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Abstract—Stochastic blockmodels provide a rich, probabilis-
tic framework for modeling relational data by expressing the
objects being modeled in terms of a latent vector represen-
tation. This representation can be a latent indicator vector
denoting the cluster membership (hard clustering), a vector
of cluster membership probabilities (soft clustering), or more
generally a real-valued vector (latent space representation).
Recently, a new class of overlapping stochastic blockmodels has
been proposed where the idea is to allow the objects to have
hard memberships in multiple clusters (in form of a latent
binary vector). This aspect captures the properties of many
real-world networks in domains such as biology and social
networks where objects can simultaneously have memberships
in multiple clusters owing to the multiple roles they may have.
In this paper, we improve upon this model in three key ways:
(1) we extend the overlapping stochastic blockmodel to the
bipartite graph case which enables us to simultaneously learn
the overlapping clustering of two different sets of objects in the
graph; the unipartite graph is just a special case of our model,
(2) we allow objects (in either set) to not have membership
in any cluster by using a relevant object selection mechanism,
and (3) we make use of additionally available object features
(or a kernel matrix of pairwise object similarities) to further
improve the overlapping clustering performance. We do this
by explicitly encouraging similar objects to have similar cluster
membership vectors. Moreover, using nonparametric Bayesian
prior distributions on the key model parameters, we side-step
the model selection issues such as selecting the number of
clusters a priori. Our model is quite general and can be applied
for both overlapping clustering and link prediction tasks in
unipartite and bipartite networks (directed/undirected), or
for overlapping co-clustering of general binary-valued data.
Experiments on synthetic and real-world datasets from biology
and social networks demonstrate that our model outperforms
several state-of-the-art methods.

Keywords-stochastic blockmodel; overlapping clustering; link
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I. INTRODUCTION

Modeling relationships (e.g., pairwise interactions) among

objects is becoming ever increasingly commonplace in vari-

ous domains [10]. In biology, known gene-gene interactions

may be specified as a graph in form of an adjacency matrix,

or drug-protein associations may be specified as a bipartite

graph. In social network analysis, a friendship network may

be specified as an adjacency matrix. In recommender sys-

tems, a user-item ratings information may be given in form

of dyads. In all these and other related problems dealing

with relational data, an important goal is to learn latent

low-dimensional representations of the objects and use these

representations in downstream tasks such as clustering or

prediction; for example, clustering users in a social network

into communities [28], predicting values of unobserved links

in a network [19], and so on.

The stochastic blockmodel (SB) is a generative model of

a network, and relational data in general. This model and

its variations have been applied to various problems in the

statistical analysis of network data [10]. The SB models the

link probability of a pair of objects as a stochastic function

of their low-dimensional representations. Different types of

latent representations lead to specific types of stochastic

blockmodels. For example, the latent class model [23], [16]

assumes that each object exclusively belongs to one cluster

and the link probability between a pair of node depends on

their cluster memberships (usually, a pair of objects belong-

ing to clusters l and m will have a link generation probability

wlm). The latent class model was later generalized to the

mixed-membership stochastic blockmodel [4]. In the mixed

membership stochastic blockmodel (MMSB), each node has

a distribution over clusters in form of a probability vector.

The MMSB considers only soft-assignments of objects to

multiple clusters. Both SB and MMSB have been applied

to the problem of clustering objects given network data and

also to the task of link prediction using the learned cluster

memberships of the objects [10].

In many real-world datasets, however, it is natural to think

of objects having hard memberships in multiple clusters. For

example, users in a social network may belong to multiple

communities; a protein may have multiple functions; or a

gene may be regulated by multiple transcription factors.

The assumption of each object being assigned to a single

cluster [23], [16], [32], [21], or having soft memberships

in multiple clusters [4], would be rather restrictive in such



scenarios. Motivated by this, there has been a considerable

interest in learning models that allow objects to have hard

memberships in multiple clusters. A recent survey about

overlapping clustering methods in the context of network

data can be found in [31].

On the other hand, in many real-world networks, some ob-

jects may be irrelevant and therefore would not be expected

to have membership in any cluster. Moreover, in addition to

the graph over objects, often we may have access to side

information (e.g., in form of a similarity matrix between

objects). It would be desirable to be able to use this side

information to regularize the clustering assignments: if two

objects are similar (as measured by the similarity matrix)

then their cluster assignment vectors should also be similar.

Finally, most existing methods for overlapping clustering

only consider “unipartite” graphs and cannot be applied to

bipartite graphs [7] where we want to simultaneously cluster

two different sets of objects where clusters in each set could

overlap.

Motivated by these desiderata, we propose a new stochas-

tic blockmodel for overlapping clustering and link predic-

tion. In particular, (1) our model has a noise robustness

property where noise means presence of irrelevant objects in

the network: it can simultaneously perform relevant object

selection and overlapping clustering of relevant objects,

(2) our model can make use of side information in form

of a kernel/similarity matrix between the objects (either

directly given or computed using features of the objects)

to encourage similar objects to have similar cluster mem-

bership vectors, and (3) our model works for both unipartite

(directed/undirected) and bipartite graphs; in the latter case,

we simultaneously perform overlapping clustering for both

sets of objects. Moreover, taking a nonparametric Bayesian

approach [8], our model also circumvents the crucial issue

of selecting the number of clusters. In addition, our model

is not limited to modeling relational data; the bipartite

version can be applied to general binary-valued data such

as overlapping co-clustering of binary-valued data. Finally,

although in this exposition we assume that the graph is

binary, the model can easily be extend to weighted graphs [3]

where edges can take non-binary values. We name our model

ROCS to denote Relevance-based Overlapping Clustering

with Similarity-based-smoothing.

The rest of the paper is organized as follows: In Section II,

we introduce some notation. In Section III, we briefly

describe the Indian Buffet Process [12], a nonparametric

Bayesian prior distribution, which we will use as one of

the building blocks of our model. In Section IV, we first

describe our basic model, and then describe how to extend

it to handle relevant object selection, and to incorporate the

similarity (kernel) matrix over the objects. We explain the

inference method in Section V, and present experimental

results on overlapping clustering and link prediction tasks in

Section VI. Finally, we briefly review related work in Sec-

tion VII, and state the conclusions and possible extensions

of our model in Section VIII.

II. NOTATION

Bipartite case: In the bipartite graph case, we are given

two sets of objects and a graph in form of an adjacency

matrix such that an edge only exists between objects in

different sets. We assume that the first set A has N objects,

and the second set B has M objects. The “adjacency” matrix

is denoted by A ∈ {0, 1}N×M . In addition, we are given two

similarity matrices S
A ∈ [0, 1]N×N and S

B ∈ [0, 1]M×M

defined over the set of objects in A and B, respectively. We

will denote the overlapping cluster assignments of objects

in set A by U = [u1, . . . ,uN ]⊤ ∈ {0, 1}N×K and in set

B by V = [v1, . . . ,vM ]⊤ ∈ {0, 1}M×L. Here K and L
refer to the number of clusters in set A and B, respectively.
An entry unk = 1 (resp. vml = 1) denotes that object n in

set A (resp. m in set B) belongs to cluster k (resp. cluster

l). In our model, we do not have to assume that K and L
are specified a priori but these will be inferred from data

via nonparametric Bayesian modeling [8]. Further, we use

R
A ∈ {0, 1}N×1 and R

B ∈ {0, 1}M×1 which we call a

relevance vector for objects in set A and B respectively. An

entry RA
n = 1 (resp. RB

m = 1) indicates that object n in

set A (resp. object m in set B) is relevant, and irrelevant

otherwise. We will learn the relevance vectors as part of our

model.

Unipartite case: Our notations in the unipartite graph

case would be similar to the bipartite graph case except

that we will drop the superscripts identifying the sets.

In particular, we are given a set of N objects and a

graph (directed/undirected) in form of their adjacency matrix

A ∈ {0, 1}N×N . The similarity matrix will be denoted

by S ∈ [0, 1]N×N , the overlapping cluster assignments by

U = [u1, . . . ,uN ]⊤ ∈ {0, 1}N×K , and the relevance vector

by R ∈ {0, 1}N×1. As in the bipartite graph case, we will

learn the number of clusters K and the relevance vector from

the data.

III. BACKGROUND

Our stochastic blockmodel is based on clustering the

objects such that each object could potentially belong to

multiple clusters. Given a set of N objects and K clusters, an

overlapping clustering of these objects can be represented by

a binary matrix U ∈ {0, 1}N×K . An entry unk = 1 means

that object n belongs to cluster k. Each row in U can have

multiple 1s in the overlapping clustering setting. A crucial

issue is choosing the number of clusters which is rarely

known a priori. This translates to choosing the number of

columns in U . The Indian Buffet Process [12] provides a

nonparametric Bayesian prior distribution on sparse binary

matrices, such as U , such that the number of columns in U

need not be specified beforehand but can instead be learned

from data.



The Indian Buffet Process (IBP) can be most easily

understood using a culinary metaphor. In this metaphor,

customers correspond to the N rows of U and dishes

correspond to the K columns of U . Customers enter one-by-

one into an Indian Buffet that serves a potentially infinite

number of dishes. The first customer selects Poisson(α)
dishes to begin with, where α is a hyperparameter. Each

subsequent customer (say n-th customer) selects an already

selected dish k with a probability proportional to how many

previous customers have chosen this dish. This probability

is given by mk/n where mk is the number of previous

customers who chose dish k. The n-th customer thereafter

selects Poisson(α/n) new dishes. This process results in

a binary matrix U of customer-dish assignments where

unk = 1 means that customer n selected dish k. Note that

since a customer could potentially select multiple dishes,

there can be multiple 1s in each row of U .
Denoting the number of new dishes chosen by the n-th

customer by K1
(n), the resulting probability distribution of

U has the following form:

P (U ) =
α

K+

Q

N

n=1 K1
(n)!

exp{−αHN}

K+
Y

k=1

(N − mk)!(mk − 1)!

N !

where K+ denotes the number of nonzero columns in U and

HN denotes the N -th Harmonic number (HN =
∑N

j=1
1
j
).

Since the number of overall dishes (which is also equal to

the number of columns in U ) was not specified a priori,

the IBP becomes a natural choice of a prior distribution for

binary matrices like U with a fixed number of rows and

an a priori unknown number of columns. In the stochastic

blockmodel we present in Section IV, we will be using the

IBP as a prior distribution on the object-cluster assignment

matrix. This will allow us to simultaneously infer the number

of clusters from the data and the cluster assignments for each

object.
IV. THE MODEL

We now describe our proposed stochastic blockmodel

for doing overlapping clustering in bipartite and unipar-

tite graphs. We first describe our basic model without

the relevant object selection mechanism or exploiting the

kernel based similarity information. We will discuss these

extensions after describing the basic model.

Recall that, in the bipartite graph case, we are given an

N × M binary adjacency matrix A. Our model has the

following form:

U ∼ IBP(αu)

V ∼ IBP(αv)

W ∼ Nor(0, σ2
w)

A ∼ Ber(σ(UWV
⊤))

where σ(x) = 1
1+exp(−x) , Ber(p) is the Bernoulli distribu-

tion with parameter p, IBP(α) is the IBP prior distribution

Figure 1. Our basic model. Left: The bipartite case. Right: The unipartite
case. Hyperparameter σw is not shown for the sake of brevity. Note that
K and L are actually unbounded due to nonparametric Bayesian modeling,
and will be learned from data.

with hyperparameter α, Nor(0, σ2) is the Gaussian distri-

bution with hyperparameter σ, and U ∈ {0, 1}N×K and

V ∈ {0, 1}M×L are the cluster assignment matrices for the

objects in set A and B, respectively. Here, W is a real-

valued matrix of size K×L such that the entry wkl controls

the probability of a link between an object in set A and an

object in set B when the former has a membership in cluster

k and the latter has a membership in cluster l. In particular,

note that we can write the probability of Anm being 1 as

follows:

P (Anm = 1) = σ(unWv
⊤
m) = σ(

∑

k,l

unkWklvml)

Therefore, this model considers and combines all pairwise

cluster interactions (suitably weighted by W ) to compute

the link probabilities.

Figure 1 represents the graphical models for both bipartite

and unipartite case. In the unipartite (directed/undirected)

case where we only have a single set of objects and we want

to model their pairwise interactions given by the adjacency

matrix A ∈ {0, 1}N×N (can be symmetric/asymmetric), our

basic model reduces to the following form:

U ∼ IBP(αu)

W ∼ Nor(0, σ2
w)

A ∼ Ber(σ(UWU
⊤))

This special case of unipartite graph was considered

previously in the nonparametric Bayesian Latent Feature

Relational Model (LFRM) proposed in [20]. The LFRM

however cannot be applied for the bipartite case unlike

our model, and does not have properties of relevant object

selection or exploiting pairwise similarities between objects

which we will now describe. We use the LFRM as one of

the baselines in our experiments.

A. Relevance Selection Mechanism

In a real-world interaction network, there may be some

objects that are irrelevant (or noisy) and should not belong

to any cluster. For example, in a social network, a user

might be a spammer who indiscriminately subscribes to



many random users, thereby forming many spurious links

in the adjacency matrix. Without safeguarding the stochastic

blockmodel against such irrelevant objects, it can lead to

bad parameter estimates (e.g., overestimating the number of

clusters, or yielding false positives in the link prediction

tasks, etc.). Our experiments in Section VI corroborate this.

To deal with such irrelevant objects in a principled way, we

propose using a relevant object selection mechanism.

Our relevant object selection mechanism is based on

maintaining two random binary vectors R
A ∈ {0, 1}N×1

and R
B ∈ {0, 1}M×1 for sets A and B respectively.

Here, we will only discuss the bipartite case (for the

unipartite case, there will be only a single random vector

R ∈ {0, 1}N×1). Our proposal is inspired by subset feature

selection methods used in (non-overlapping) clustering [13]

and factor analysis [27].

In the relevance selection variant of our model, we will

assume a background noise link probability φ ∼ Bet(a, b),
where Bet(a, b) denotes the Beta distribution with parameters

a and b. If one or both objects n ∈ A and m ∈ B are

irrelevant (RA
n = 0 and/or RB

m = 0), we assume that Anm

is drawn from a Bernoulli distribution with parameter φ. If
both n and m are relevant (RA

n = 1 and RB
m = 1), then

Anm is drawn from a Bernoulli distribution with parameter

p = σ(unWv⊤
m). Here, we will slightly abuse notation and

use un ∼ IBP(αu) (resp. vm ∼ IBP(αv)) to denote that

each row of U (resp. V ) is drawn from the IBP. The full

generative model is given below:

φ ∼ Bet(a, b)

ρA
n ∼ Bet(c, d), ρB

m ∼ Bet(e, f)

RA
n ∼ Ber(ρA

n ), RB
m ∼ Ber(ρB

m)

un ∼ IBP(αu) if RA
n = 1; zeros otherwise

vm ∼ IBP(αv) if RB
m = 1, zeros otherwise

p = σ(unWv
⊤
m)

Anm ∼ Ber(pRA

n
RB

mφ1−RA

n
RB

m)

In the above generative model, it can be easily seen that

if RA
n = 0 or RB

m = 0 (i.e., one or both of n and m are

irrelevant) then the link Anm is drawn from Ber(φ) (i.e., the
background noise model). On the other hand, if both RA

n

and RB
m are 1 (i.e., both n and m are relevant) then the link

Anm is drawn from Ber(p) = Ber(σ(unWv⊤
m)) using their

cluster assignment vectors un and vm.

B. Exploiting Pairwise Similarities

The model described so far only makes use of the adja-

cency graph. We now describe how our model can exploit

additionally available pairwise object similarities given in

the form of kernel matrices S
A and S

B . The goal is to

encourage two objects having a high similarity to have

similar cluster membership vectors. In other words, if two

objects n and n′ in set A have a high pairwise similarity

Figure 2. The similarity based smoothing of cluster membership vectors.
Note that row n in U denotes the cluster membership vector of object n

in set A. Likewise, row m in V denotes the cluster membership vector
of object m in set B. Left: For the bipartite case where the adjacency
matrix is decomposed as UWV

⊤, using the similarity matrix S
A (resp.

S
B) encourages rows of U (resp. rows of V ) to be correlated depending

on how similar the corresponding objects are. Right: The same idea for
the unipartite graph case where the adjacency matrix is assumed to be
decomposed as UWU

⊤.

(i.e., a high value SA
nn′ ) then the cluster membership vectors

un and un′ should also be similar. Likewise, if two objects

m and m′ in set B have a high pairwise similarity then their

cluster membership vectors vm and vm′ should be similar

(see Figure 2 for an illustration).

The IBP based model for overlapping clustering does not

take the pairwise similarity information into account. Recall

that in the standard IBP culinary analogy, the customer n
chooses an existing dish with a probability proportional to

how many other customers have chosen that dish, regardless

of the similarity of this customer with those customers. Also,

the number of new dishes selected by customer n is given

by Poisson(α/n) which again does not depend on how

similar/dissimilar this customer is w.r.t. the other customers.

Intuitively, we would like to have a scheme that encour-

ages a customer to select a dish if the customer has a high

similarity with all other customers who chose that dish.

Also, when it comes to selecting the new dishes, we would

like the number of new dishes to be large if the customer

has low similarity with the other customers (so it is more

desirable to choose its own set of new dishes). In the context

of overlapping clustering, it would mean that we want an

object n to get membership in cluster k if object n has a

high similarity with the other objects which belong to cluster

k. Furthermore, we would want the number of new clusters

for object n to be influenced by how similar/dissimilar it is

w.r.t. the other objects. A high aggregate dissimilarity w.r.t.

all other objects would encourage the number of new clusters

for this object to be large.

To accomplish this, we modify the sampling scheme in the

IBP based generative model to exploit the pairwise similarity

information. In particular, we modify the IBP model in both

sampling steps (selecting existing dishes and selecting the

number of new dishes). Here, we switch the terminology

and will talk directly in terms of objects (for customers) and

clusters (for dishes). The generative model for object-cluster

assignments will be as follows:

1) The probability that object n (assuming it belongs to



Figure 3. The full model ROCS with relevant object selection mechanism and exploiting pairwise similarities. Some of the low-level parameters and
hyperparameters are not shown for the sake of brevity. Left: The full model for the bipartite case. Right: The full model for the unipartite case.

set A) gets membership in cluster k will be propor-

tional to

P

n′ 6=n
SA

nn′un′k
P

n

n′=1
SA

nn′
. Intuitively, it means that we

do not simply count how many of the other objects

belong to cluster k but rather use a “weighted count”

using the pairwise similarity scores. One can think

of
∑n

n′=1 SA
nn′ as the “effective” total number of

objects, and
∑

n′ 6=n SA
nn′un′k as the effective number

of objects (other than n) that belong to cluster k.

2) The number of new clusters for object n is given by

Poisson(α/
∑n

n′=1 SA
nn′). Intuitively, it means that if

the object n has low similarities with the previous

objects, the model encourages it to get memberships

in its own new clusters, rather than sharing existing

clusters with them.

Note that in the absence of pairwise similarity informa-

tion, we can assume that S
A is a matrix of all 1s (all pairs

are equivalent in terms of similarity). In this case, in step 1,

the probability of object n getting membership in cluster k
turns out to be

∑
n′ 6=n un′k/n = mk/n, which is identical to

the standard IBP. Also, in step 2, the number of new clusters

object n gets memberships into is given by Poisson(α/n)
which is again the same as in standard IBP. We refer to

the similarity information augmented variant of the IBP as

SimIBP(αu,SA). We have a similar prior distribution for

the cluster memberships V for objects in set B and denote

it by SimIBP(αv,SB).

We would like to also note here that, even in the absence

of additionally provided pairwise similarity matrix, one

could use the Jaccard index [34] (percentage of common

neighbors in the adjacency graph) as the entries in the

similarity matrix. The Jaccard index is defined as follows:

Sij =
|N (i) ∩N (j)|

|N (i) ∪N (j)|

where N (i) denotes the set of neighbors of object i.

The full generative model with relevant object selection

and pairwise similarity information is as follows:

φ ∼ Bet(a, b)

ρA
n ∼ Bet(c, d), ρB

m ∼ Bet(e, f)

RA
n ∼ Ber(ρA

n ), RB
m ∼ Ber(ρB

m)

un ∼ SimIBP(αu,SA) if RA
n = 1; zeros otherwise

vm ∼ SimIBP(αv,SB) if RB
m = 1; zeros otherwise

p = σ(unWv
⊤
m)

Anm ∼ Ber(pRA

n
RB

mφ1−RA

n
RB

m)

In the case of a unipartite graph, we have a single simi-

larity matrix S and the cluster membership vectors un are

drawn from SimIBP(αu,S). The graphical model in plate

notation is shown in Figure 3. We call our model ROCS

(abbreviated for Relevance-based Overlapping Clustering

with Similarity-based-smoothing).

Our idea of using pairwise similarities to regularize the la-

tent representations (cluster membership vectors) of objects

is similar in spirit to recent work on kernelized probabilistic

matrix factorization [36], [11]. In kernelized probabilistic

matrix factorization (KPMF) [36], the idea is to incorporate

the side information through kernel matrix into the matrix

factorization process such that the rows in the latent factor

matrix (each row represents the latent factor of an object)

are no longer independent. In particular, the KPMF model

introduces dependence among the rows of the factor matrix

by drawing them from a Gaussian Process (GP) prior using

the provided kernel matrix as the GP covariance matrix,

instead of a Gaussian prior with identity covariance matrix.

The KPMF, however, assumes real-valued latent represen-

tations unlike our case where the latent representations are

in form of binary cluster membership vectors. Moreover,

KMPF does not perform relevant object selection and also

needs the number of factors to be specified a priori. We use

the KMPF model as one of the baselines in our experiments.

Finally, some other recently proposed variants of the

IBP can also take into account object-specific features [35]

or directly available pairwise similarities/distances between

objects [9]. For example, one could replace the IBP by a

recently proposed variation of the IBP called the Distance



Dependent Latent Feature Model [9]. This variation tries to

accomplish a similar effect as our proposed modification of

the IBP in this paper, albeit in a slightly different manner.

The Distance Dependent variant in [9] is based on checking,

for each dish, whether customer n can be “reached” to the

“owner” of that dish. If it does then customer n inherits that

dish. We leave the evaluation of these variants, in the context

of stochastic blockmodels, to future work.

V. INFERENCE

Exact inference in the Indian Buffet Process based models

is intractable [12] and therefore we use approximate infer-

ence using MCMC (Gibbs sampling with some Metropolis-

Hastings steps). In this section, we provide the sampling

equations for cluster membership matrix U (sampling V is

similar), the matrix W which controls the link probabilities,

and the relevance vectors R
A (sampling R

B is similar). As

a shorthand, we will denote by Θ the set of all the random

variables {U ,V ,W ,RA,RB , φ} and the hyperparameters

in our model. We collapsed some of the hyperparameters for

efficient Gibbs sampling.

Sampling U : For each cluster k, with all other random

variables fixed, the posterior probability that object n gets

membership in this cluster is:

P (unk = 1|A,SA) ∝ P (unk = 1|αu,SA)P (A|Θ, unk = 1)

where P (unk = 1|αu,SA) =
P

n′ 6=n
SA

nn′un′k
P

n′ 6=n
SA

nn′
is the prior

probability of object n getting membership in an existing

cluster k as per the (modified) IBP prior distribution. The

likelihood term is given by P (A|Θ) =
∏

nm P (Anm|Θ) =∏
nm Ber(Anm|pRA

n
RB

mφ1−RA

n
RB

m).

The posterior probability that object n does not get

membership in an existing cluster k is:

P (unk = 0|A,SA) ∝ P (unk = 0|αu,SA)P (A|Θ, unk = 0)

where P (unk = 0|αu,SA) =
P

n

n′ 6=n
SA

nn′−
P

n

n′ 6=n
SA

nn′un′k
P

n

n′ 6=n
SA

nn′
.

We sample the number of new clusters that object n
gets memberships into using a Metropolis-Hastings proce-

dure [27]. For this, we draw a number knew of new clusters

where knew = Poisson(α/
∑

n′ SA
nn′) and accept/reject this

number based on the acceptance probability.

Sampling W : Since the Gaussian prior distribution on W

is not conjugate to the likelihood, sampling W directly from

its posterior distribution is not possible. Therefore, we use

Metropolis-Hastings sampling to sample each entry of W

by proposing its new value from a Gaussian centered around

the old value, and accept/reject it based on the acceptance

probabilities.

Sampling Object Relevance Vector: To sample the

object relevance vector R
A, we integrate out the Beta

distributed parameters ρA
n and get the following sampling

distribution for the relevance variable for object n:

P (RA
n = 1|A) ∝ (c +

∑

n′ 6=n

RA
n )P (A|Θ, RA

n = 1)

P (RA
n = 0|A) ∝ (d + N −

∑

n′ 6=n

RA
n )P (A|Θ, RA

n = 0)

Sampling the Background Noise Probability φ: The

background noise probability has a Beta posterior distribu-

tion of the following form:

P (φ|A,RA,RB) = Bet(a + ton, b + toff )

ton =
∑

nm

(1 − RA
n RB

m)Anm

toff =
∑

nm

(1 − RA
n RB

m)(1 − Anm)

The variables in the posterior distribution can be interpreted

as follows: ton is a count of how many entries of Anm in

A are 1 given that one or both of objects n and m are

irrelevant. Likewise, toff is a count of how many entries in

A are 0 for which either one or both the associated objects

are irrelevant.

Initialization Strategies: The problem of overlapping

clustering has a solution space that is combinatorial in

size: for N objects and K clusters, the search-space is of

size 2NK and consequentially the posterior distribution of

the cluster assignment matrices U and V can be highly

multimodal. The problem becomes even more compounded

for the case of nonparametric Bayesian priors for which the

number of parameters (K in this case) can grow adaptively

as the inference procedure is running. Although more so-

phisticated MCMC inference methods such as split-merge

sampling could be used [21], even a sensible initialization

of the basic Gibbs sampling based inference procedure can

often yield equally good results. In the IBP based stochastic

blockmodels, two initialization schemes have been suggested

in prior work: (1) running a disjoint clustering model on

the data and use this as an initialization point [20], and (2)

sequential initialization [25] where we add one object at

a time and, given the (overlapping) cluster assignments of

the previous objects, sample the cluster assignments for this

new object. We use scheme (2) in our experiments, which

is slower than (1), but tends to work better empirically.

Prediction: Our generative model can naturally deal

with missing data and, apart from doing overlapping clus-

tering, one application of our proposed model is link

prediction where we want to predict the missing entries

in A based on the observed entries. Given T samples

of Θ = {U ,V ,W ,RA,RB} and other random vari-

ables/hyperparameters from the MCMC run, and training

data in form of the observed entries Atrain, we predict

the missing entries in A by averaging the predictions made



using each MCMC sample:

P (Anm = 1|Atrain) =
1

T

T∑

i=1

P (Anm = 1|Θ(i))

where P (Anm = 1|Θ) = Ber(pRA

n
RB

mφ1−RA

n
RB

m), p =
σ(unWv⊤

m), and φ is the estimated background noise prob-

ability. Using the model therefore also gives a measure of

confidence (in terms of link probabilities) in the predictions.

VI. EXPERIMENTS

We apply our ROCS model on a synthetic and several

real-world datasets (both bipartite and unipartite networks)

from social networks and biology domains, and compare

against a number of state-of-the-art methods.

In our experiments, we are interested in assessing how

well our model is able to infer the correct number of clusters,

can identify relevant/irrelevant objects, can make use of the

pairwise similarity information (when available) to improve

overlapping clustering, and how well it can predict the

missing links in the network. As done in other recent works

on stochastic blockmodels [20], [21], for the link prediction

task, we hide 50% of the entries in the adjacency matrix

and predict the rest 50% using the model. We use the 0-

1 test error and Area under the ROC Curve (AUC) as our

performance metrics (the networks used are highly sparse).

For datasets with known number of clusters, we also report

the discovered number of clusters by our method. For the

baselines that require this number to be specified, we provide

either the ground truth number of clusters (when known), or

report the results using the best choice of this number for

that baseline.

We repeat each experiment 10 times, each time using

a different random mask for missing links, and report

the averaged results. We first provide a description of the

baselines and then present the experimental results on the

various datasets.

A. Baselines

We compare our model with a number of state-of-the-art

methods for overlapping clustering and link prediction. We

list our baselines below:

• Overlapping Clustering using Nonnegative Matrix

Factorization (OCNMF) [26]: This method assumes

that the adjacency matrix admits a nonnegative factor-

ization into two low-rank matrices. We use the Bayesian

NMF method in [26] which also learns the number

of clusters using a shrinkage mechanism. This method

however cannot do relevant object selection or exploit

pairwise object similarities.

• Kernelized Probabilistic Matrix Factorization

(KPMF) [36]: We modified the original model

in [36], which is applicable only for real-valued data,

to deal with binary adjacency matrix. Although this

method can make use of side information in the form

of similarity matrices over the rows and columns,

the learned factor matrices are real-valued so the

method can be applied for link prediction but not

for overlapping clustering. Moreover, the rank of the

factor matrices needs to be specified under the KPMF

model.

• Bayesian Community Detection (BCD) [21]: This

is a state-of-the-art disjoint clustering based stochas-

tic blockmodel. The model is an extension of the

Infinite Relational Model (IRM) [16] for stochastic

blockmodeling that assumes non-overlapping clustering

but learns the number of clusters from data using a

nonparametric Bayesian prior distribution (the Dirichlet

Process mixture model [29]). The method however

cannot do relevant object selection or exploit pairwise

object similarities.

• Latent Feature Relational Model (LFRM) [20]: This

is a state-of-the-art overlapping clustering method. It

learns the number of clusters from data (using the IBP

prior on the object-cluster assignment matrix) but does

not perform relevant object selection and does not make

use of pairwise object similarities. Moreover, LFRM

is applicable only for unipartite graphs [20]. For ex-

periments on bipartite graphs, we replace this baseline

with our own model without pairwise similarities and

relevance selection which is equivalent to the bipartite

version of LFRM (we will still refer it by LFRM).

Of these baselines, the first two (OCNMF and KPMF)

compute a point estimate of the model parameters whereas

the latter two (BCD and LFRM) produce samples from the

posterior distribution of the model parameters. So, for BCD

and LFRM, test error and AUC scores are computed by

averaging over the posterior samples.

We would like to note here that the mixed-membership

stochastic blockmodel [4] (MMSB) is another relevant base-

line. However, we do not compare with MMSB because

LFRM (which we use as one of the baselines) has been

shown in the recent prior work [20], [25] to outperform

MMSB on the kind of problems and datasets we are con-

sidering in this paper.

B. Datasets and Experimental Results

Synthetic Data: Using a synthetic data set that includes

a significant fraction of irrelevant objects, we first show that

our model can successfully identify irrelevant objects and

therefore results in more accurate overlapping clustering.

For this data, we do not have pairwise object similarities

and only want to focus on identifying the relevant/irrelevant

objects.

We generated the synthetic dataset as a unipartite network

with three overlapping clusters (shown in Figure 4). In this

dataset, there are 50 objects of which the first 30 objects are

relevant (these objects belong to at least one cluster) and



Ground Truth Adjacency Matrix

10 20 30 40 50

10

20

30

40

50

Figure 4. The synthetic data of 30 relevant and 20 irrelevant objects with
three overlapping clusters.
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Figure 5. Synthetic data experiment: Inferred overlapping clustering (Top
row) and reconstructed adjacency matrix by LFRM and ROCS in the
presence of irrelevant objects (Bottom row). The ground truth number of
clusters is 3 in this dataset (Figure 4 shows the true adjacency matrix).
LFRM not only overestimates the number of clusters, but also assigns
irrelevant objects to some cluster(s). On the other hand, our model correctly
infers the number of clusters as well as the irrelevant objects.

the remaining 20 objects are irrelevant (the links involving

one or both of such irrelevant objects are drawn from a

background noise distribution). To achieve this effect, we

created three dense blocks in the adjacency matrix such that

they overlap and span the first 30 objects. The ones in the

remaining part of our 50 × 50 adjacency matrix represent

noisy links (we sample each of them using a background

noise probability of 0.05). Table I shows the link prediction

results. In terms of both 0-1 test error and AUC score, ROCS

is better than the other methods.

Table I
SYNTHETIC DATA

Method 0-1 Test Error (%) AUC

OCNMF 44.82 (±12.59) 0.7164 (±0.1987)

KPMF 39.70 (±1.78) 0.6042 (±0.0517)

BCD 20.05 (±1.49) 0.8504 (±0.0197)

LFRM 9.59 (±0.36) 0.8619 (±0.0374)

ROCS 9.05 (±0.42) 0.8787 (± 0.0303)

The overlapping clustering results of LFRM and ROCS

are shown in Figure 5. As the figure shows, ROCS identifies

Table II
FACEBOOK DATA

Method 0-1 Test Error (%) AUC

OCNMF 36.58 (±19.74) 0.7215 (±0.1666)

KPMF 35.76 (±2.76) 0.7013 (±0.0174)

BCD 13.59 (±0.31) 0.9187 (±0.0242)

LFRM 12.38 (±2.82) 0.9156 (±0.0134)

ROCS 11.96 (±1.44) 0.9388 (± 0.0156)

the correct number of clusters even in the presence of noisy

objects. Moreover, it perfectly identifies which objects are

irrelevant, leading to an improved overlapping clustering

(Figure 5, top-right). On the other hand, the LFRM over-

estimates the number of clusters, and wrongly infers the

irrelevant objects as relevant ones (it assigns them to one

or more clusters). Although not shown here, BCD also

assigns all the irrelevant objects to some cluster(s). Note

that for the overlapping clustering task, we cannot directly

compare the results with OCNMF because it produces soft-

partitioning solutions. Also note that KPMF is not applicable

for overlapping clustering.

Facebook Data: This is a real-world dataset extracted

from the Facebook online social network. Specifically, this

dataset is an ego-network in Facebook from [18]. Given a

user (also called ego), an ego-network is constructed by

extracting the subgraph which is induced by the ego and

the ego’s friends. The resulting network represents user-user

interactions around the ego node. There are 228 nodes and

the known number of communities is 14 in this ego-network.

Also, in Facebook, a user can provide profile information

(e.g., age, gender, education information, etc.). By selecting

some informative attributes in this profile information, we

create a feature vector for each user. We select 92 features,

and based on the feature vectors, we create a user-user

similarity matrix by computing the similarity between each

pair of the users using the Gaussian kernel.

The results are shown in Table II. As we can see, our

model yields better results (in predicting the missing links

as measured by the 0-1 error and AUC scores) than the

other baselines. Although BCD did roughly comparably to

our method in terms of predicting the missing entries, it

overestimated the number of clusters (20-22 across multiple

runs), whereas the number of clusters discovered by both

LFRM and our model was close to the ground truth (13-15

across multiple runs).

Table III
DRUG-PROTEIN INTERACTION DATA

Method 0-1 Test Error (%) AUC

KPMF 16.65 (± 0.36) 0.8734 (± 0.0133)

LFRM 2.75 (± 0.04) 0.9032 (± 0.0156)

ROCS 2.31 (± 0.06) 0.9276 (± 0.0142)

Drug-Protein Interaction Data: Our next experiment is

on a drug-protein interaction biological network from [1].



The drug-protein interaction network is a bipartite graph

which represents interactions between 200 drug molecules

and 150 target proteins. In addition to the interaction net-

work, we also have a drug-drug similarity matrix and a

protein-protein similarity matrix which are constructed based

on chemical structure similarity and amino acid sequence

similarity, respectively. The results are shown in Table III.

We excluded the OCNMF and BCD baselines from the

comparison because they are not applicable for bipartite

graphs. Since the IBP based LFRM model proposed in [20]

is also not applicable for bipartite graphs, we use our model

without similarity information and refer this variant of our

model as LFRM for this dataset. As we can see from the

table, our method which makes use of the protein-protein

and drug-drug similarities leads to much better predictions

than both the other baselines: LFRM which uses IBP to

learn the number of clusters but ignores the similarity infor-

mation, and KPMF which takes into account the similarity

information but does not assume overlapping clustering (it is

a latent factor model and needs the number of latent factors

to be specified as well; for KPMF we used the number of

latent factors that gave the best results).

Lazega Lawyers Data: The Lazega lawyers dataset [17]

is a directed, unipartite graph representing the social net-

work between 71 partners and associates in some New

England law firms. In addition, each entity in the network is

described by features such as gender, office-location, age,

years employed, etc. We did some preprocessing of the

features (binarized the features such as the age and years

employed) and then constructed a kernel matrix of pairwise

similarities. Each entry of the kernel matrix measures what

fraction of the features match between two partners. The

results on this dataset are shown in Table IV. As we can

see, even a weak similarity information can yield reasonable

improvements in the prediction accuracy when compared to

the best performing baseline of LFRM.

Table IV
LAZEGA-LAWYERS DATA (FRIENDSHIP NETWORK)

Method 0-1 Test Error (%) AUC

OCNMF 35.36 (±20.71) 0.6388 (±0.1527)

KPMF 34.69 (±1.13) 0.7203 (±0.0229)

BCD 16.58 (±0.56) 0.7876 (±0.0168)

LFRM 14.05 (± 2.04) 0.8025 (± 0.0205)

ROCS 12.98 (± 0.32) 0.8248 (± 0.01642)

VII. RELATED WORK

For doing overlapping clustering in the framework of

stochastic blockmodels, the most similar in spirit to our work

is the nonparametric Bayesian Latent Feature Relational

Model [20] which was also one of our baselines. However,

as discussed earlier in the paper, LFRM does not have a

mechanism to deal with noisy, irrelevant objects and can

not exploit pairwise similarity information that may be

available for many real-world datasets. Moreover, the LFRM

is defined only for unipartite graphs so it can not be applied

to bipartite graph clustering. Other extensions of LFRM

include a recently proposed two-level model [25] which

assumes that each cluster further consists of subclusters, and

a model that uses noisy-OR likelihood model instead of the

Bernoulli likelihood model [22] for links.

The idea of automatically selecting relevant objects in a

stochastic blockmodel was also considered recently in [15].

However, it is different from our model in two ways: (1) it

considers only disjoint clustering whereas we consider the

overlapping clustering, and (2) it cannot exploit pairwise

similarities between objects.

Non-Bayesian methods for overlapping clustering include

clique percolation [24], line graph partitioning [2], ego

network extraction [5], low-rank non-negative matrix fac-

torization based modeling [33], and seed set expansion [30].

The clique percolation method assumes that a graph consists

of overlapping sets of cliques, and considers adjacent cliques

as overlapping clusters in the graph. In [2], a line graph

is constructed from the original graph by converting edges

into nodes. Then deriving clustering on the line graph yields

overlapping clustering of the original graph. Coscia et al.

[5] developed a local-first method which first extracts and

computes clustering of ego networks of each node and then

merges the local communities into a global collection. Low-

rank methods also can be used to detect overlapping clusters.

For example, Yang et al. [33] presented a model-based

community detection algorithm using a non-negative matrix

factorization. Recently, Whang et al. [30] have proposed an

efficient overlapping community detection algorithm using

seed set expansion. They presented effective seed finding

methods and produced a set of small conductance clusters

by expanding the seed sets. Compared with these non-

Bayesian methods, our stochastic blockmodel allows much

more flexibility including detecting an appropriate number

of clusters, incorporating node attributes, and overlapping

clustering of bipartite graphs. Furthermore, our model can

also be applied to link prediction tasks.

Although a number of models exist for disjoint clustering

of bipartite graphs [7], the problem of doing overlapping

clustering for bipartite networks has been relatively less

studied so far. In the specific context of co-clustering of

general data, there have been some prior works such as [37],

[6]. However, these models either do not handle relevant

object selection, do not exploit pairwise object similarities,

and need the number of clusters to be specified a priori.

VIII. DISCUSSION AND CONCLUSION

In this paper, we have presented a flexible model for

modeling relational data such that each object can poten-

tially belong to multiple clusters, irrelevant objects can be

dealt with in a principled manner, and pairwise similarity



between objects can be exploited to regularize the cluster

memberships of objects.

Our model can be easily extended to model multi-

relational data where instead of a single relationship net-

work, we are given multiple relations such as friendships,

work-relation, advice-relations, etc [17]. This can be accom-

plished by having multiple cluster interaction matrices W ,

one per relation. With this modification, the model likelihood

(in our basic model without pairwise similarities) will be a

product over all the M relations
∏M

i=1 P (A(i)|UW
(i)

V
T ),

where {A(i)}M
i=1 are the M observed relation networks. The

other components of our model will remain the same.

An important avenue of future work will be making

the model more scalable. In this paper, we used MCMC

sampling for doing inference in our model. However, it is

possible to employ a different inference machine instead of

MCMC (for example, variational inference methods [14]),

which will make our method faster. This would enable our

model to scale up to reasonably large networks.
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