
_

D+ (i) that are exact pivots for J+δJ+, where δJ+ represents a small com-
ponentwise perturbation in the off-diagonal elements of J . Since U+(i) = ci/D+(i)

and L+(i) = bi/D+(i), Û+(i) and L̂+(i) can similarly be related to quantities
_

U+ (i)
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-

6

-

?
~J = (

→
bk, ak,

→
ck) (

_

L+,
_

D+,
_

U+)

J = (bk, ak, ck) (L̂+, D̂+, Û+)

LDU decomposition

exact

LDU decomposition

computed

change each

bk,ck by 1 1
2 ulps.

change each
_

D+ (k) by 1 ulp,
_

L+ (k) by 1 1
2 ulps,

_

U+ (k) by 2 1
2 ulps.

Fig. 6. Effects of roundoff.

and
_

L+ (i) that are exact for J + δJ+. An analogous result holds for the factoriza-
tion J = U−D−L−. The exact result we prove is summarized in Figure 6, where the
acronym ulp stands for units in the l ast place held. It is the natural way to refer to
relative differences between numbers. When a result is correctly rounded the error is
not more than half an ulp.

Theorem 7.1. Let J = (bk, ak, ck) denote the tridiagonal matrix in (2.1). Let
its LDU and UDL decompositions be computed as in Figure 3. In the absence of
overflow and underflow, the diagram in Figure 6 commutes, and, for each k, D̂+(k)

differs from
_

D+ (k) by 1 ulp, L̂+(k), Û+(k) differ from
_

L+ (k),
_

U+ (k) by 1 1
2 and 2 1

2

ulps, respectively, while
→
bk,

→
ck differ from bk, ck by 1 1

2 ulps each. A similar result
holds for the UDL factorization.

Proof. We write down the exact equations satisfied by the computed quantities:

L̂+(k − 1) =
bk−1

D̂+(k − 1)
(1 + ε/),

Û+(k − 1) =
ck−1

D̂+(k − 1)
(1 + ε//),

D̂+(k) =
(
ak − ck−1L̂+(k − 1) · (1 + ε∗)

)
/(1 + εk),

⇒ (1 + εk)D̂+(k) = ak − bk−1ck−1

D̂+(k − 1)
(1 + ε∗)(1 + ε/).(7.1)

In the above, all the ε depend on k but we have chosen to single out the one that
accounts for the subtraction as it is the only one where the dependence on k must be
made explicit. We now introduce the quantities

_

D+ (k) = D̂+(k)(1 + εk),(7.2)
→
bk−1 = bk−1

√
(1 + ε∗)(1 + ε/)(1 + εk−1),(7.3)

→
ck−1 = ck−1

√
(1 + ε∗)(1 + ε/)(1 + εk−1).(7.4)
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Substituting (7.2), (7.3), and (7.4) in (7.1), we see that
_

D+ (k) is exact for ~J =

[
→
bk, ak,

→
ck], i.e.,

_

D+ (k) = ak −
→
bk−1

→
ck−1

_

D+ (k − 1)
.

To satisfy the exact mathematical relations

_

L+ (k) =

→
bk

_

D+ (k)
,

_

U+ (k) =

→
ck

_

D+ (k)
,

we set

_

L+ (k) = L̂+(k)

√
1 + ε∗

(1 + εk)(1 + ε/)
,

_

U+ (k) = Û+(k)
1

1 + ε//

√
(1 + ε∗)(1 + ε/)

1 + εk
,

and the result holds. The result for the factorization J = U−D−L− is similarly
proved.

The observant reader would have noted that the above is not a pure backward
error analysis. We have put small perturbations not only on the input but also on the
output. This property is called mixed stability in [7], but note that our perturbations
are relative ones.

It is important to note that the backward perturbations for the LDU factorization
differ from the ones for the UDL factorization. By (4.11), ∆i is formed by a ratio
of D+(i) and D−(i + 1). Since this mixes the LDU and UDL decompositions, the
roundoff error analysis given above does not enable us to relate the computed value
of all the ∆i to a single perturbed tridiagonal matrix. However if small relative
changes to the off-diagonal entries of J lead to “small” changes in its LDU and
UDL factorizations, then Theorem 7.1 implies that Algorithm Nrminv “accurately”
computes the condition number of J . The latter implication is easily seen to be
true by observing that the quantities ∆i, su(i), sl(i) are computed from the LDU
and UDL factorizations by multiplications, divisions, and additions of nonnegative
numbers. The case of Algorithm Nrminv Noassump is similar.

Often the triangular factorizations (4.4) and (4.5) can be very sensitive to small
changes in the entries of the tridiagonal matrix. These are precisely the situations
when a submatrix of J is close to being singular and there is element growth in the
factorizations. Thus we may suspect that our algorithm delivers inaccurate answers
in such cases. However numerical experience, given in section 10, indicates that
the condition number is computed accurately despite element growth. It is an open
problem to explain this phenomenon. We feel the situation is somewhat similar to
Algorithms Higham 1 and Higham 2 that were outlined in section 3. In [17], Higham
observes that when the latter algorithms do not over/underflow their answers are very
accurate, but no error analysis has been able to explain this accuracy. One approach
to proving accuracy of our algorithm may be to relate both sets of pivots, D+ and
D−, to a single perturbed matrix.
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8. Handling overflow and underflow. Algorithm Nrminv Noassump also
suffers from the limited range of numbers that can be represented in a digital com-
puter. Consider the matrix

J =

[
1000 100
100 10−306

]
.

In its UDL decomposition, D−(2) = 10−306 while D−(1) is computed as

D−(1) = 1000 − 104

10−306
= 1000 − 10310.

In IEEE double precision arithmetic, the above value overflows and D−(1) is set to
−∞ [2]. Since ∆1 = 1/D−(1), it is computed to be 0 by Algorithm Nrminv Noassump.
∆2 is then computed as

∆2 = ∆1 ·
(
D+(1)

D−(2)

)
= 0 ·

(
1000

10−306

)
.

Again the value 1000/10−306 overflows and ∆2 is set to 0 ·∞ = Not a Number (NaN).
Note that J is perfectly well conditioned with ∆2 = −0.1, and

J−1 ≈
[ −10−310 0.01

0.01 −0.1

]
.

Thus Algorithm Nrminv Noassump malfunctions due to overflow problems. Under-
flow in computing ∆i by (4.11) can cause similar problems.

We now show how to overcome such overflow and underflow. Before doing so we
emphasize that the above over/underflow problems are not as severe as those in the
algorithms of [17]. The discerning reader would have noticed that problems in the
earlier algorithms are inevitable due to the explicit computation of the vectors x, y,
p, and q; see section 3 for more details.

There are two problems that we must address. The first is to avoid NaNs in
the computation. A NaN results when evaluating expressions such as 0 · ∞, 0

0 , and
∞
∞ . Algorithm Nrminv Final1 given in Figure 7 prevents the formation of NaNs by
explicitly avoiding such expressions and handling separately the special cases when
D+(i) or D−(i) equals 0 or ∞.

The second difficulty occurs if ∆i overflows or underflows to 0 when computed as

∆i = ∆i−1
D+(i− 1)

D−(i)
.

It is incorrect to use such a ∆i to compute ∆i+1 by the above recurrence. We solve
this problem by computing ∆i+1 as

∆i+1 = 1/

(
D−(i + 1) − bici

D+(i)

)
(8.1)

in such a case. The above formula is a consequence of Theorem 5.8. Note that (8.1)
leads to the correct value of ∆i+1 when D+(i − 1) = 0 or D−(i + 1) = 0; see (6.1)
and (6.2).

Thus Algorithm Nrminv Final1 tries to cure the over/underflow problems, and
we have found its computer implementation to be accurate on all tridiagonal matrices
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Algorithm Nrminv Final1
Compute J = L+D+U+ and J = U−D−L− as follows:
D+(1) = a1;
for i = 1 to n− 1

if (D+(i) = 0 and bici = 0) then ‖J−1‖1 = ∞; return;
else L+(i) = bi/D+(i); D+(i + 1) = ai+1 − ci ∗ L+(i);

D−(n) = an;
for i = n− 1 to 1 step −1

if (D−(i + 1) = 0 and bici = 0) then ‖J−1‖1 = ∞; return;
else U−(i) = ci/D−(i + 1); D−(i) = ai − bi ∗ U−(i);

if (D+(n) = 0 or D−(1) = 0) then ‖J−1‖1 = ∞; return;
for i = 2 to n− 1

if (D+(i− 1) = 0 and D−(i + 1) = 0) then ‖J−1‖1 = ∞; return;
∆1 = 1/D−(1);
for i = 1 to n− 1

if (D+(i) = 0 or 1/D−(i + 1) = 0) then ∆i+1 = 0;
elseif (D−(i + 1) = 0) then ∆i+1 = −D+(i)/bici;
elseif (1/D+(i) = 0) then ∆i+1 = 1/D−(i + 1);

elseif (∆i = 0) then ∆i+1 = 1/
(
D−(i + 1) − bici

D+(i)

)
;

else ∆i+1 = ∆i

D−(i+1) ∗D+(i);

if (1/∆i+1 = 0) then ‖J−1‖1 = ∞; return;
su(1) = 0;
for i = 1 to n− 1

if (su(i) + |∆i| = 0) then
su(i + 1) = (su(i− 1) + |∆i−1|) ∗ | ci−1

bi
| + | 1

bi
|;

else su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
if (1/su(i + 1) = 0) then ‖J−1‖1 = ∞; return;

sl(n) = 0;
for i = n to 2 step −1

if (sl(i + 1) + |∆i+1| = 0) then
sl(i− 1) = (sl(i + 1) + |∆i+1|) ∗ | bi

ci−1
| + | 1

ci−1
|;

else sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;
if (1/sl(i− 1) = 0) then ‖J−1‖1 = ∞; return;

γ = 0;
for i = 1 to n

if (su(i) + sl(i) + |∆i| > γ) then
γ = su(i) + sl(i) + |∆i|;

‖J−1‖1 = γ;

Fig. 7. Algorithm Nrminv Final1 computes ‖J−1‖1.

in our test-bed. Numerical results to show this are presented in the next section. In
addition, this algorithm also works for tridiagonal matrices that are not unreduced,
i.e., where some of the off-diagonal entries may be zero. None of the elaborate tech-
niques used in [16, 17] are needed to handle this special case. As written, the algorithm
requires IEEE arithmetic but it is easily modified to prevent overflow.

In spite of the above precautions, Algorithm Nrminv Final1 can march danger-
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ously close to the overflow and underflow thresholds. When a pivot element D+(i) or
D−(i) is tiny, intermediate quantities can vary widely in magnitude while computing
su(i) and sl(i) by (4.12) and (4.13). We now present an alternate algorithm that tries
to avoid large intermediate numbers. To avoid division by the tiny pivot D−(i + 1)
in (4.12), we may write su(i + 1) in terms of su(i− 1) as follows:

su(i + 1) = (su(i) + |∆i|)
∣∣∣∣ ci
D−(i + 1)

∣∣∣∣
= (su(i− 1) + |∆i−1|)

∣∣∣∣ ci−1ci
D−(i)D−(i + 1)

∣∣∣∣ +

∣∣∣∣ ∆ici
D−(i + 1)

∣∣∣∣ .(8.2)

Now, the formula for computing D−(i) (see Figure 3) implies that

D−(i + 1)D−(i) = D−(i + 1)(ai − bici/D−(i + 1)) = D−(i + 1)ai − bici,(8.3)

and using (5.6),

∆ici
D−(i + 1)

=
ci

D−(i + 1)D+(i) − bici
.(8.4)

Substitution of (8.3) and (8.4) in (8.2) leads to the desired formula

(8.5)

su(i + 1) = (su(i− 1) + |∆i−1|)
∣∣∣∣ ci−1ci
D−(i + 1)ai − bici

∣∣∣∣ +

∣∣∣∣ ci
D−(i + 1)D+(i) − bici

∣∣∣∣ .
Unlike (4.12), the above formula does not involve division by the tiny pivot ele-

ment D−(i+1). Thus no large intermediate quantities are formed. Similarly, sl(i−1)
may be expressed in terms of sl(i + 1) to avoid division by a small D+(i − 1). Note
that in the extreme case when D−(i+1) = 0, (8.5) simplifies to (6.3). Equation (8.5)
can alternatively be obtained by taking the 2 × 2 matrix[

ai ci
bi D−(i + 1)

]

as a pivot in block Gaussian Elimination (instead of D−(i + 1)) and using the corre-
sponding block U−D−L− factorization to compute su(i+1). When D−(i+1) is tiny,
it can be shown that using this 2×2 pivot prevents element growth unless J is nearly
singular. Algorithm Nrminv Final2 given in Figure 8 uses such a pivot strategy to
compute su(i) and sl(i). Also note that in Algorithm Nrminv Final2 we use (5.6)
instead of (4.11) to compute ∆i.

Although Algorithm Nrminv Final2 tends to have less element growth in its
computation, it is not clear whether it is more accurate than Algorithm Nrminv Final1.
Numerical experience, given in section 10, indicates that both these algorithms are
accurate. Our personal preference is for Algorithm Nrminv Final2 since the inter-
mediate quantities computed by it do not vary widely in scale.

9. Another application. In computing ‖J−1‖, we need to find the column of
J−1 with the largest 1-norm. We now briefly mention another application where we
may need to identify such a column.

Given a real, symmetric tridiagonal matrix T and an accurate approximation to
an eigenvalue λ̂, we can attempt to find the corresponding eigenvector by solving

(T − λ̂I)zk = ek,

where ek is the kth column of the identity matrix (the above may also be thought
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Algorithm Nrminv Final2
Compute J = L+D+U+ and J = U−D−L− as follows:
D+(1) = a1;
for i = 1 to n− 1

if (D+(i) = 0 and bici = 0) then ‖J−1‖1 = ∞; return;
else L+(i) = bi/D+(i); D+(i + 1) = ai+1 − ci ∗ L+(i);

D−(n) = an;
for i = n− 1 to 1 step −1

if (D−(i + 1) = 0 and bici = 0) then ‖J−1‖1 = ∞; return;
else U−(i) = ci/D−(i + 1); D−(i) = ai − bi ∗ U−(i);

if (D+(n) = 0 or D−(1) = 0) then ‖J−1‖1 = ∞; return;
for i = 2 to n− 1

if (D+(i− 1) = 0 and D−(i + 1) = 0) then ‖J−1‖1 = ∞; return;
∆1 = 1/D−(1);
for i = 1 to n− 1

∆i+1 = 1/(D−(i + 1) − bici
D+(i) );

if (1/∆i+1 = 0) then ‖J−1‖1 = ∞; return;
su(1) = 0;
for i = 1 to n− 1

DET = D−(i + 1)ai − bici;
if (1/D−(i + 1) = 0 or |D−(i + 1) · ai| ≥ |DET|) then

su(i + 1) = (su(i) + |∆i|) ∗ |U−(i)|;
else

su(i + 1) = (su(i− 1) + |∆i−1|) ∗ | ci−1ci
DET | + | ci

|D−(i+1)D+(i)−bici
|;

if (1/su(i + 1) = 0) then ‖J−1‖1 = ∞; return;
sl(n) = 0;
for i = n to 2 step −1

DET = D+(i− 1)ai − bi−1ci−1;
if (1/D+(i− 1) = 0 or |D+(i− 1) · ai| ≥ |DET|) then

sl(i− 1) = (sl(i) + |∆i|) ∗ |L+(i− 1)|;
else

sl(i− 1) = (sl(i + 1) + |∆i+1|) ∗ | bi−1bi
DET | + | bi−1

D+(i−1)D−(i)−bi−1ci−1
|;

if (1/sl(i− 1) = 0) then ‖J−1‖1 = ∞; return;
γ = 0;
for i = 1 to n

if (su(i) + sl(i) + |∆i| > γ) then
γ = su(i) + sl(i) + |∆i|;

‖J−1‖1 = γ;

Fig. 8. Algorithm Nrminv Final2 computes ‖J−1‖1.

of as the first step of inverse iteration with ek as the starting vector). However an
arbitrary choice of k does not always work, as observed by Wilkinson in [25, 26]. Note

that the pair (λ̂, zk) has the residual norm

‖(T − λ̂I)zk‖
‖zk‖ =

1

‖(T − λ̂I)−1ek‖
,(9.1)
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Table 2
Test matrices.

Matrix
Type Description

1 Nonsymmetric random tridiagonal — each element is uniformly distributed in the
interval [−1, 1].

2 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
one element equal to 1 and all others equal to ε.

3 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
one element equal to ε and all others equal to 1.

4 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
elements geometrically distributed from ε to 1.

5 Symmetric tridiagonal J = QTDQ with Q random orthogonal and D diagonal with
elements uniformly distributed from ε to 1.

6 Symmetric Toeplitz tridiagonal with ai = 64, bi = ci = 1.
7 Symmetric Toeplitz tridiagonal with ai = 108, bi = ci = 1.
8 Symmetric Toeplitz tridiagonal with ai = 0, bi = ci = 1.
9 Nonsymmetric random tridiagonal as in Type 1 but with some off-diagonals set to zero.

Table 3
Computation of κ(J) = ‖J‖1 · ‖J−1‖1 on matrices of order 41.

κ(J) computed by
Matrix Algorithm Algorithm Algorithm Algorithm LAPACK’s condition
Type Nrminv Final1 Nrminv Final2 Higham1 Higham2 estimator (Dgtcon)

1 111.9 111.9 111.9 111.9 109.7
2 7.5 · 1015 7.6 · 1015 NaN NaN 7.6 · 1015

3 5.4 · 1015 5.4 · 1015 NaN NaN 5.4 · 1015

4 6.3 · 1015 6.3 · 1015 6.3 · 1015 6.3 · 1015 6.3 · 1015

5 7.6 · 1015 7.7 · 1015 7.7 · 1015 7.6 · 1015 7.7 · 1015

6 1.06 1.06 1.06 1.06 1.06
7 1.0 1.0 NaN NaN 1.0
8 ∞ ∞ NaN ∞ ∞
9 1.3 · 103 1.3 · 103 NaN NaN 1.3 · 103

where we assume that λ̂ is not an exact eigenvalue of T . The goal is to obtain a
small residual norm, but an arbitrary choice of k fails because not every column
of (T − λ̂I)−1 is large in magnitude. However when λ̂ is close to an eigenvalue, there

must exist a column k of (T − λ̂I)−1 that has a large norm. The corresponding pair

(λ̂, zk) has a small residual norm, and it can be shown that zk is close to an eigenvector.
The optimal choice of k minimizes the residual norm (9.1), i.e., it maximizes ‖(T −
λ̂I)−1ek‖. Thus the algorithms discussed earlier in the paper provide a solution to
this problem in O(n) time. Algorithms Nrminv Final1 and Nrminv Final2 are
easily modified to give the solution when the 2-norm is considered.

Often when the corresponding eigenvalue is sufficiently isolated, it suffices to
choose k such that the (k, k) entry of (T − λ̂I)−1 has the largest absolute value among
all diagonal elements of the inverse. For more on this problem, the interested reader
is referred to [14, 23] and [12, Chapter 3]. As a way to find an optimal k, Jesse Barlow
[5] also independently discovered recurrences similar to (4.11), (4.12), and (4.13).

10. Numerical results. In this section, we present numerical results of our
new algorithms and compare them with existing algorithms. A variety of tridiagonal
matrices listed in Table 2 forms our test-bed. The matrices of type 2–5 were obtained
by Householder reduction of a random dense symmetric matrix that had the desired
spectrum. See [8] for more on the generation of such matrices.



CONDITION NUMBER OF A TRIDIAGONAL IN O(n) TIME 795

Table 4
Computation of κ(J) = ‖J‖1 · ‖J−1‖1 on matrices of order 200.

κ(J) computed by
Matrix Algorithm Algorithm Algorithm Algorithm LAPACK’s condition
Type Nrminv Final1 Nrminv Final2 Higham1 Higham2 estimator (Dgtcon)

1 1.9 · 103 1.9 · 103 1.9 · 103 1.9 · 103 1.2 · 103

2 7.4 · 1015 7.5 · 1015 NaN NaN 7.4 · 1015

3 4.5 · 1015 4.5 · 1015 NaN NaN 4.5 · 1015

4 9.9 · 1015 9.9 · 1015 9.9 · 1015 9.9 · 1015 9.9 · 1015

5 1.2 · 1016 1.2 · 1016 1.2 · 1016 1.2 · 1016 1.2 · 1016

6 1.06 1.06 1.06 1.06 1.06
7 1.0 1.0 NaN NaN 1.0
8 200.0 200.0 200.0 200.0 2.0
9 2.0 · 103 2.0 · 103 NaN NaN 2.0 · 103

Table 5
Timing results.

Time taken by LAPACK’s Time(Dgtcon) / Time(Dgtcon) /
Matrix Dgtcon (in ms.) Time(Nrminv Final1) Time(Nrminv Final2)
Type n = 41 n = 200 n = 1000 n = 41 n = 200 n = 1000 n = 41 n = 200 n = 1000

1 0.2 1.1 5.4 2.0 1.6 1.6 1.0 1.6 1.6
2 0.3 1.1 5.4 3.0 1.6 1.7 3.0 1.6 1.6
3 0.2 1.1 5.4 2.0 1.8 1.6 1.0 1.6 1.5
4 0.2 1.1 5.5 2.0 1.8 1.7 1.0 1.6 1.6
5 0.3 1.1 5.5 3.0 1.6 1.7 1.5 1.6 1.6
6 0.3 1.6 7.2 3.0 2.3 2.2 1.5 2.0 1.8
7 0.3 1.5 6.8 3.0 2.5 2.1 3.0 1.9 1.7
8 0.0 0.9 4.6 1.0 1.5 1.5 1.0 1.5 1.5
9 0.3 1.1 5.3 1.5 1.6 1.6 3.0 2.2 1.9

The results given in Tables 3 and 4 support our claim that the algorithms in [17]
are susceptible to severe overflow and underflow problems. However they produce ac-
curate answers when they do not suffer from such problems. The new algorithms
outlined in the previous section, Algorithm Nrminv Final1 and Algorithm Nr-
minv Final2, give accurate answers on all our test matrices. Both the algorithms
appear to be comparable in accuracy. In our numerical results, we have also included
the current algorithm in LAPACK that estimates the condition number of a tridiago-
nal matrix [19]. This algorithm is guaranteed to give a lower bound on the condition
number, and extensive testing done in [19] indicates that its estimates are good ap-
proximations to the exact condition number in most cases. For all our test matrices,
except one, the condition numbers are estimated accurately. The only exception is
the Toeplitz matrix with 0 on the diagonals and 1 on the off-diagonals; see Table 4.
This example is similar to the one given in [19, p. 386], and LAPACK’s condition
estimator underestimates its condition number by a factor of n/2 for n = 200.

In Table 5, we compare the times taken by our new algorithms with LAPACK’s
condition estimator. The latter also appears to take O(n) time but our new algorithms
are up to three times faster. These timing experiments were conducted on an IBM
RS/6000 processor.

11. Conclusions. In this paper, we have given stable algorithms to compute the
condition number of a tridiagonal matrix in O(n) time. Algorithm Nrminv (see Fig-
ure 4) contains the main new ideas and forms the basis of Algorithms Nrminv Final1
and Nrminv Final2 (see Figures 7 and 8). The latter algorithms may be directly
implemented to give reliable numerical software and do not suffer from the inherent
over/underflow problems of the earlier algorithms presented in [17].
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