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Abstract. In this paper, we present new algorithms that can replace the diagonal entries of
a Hermitian matrix by any set of diagonal entries that majorize the original set without altering
the eigenvalues of the matrix. They perform this feat by applying a sequence of (N − 1) or fewer
plane rotations, where N is the dimension of the matrix. Both the Bendel–Mickey and the Chan–Li
algorithms are special cases of the proposed procedures. Using the fact that a positive semidefinite
matrix can always be factored as X∗X , we also provide more efficient versions of the algorithms
that can directly construct factors with specified singular values and column norms. We conclude
with some open problems related to the construction of Hermitian matrices with joint diagonal and
spectral properties.
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1. Introduction. It is sometimes of interest to construct a collection of Hermi-
tian matrices that have specified diagonal elements and eigenvalues. When all the
eigenvalues are nonnegative, the problem is essentially equivalent to constructing a
collection of rectangular matrices with specified column norms and singular values.
In particular, if a rectangular matrix X has requirements on its singular values and
squared column norms, the Hermitian matrix X ∗X has a corresponding requirement
on its eigenvalues and diagonal entries.

A specific example of this problem is to construct Hermitian matrices with unit
diagonal and prescribed nonnegative eigenvalues. Such matrices are called correla-
tion matrices—Davies and Higham [6] discuss several applications that require such
matrices, ranging from the generation of test matrices for eigenvalue solvers to the
design of statistical experiments. A related matrix construction problem has also
arisen in connection with wireless communications. It turns out that d×N matrices,
d < N , with d identical nonzero singular values and with prescribed column norms
satisfy a certain “sum capacity” bound and “minimum squared correlation” property
that is important in wireless applications. These matrices only exist if a majoriza-
tion condition holds, as discussed in section 2.1. For a quick introduction to squared
correlation; see the appendix in [7]. Refer to [20, 22] for details on how the problem
arises in wireless applications.
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Two finite step techniques, the Bendel–Mickey [2] and Chan–Li [4] algorithms,
are available for special cases. Both algorithms apply a sequence of plane rotations to
an initial matrix that change its diagonal entries while preserving its spectrum. The
Chan–Li algorithm starts with the diagonal matrix of eigenvalues and can reach a
real, symmetric matrix with a specified majorizing diagonal. On the other hand, the
Bendel–Mickey algorithm can start with an arbitrary Hermitian matrix and transform
it to a Hermitian matrix with equal diagonal entries.

In this paper, we present new algorithms that generalize the Chan–Li and Bendel–
Mickey procedures so that we can start with an arbitrary Hermitian matrix and
change its diagonal entries to specified values while retaining its original spectrum.
The only requirement is that the new diagonal elements majorize (in essence, average)
the original ones. Thus our generalized algorithms permit us to construct a class of
Hermitian matrices satisfying spectral and diagonal constraints that is richer than the
collection yielded by earlier algorithms.

We now give a brief outline of the paper. In section 2, we provide the necessary
background and summarize previous results. We present our generalized algorithms in
section 3, and section 4 contains some numerical examples. We conclude in section 5
with some open problems.

2. Background and related work.

2.1. Majorization. Majorization is a relation between vectors that appears in
a striking number of apparently unrelated contexts. Lorenz originally developed the
ordering for econometrics, where he used it to compare the equitability of income
distributions [1]. An intuitive definition is that one vector majorizes another if the
former has “more average” entries than the latter. Let us make this notion precise.

Definition 2.1. Let a be a real, N -dimensional vector, and denote its kth
smallest component by a(k). This number is called the kth order statistic of a.

Definition 2.2. Let a and z be real N -dimensional vectors, and suppose that
their order statistics satisfy the following relationships:

a(1) ≤ z(1),

a(1) + a(2) ≤ z(1) + z(2),

...

a(1) + a(2) + · · · + a(N−1) ≤ z(1) + z(2) + · · · + z(N−1), and also

a(1) + a(2) + · · · + a(N) = z(1) + z(2) + · · · + z(N).

Then we say that z majorizes a, and we write z � a. If each of the inequalities is
strict, then z strictly majorizes a, and we write z � a.

The inequality in the above definition is reversed in some treatments, but we follow
the convention in Horn and Johnson’s book [13, p. 192]. An equivalent definition is
that z � a if and only if z = M a for some doubly-stochastic matrix M. Birkhoff’s
theorem states that the collection of doubly-stochastic matrices of size N is identical
with the convex hull of the permutation matrices having size N . It follows that those
vectors which majorize a fixed vector form a compact, convex set; see [13, p. 197 and
p. 527] and [18] for more details.

It is easy to verify that majorization is antisymmetric and transitive on R
N . But

the majorization relation is reflexive, and hence a partial ordering, only when we
restrict our attention to nondecreasing vectors in R

N [3].
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Majorization plays a role on our stage because it defines the precise relationship
between the diagonal entries and eigenvalues of a Hermitian matrix.

Theorem 2.3 (Schur–Horn [13, pp. 193–196]). The diagonal entries of a Her-
mitian matrix majorize its eigenvalues. Conversely, if a � λ, then there exists a
Hermitian matrix with diagonal entries listed by a and eigenvalues listed by λ.

I. Schur demonstrated the necessity of the majorization condition in 1923, and
A. Horn proved the converse some thirty years later [12]. Horn’s original proof is
quite complicated and a small cottage industry has grown up to produce simpler,
more constructive arguments; see, for example, [4, 5, 16]. A comprehensive reference
on majorization is Marshall and Olkin’s monograph [18].

2.2. Some posets. First, we define some concepts related to partial orderings,
and then we develop some new partial orderings on Hermitian matrices that are closely
related to the matrix construction problem.

Definition 2.4. A set S equipped with a partial ordering � is called a poset. It
is denoted as (S,�). Two elements a, b ∈ S are comparable if and only if a � b or
b � a. Any totally ordered subset of a poset is called a chain. Every pair of elements
in a chain is comparable.

We may equip any poset with the ordering topology, where each basic open set is
given by {a �= b : b � a} for some point b. This is the minimal topology in which the
ordering is continuous [15, p. 57].

Observe that vectors are comparable by majorization only when their entries have
the same sum. Let Cα denote the set of N -dimensional nondecreasing vectors whose
entries sum to α. Every Cα has a unique majorization-maximal element: the constant
vector with entries α/N . On the other hand, there are no minimal vectors under the
majorization relation; every z succeeds an infinite number of other vectors.

Definition 2.5. We say that two Hermitian matrices A and B are Schur–Horn
equivalent if and only if they have identical spectra and identical diagonals (up to
permutation). We write A ≡ B and we use [A] to denote the equivalence classes
induced by this relation.

We indicate the collection of Schur–Horn equivalence classes by H. Notice that
the members of H vary significantly. For example, the Schur–Horn equivalence class
of a diagonal matrix is the set of diagonal matrices with the same entries in per-
muted order. Meanwhile, the equivalence class of a matrix with unit diagonal and
nonnegative eigenvalues λ is the set of “correlation matrices” that have spectrum
λ [6,17]. Even though similarity transformations preserve the eigenvalues of a Hermi-
tian matrix, very few simultaneously preserve the diagonal. Therefore, Schur–Horn
equivalence classes are not stable under most transformations. Exceptions include
symmetric permutations and diagonal similarity transforms.

Definition 2.6. For any two elements of H, [A] and [Z ], we say that [Z ] � [A]
if and only if the two matrices have the same spectrum and diag Z � diag A.

It is not hard to check that this construction yields a well-defined partial order-
ing on H. Clearly, two Schur–Horn equivalence classes are comparable only if their
members have the same spectrum. Suppose that the entries of λ ∈ R

N already occur
in nondecreasing order, viz. λk = λ(k) for each k. Then we may write Hλ to denote
the elements of H with spectrum λ. Each Hλ forms an isolated component of the
poset (H,�), and it has a unique maximal element: the equivalence class of matrices
with eigenvalues λ and with a constant diagonal. A significant difference between ma-
jorization and the matrix ordering is that every chain under the matrix ordering has
a minimal element: [diag λ], where λ lists the (common) eigenvalues of the members



64 I. S. DHILLON, R. W. HEATH JR., M. A. SUSTIK, AND J. A. TROPP

of the chain.

2.3. Algorithms. Now we discuss two algorithms which have been proposed
for constructing Hermitian matrices with diagonal and spectral properties. In what
follows, we use MN to denote the set of complex N ×N matrices and Md,N to denote
the set of complex d×N matrices.

The Bendel–Mickey algorithm produces random (Hermitian) correlation matrices
with given spectrum [2]. Suppose that A ∈ MN is a Hermitian matrix with TrA =
N . If A does not have a unit diagonal, we can locate two diagonal elements so
that Ajj < 1 < Akk; otherwise, the trace condition would be violated. It is then
possible to construct a real rotation Q in the jk-plane for which (Q∗AQ)jj = 1. The
transformation A �→ Q∗AQ preserves the conjugate symmetry and the spectrum of A,
but it reduces the number of nonunit diagonal entries by at least one. Therefore, at
most (N−1) rotations are required before the resulting matrix has a unit diagonal. If
the output matrix is Z , it follows that [Z ] � [A]. Indeed, [Z ] is the unique �-maximal
element in every chain that contains [A].

The Chan–Li algorithm, on the other hand, was developed as a constructive proof
of the Schur–Horn theorem [4]. Suppose that a � λ. The Chan–Li algorithm begins

with the diagonal matrix Λ
def
= diag λ. Then it applies a sequence of (N − 1) cleverly

chosen (real) plane rotations to generate a real, symmetric matrix A with the same
eigenvalues as Λ but with diagonal entries listed by a. Once again, the output and
input satisfy the relationship [A] � [Λ]. While the Bendel–Mickey algorithm starts
from any element of a chain and moves to the top; the Chan–Li algorithm starts at
the bottom of a chain and moves upward.

The Bendel–Mickey algorithm is a surjective map from the set of Hermitian ma-
trices with spectrum λ onto the set of correlation matrices with spectrum λ. If the
initial matrix is chosen uniformly at random (which may be accomplished with stan-
dard techniques [19]), the result may be construed as a random correlation matrix.
The distribution of the output, however, is unknown [11]. On the other hand, due to
the special form of the initial matrix and the rigid choice of rotations, the Chan–Li
algorithm cannot construct very many distinct matrices with a specified diagonal. It
would be interesting to develop a procedure which can calculate every member of a
given equivalence class; see section 5 for a brief discussion.

A brief discussion of how to use plane rotations to equalize the diagonal entries
of a Hermitian matrix appears on page 77 of Horn and Johnson [13]. Problems 8.4.1
and 8.4.2 of Golub and Van Loan outline the Bendel–Mickey algorithm [10].

Davies and Higham present a numerically stable version of the Bendel–Mickey
algorithm in their article [6]. Other references on this topic include [14,23].

3. Generalized algorithms. We propose methods that generalize the Bendel–
Mickey and Chan–Li algorithms. Like them, our techniques use a sequence of (N −1)
or fewer plane rotations to move upward between two points in a chain. The crux of
the matter is the strategy for selecting the planes of rotation. The two methods we
present can be viewed, respectively, as direct generalizations of the Chan–Li strategy
and the Bendel–Mickey strategy. Unlike the earlier algorithms, these new techniques
do not require ending at the top of a chain like Bendel–Mickey nor starting at the
bottom like Chan–Li. Therefore, our techniques allow the construction of a much
larger set of matrices than the Chan–Li algorithm, while retaining its ability to select
the final diagonal entries.
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3.1. Plane rotations. First, we discuss how to use a plane rotation to modify
the diagonal entries while preserving the spectrum. Let us suppose that A is a 2 × 2
matrix with diagonal a that we wish to transform to z, where z � a. Without loss of
generality, we can assume that a1 ≤ z1 ≤ z2 ≤ a2. We will explicitly construct a real
plane rotation Q so that the diagonal of Q∗AQ equals z. Recall that a two-dimensional
plane rotation is an orthogonal matrix of the form

Q =

[
c s
−s c

]
,

where c2 + s2 = 1 [10]. The desired plane rotation yields the matrix equation[
c s
−s c

]∗ [
a1 a∗21
a21 a2

] [
c s
−s c

]
=

[
z1 z∗21
z21 z̃2

]
.

The equality of the upper-left entries can be stated as

c2a1 − 2scRe a21 + s2a2 = z1.

This equation is quadratic in t
def
= s/c,

(a2 − z1) t
2 − 2tRe a21 + (a1 − z1) = 0,(3.1)

whence

t =
Re a21 ±

√
(Re a21)2 − (a1 − z1)(a2 − z1)

a2 − z1
.(3.2)

Notice that the discriminant is nonnegative due to the majorization condition. The
± sign in (3.2) is taken to avoid sign cancellations with Re a21. If necessary, we can
extract the other root of (3.1) using the fact that the product of its roots equals
(a1 − z1)/(a2 − z1). Finally, determine the parameters of the rotation using

c =
1√

1 + t2
and s = ct.(3.3)

Floating-point arithmetic is inexact so the rotation may not yield (Q∗AQ)11 = z1.
A better implementation sets this entry to z1 explicitly. Davies and Higham have
shown that this method of computing rotations is numerically stable [6]. Since Q is
orthogonal, Q∗AQ preserves the spectrum of A but replaces its diagonal with z.

3.2. Generalized Bendel–Mickey. Let z and a be N -dimensional vectors for
which z � a. We will show how to transform a Hermitian matrix A with diagonal a
and spectrum λ into one with diagonal z and spectrum λ using a sequence of plane
rotations. It is enough to prove the result when the components of a and z are sorted
in ascending order, so we place that restriction in the sequel.

Suppose that a �= z. On account of the majorization relationship, it is possible
to select indices i < j that satisfy two properties: ai < zi ≤ zj < aj and ak = zk
for all k strictly between i and j. If zi − ai ≤ aj − zj , then we construct a plane
rotation Q in the (i, j)-plane such that (Q∗AQ)ii = zi. Otherwise, we find Q such
that (Q∗AQ)jj = zj . Either rotation can be calculated using appropriate versions of
(3.2) and (3.3). To see that this strategy can be repeated, we just need to check that
z majorizes the diagonal of Q∗AQ. In the first case, the plane rotation transforms ai
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to zi and aj to ai +aj − zi, while the remaining diagonal entries do not change. Since
ai < zi ≤ zj ≤ ai + aj − zi < aj the diagonal entries of Q∗AQ remain in ascending
order. The first (i− 1) majorization conditions are clearly unaffected. Notice that

i−1∑
�=1

a� + zi ≤
i−1∑
�=1

z� + zi,

which proves the ith majorization condition. The next (j − i − 1) majorization in-
equalities follow in consequence of ak being equal to zk whenever i < k < j. The rest
of the majorization conditions hold since

i−1∑
�=1

a� + zi +

j−1∑
k=i+1

ak + (ai + aj − zi) =

j∑
�=1

a� ≤
j∑

�=1

z�.

The argument in the case when zi − ai > aj − zj is similar. It follows that our
rotation strategy may be applied until diag A = z. This proof leads to the following
algorithm.

Algorithm 1 (Generalized Bendel–Mickey). Let A be an N × N Hermitian
matrix with diagonal a and, furthermore, let z be a vector such that z � a, where
both a and z are arranged in ascending order. The following procedure computes a
Hermitian matrix with diagonal entries z and eigenvalues equal to that of A.

1. Find i < j for which ai < zi, zj < aj and ak = zk for i < k < j (in our
implementation we pick the smallest such i). If no such pair exists, we are either
done (z = a) or the majorization condition is violated.

2. Construct a plane rotation Q in the (i, j)-plane using (3.2) and (3.3) with
appropriate modifications to transform ai to zi in the case zi−ai ≤ aj−zj or transform
aj to zj otherwise.

3. Replace A by Q∗AQ.
4. Repeat Steps 1–3 until the diagonal is transformed to z.

This algorithm requires about 12N2 real floating-point operations if conjugate
symmetry is exploited. The storage requirement is about N(N+1)/2 complex floating-
point numbers.

3.3. Generalized Chan–Li. Distinct algorithms arise by changing the strategy
for selecting the planes of rotation. Let z and a be N -dimensional vectors for which
z � a. As before, we assume that they are sorted in ascending order, and suppose
that A is a Hermitian matrix with diagonal a. We now exhibit a different method for
transforming the diagonal of A to z while preserving its eigenvalues. It can be viewed
as a generalization of the Chan-Li algorithm [4].

We will use induction on the dimension, so grant us for a moment that we can
perform the advertised feat on Hermitian matrices of size (N−1). Now we consider N -
dimensional vectors for which z � a, and suppose that diag A = a. The majorization
condition implies that a1 ≤ z1 ≤ zN ≤ aN , so it is always possible to select a least
integer j > 1 so that aj−1 ≤ z1 ≤ aj . Let P1 be a permutation matrix for which

diag(P∗
1AP1) = (a1, aj , a2, . . . , aj−1, aj+1, . . . , aN ).

Observe that a1 ≤ z1 ≤ aj and a1 ≤ a1 + aj − z1 ≤ aj . Thus we modify (3.2) and
(3.3) to construct a two-dimensional plane rotation Q2 that sets the upper-left entry
of

Q∗
2

[
a1 a∗j1
aj1 aj

]
Q2
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to z1. If we define the rotation

P2
def
=

[
Q2 0∗

0 IN−2

]
,

then

P∗
2P∗

1AP1P2 =

[
z1 v∗

v AN−1

]
,

where v is an appropriate vector and AN−1 is an appropriate submatrix with

diag(AN−1) = (a1 + aj − z1, a2, . . . , aj−1, aj+1, . . . , aN ).

In order to apply the induction hypothesis, it remains to check that the vector
(z2, z3, . . . , zN ) majorizes the diagonal of AN−1. We accomplish this in three steps.
First, recall that ak ≤ z1 for k = 2, . . . , j − 1. Therefore,

m∑
k=2

zk ≥ (m− 1) z1 ≥
m∑

k=2

ak

for each m = 2, . . . , j−1. The sum on the right-hand side obviously exceeds the sum of
the smallest (m− 1) entries of the vector diag AN−1, so the first (j − 2) majorization
inequalities are in force. Second, we use the fact that z � a to calculate that for
m = j, . . . , N ,

m∑
k=2

zk =

m∑
k=1

zk − z1 ≥
m∑

k=1

ak − z1 = (a1 + aj − z1) +

j−1∑
k=2

ak +

m∑
k=j+1

ak.

Once again, observe that the sum on the right-hand side exceeds the sum of the
smallest (m − 1) entries of the vector diag AN−1, so the remaining majorization in-

equalities are in force. Finally, rearranging the relation
∑N

k=1 zk =
∑N

k=1 ak yields∑N
k=2 zk = Tr AN−1. In consequence, the induction furnishes a rotation QN−1 that

sets the diagonal of AN−1 equal to the vector (z2, . . . , zN ). Defining

P3
def
=

[
1 0∗

0 QN−1

]
,

we see that conjugating A by the orthogonal matrix P = P1P2P3 transforms the
diagonal entries of A to z while retaining the spectrum λ. This proof leads to the
following algorithm.

Algorithm 2 (Generalized Chan–Li). Let A be an N×N Hermitian matrix with
diagonal a, and let z be a vector such that z � a, where both a and z are arranged in
ascending order. The following procedure computes a Hermitian matrix with diagonal
entries z and eigenvalues equal to that of A.

1. Set i = 1.
2. Find the least j > i so that aj−1 ≤ zi ≤ aj .
3. Use a symmetric permutation to set ai+1 equal to aj while shifting diagonal

entries i + 1, . . . , j − 1 one place down the diagonal.
4. Construct a plane rotation Q in the (i, i+1)-plane using (3.2) and (3.3) with

appropriate modifications.
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5. Replace A by Q∗AQ.
6. Use a symmetric permutation to re-sort the diagonal entries of A in ascending

order.
7. Increment i and repeat Steps 2–7 while i < N .

This algorithm has the same functionality and complexity as Algorithm 1 but
it is different in the plane rotations used. It is conceptually simpler to perform the
permutations described in the algorithm, but an implementation can avoid them. The
Matlab code provided in the appendix of [7] demonstrates one such implementation.

3.4. One-sided algorithms. It is well known that any positive semidefinite ma-
trix A ∈ MN can be expressed as the product X ∗X where X ∈ Md,N and d ≥ rankA.
With this factorization, the two-sided transformation A �→ Q∗AQ is equivalent to a
one-sided transformation X �→ XQ. In consequence, the machinery of Algorithm 1 re-
quires little adjustment to produce these factors. The following algorithm generalizes
the one-sided version proposed by Davies and Higham in [6].

Algorithm 3 (One-sided generalized Bendel–Mickey). Suppose that z and a
are nonnegative vectors of length N with ascending entries. Assume, moreover, that
z � a. The following algorithm takes as input a d × N complex matrix X whose
squared column norms are listed by a and transforms it into a matrix with the same
singular spectrum and with squared column norms listed by z.

1. Find i < j for which ‖xi−1‖2
2 < zi, zj < ‖xj‖2

2 and ‖xk‖2
2 = zk for i < k < j.

If no such pair exists, we are either done or the majorization condition is violated.
2. Form the quantities

ai = ‖xi‖2
2 , aji = 〈xj ,xi〉 , and aj = ‖xj‖2

2 .

3. Construct a plane rotation Q in the (i, j)-plane using (3.2) and (3.3) with
appropriate modifications to transform ai to zi in the case zi − ai ≤ aj − zj , or
transform aj to zj otherwise.

4. Replace X by XQ.
5. Repeat Steps 1–4 until all column norms are as desired.

The algorithm requires about 12dN real floating-point operations and storage of N(d+
2) complex floating-point numbers including the desired column norms and the current
column norms. A similar modification of our generalized Chan–Li algorithm also leads
to a one-sided version.

4. Numerical examples. The generalized algorithms can produce a richer set
of matrices with prescribed diagonal entries and eigenvalues, making it possible to
find solutions that satisfy additional properties or better suit the application.

We illustrate the generalized Chan–Li algorithm by comparing it with the clas-
sical algorithm. Suppose we want to produce a Hermitian matrix with eigenvalues
(1, 4, 5, 7, 9) and diagonal entries (2, 5, 6, 6, 7). This example was presented in [4]; our
generalized algorithm (essentially) yields the same result

A
(1)
ChanLi =

⎡
⎢⎢⎢⎢⎣

2.0000 0 0.7071 −0.9487 0.7746
0 5.0000 0 0 0

0.7071 0 6.0000 1.3416 −1.0954
−0.9487 0 1.3416 6.0000 2.4495

0.7746 0 −1.0954 2.4495 7.0000

⎤
⎥⎥⎥⎥⎦ .

Notice the sparsity structure in the above matrix. In applications such as design-
ing matrices for testing eigenvalue solvers [9], it would be better to produce a more
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random Hermitian matrix that satisfies the diagonal and eigenvalue constraints. The
generalized algorithms can be used for this purpose. We first generate a sequence of
(say) six vectors satisfying

(1, 4, 5, 7, 9) = z0 � z1 � z2 � z3 � z4 � z5 = (2, 5, 6, 6, 7).

The vectors z1,z2,z3,z4 may be generated as random convex combinations of z0 and
z5. This construction ensures that the majorization conditions hold. Five steps of the
generalized Chan–Li algorithm are then successively used to transform the diagonal
matrix diag(z0) to have diagonals z1,z2, . . . ,z5. We arrive at the final matrix

A
(1)
GenChanLi =

⎡
⎢⎢⎢⎢⎣

2.0000 1.0400 1.4517 −0.6294 −0.3720
1.0400 5.0000 0.3620 −0.2157 1.4731
1.4517 0.3620 6.0000 1.6901 −0.6544

−0.6294 −0.2157 1.6901 6.0000 −1.2822
−0.3720 1.4731 −0.6544 −1.2822 7.0000

⎤
⎥⎥⎥⎥⎦ .

For the wireless application mentioned in the introduction, the matrices in question
must have all nonzero eigenvalues equal to one; see [20] for more details. The following
example calls for the generation of matrices with eigenvalues (0, 0, 1, 1, 1) and diagonal
(0.4, 0.6, 0.6, 0.6, 0.8). The Chan–Li algorithm produces

A
(2)
ChanLi =

⎡
⎢⎢⎢⎢⎣

0.4000 −0.4899 0 0 0
−0.4899 0.6000 0 0 0

0 0 0.6000 0.4000 −0.2828
0 0 0.4000 0.6000 0.2828
0 0 −0.2828 0.2828 0.8000

⎤
⎥⎥⎥⎥⎦ .

In the wireless application, it is often desirable to have lower variance in the magni-
tudes of the off-diagonal entries, which are also known as “cross-correlations.”

We can use the generalized algorithms to obtain “random” solutions as follows.
Generate random matrices with the given spectrum and select those which have a
diagonal majorized by the target diagonal. Then apply either one of the generalized
algorithms. Using such a strategy, the generalized Bendel–Mickey algorithm provides
the following matrix:

A
(2)
GenBendelMickey =

⎡
⎢⎢⎢⎢⎣

0.4000 0.1803 0.2101 −0.3558 0.1916
0.1803 0.6000 −0.3991 −0.1487 0.1615
0.2101 −0.3991 0.6000 −0.1237 0.1457

−0.3558 −0.1487 −0.1237 0.6000 0.2756
0.1916 0.1615 0.1457 0.2756 0.8000

⎤
⎥⎥⎥⎥⎦ .

5. Conclusions. We have shown that a sequence of (N−1) rotations is sufficient
to replace the original diagonal of N ×N Hermitian matrix with any set of diagonal
entries that majorizes the original set, all the while preserving the spectrum of the
matrix. The algorithms we have presented can move up a chain in the poset of
Schur–Horn equivalence classes as given in Definition 2.5.

An obvious question is whether it is possible to obtain an algorithm that moves
down a chain instead. In other words, is it possible to construct a finite sequence of
rotations to replace the diagonal with a set of entries that majorizes the eigenvalues
but not necessarily the original diagonal? Since the diagonal matrix of eigenvalues lies
at the bottom of every chain, it might seem at first glance that, as a special case, we
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are attempting to calculate the eigenvalues in finite time. We avoid this paradox since
we assume that the target diagonal is already known. In fact, to get to the bottom
of the chain, O(N2) Givens rotations can be used to reduce the initial matrix to
tridiagonal form and then to the desired diagonal matrix of eigenvalues (these include
the application of perfect shifts to the tridiagonal matrix; see [8]). By combining
these O(N2) rotations with the Chan–Li algorithm, we answer our question in the
affirmative. However this strategy goes through the bottom of the chain, so a natural
question is whether there is a more direct construction. A direct algorithm may also
be computationally more efficient. However, it seems harder to transform a vector
into one of its predecessors than into one of its successors. Entropy may provide a
reasonable explanation: it is easier to make things more uniform than less uniform.

Other interesting questions arise. What is the structure of a general Schur–Horn
equivalence class of Hermitian matrices? Is there a fast procedure that is capable
of constructing every member of a given equivalence class? Is it possible to define
a uniform probability measure on each class and to construct members from a class
uniformly at random? In this paper, we have restricted our attention to finite step
algorithms. Iterative algorithms are an alternative, especially for the case of producing
Hermitian matrices that satisfy additional constraints; see [21] for such an approach.
It would be useful to understand these problems better, and we hope that other
researchers will take interest.
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