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Abstract

Suppose that one knows an accurate approximation to an eigenvalue of a real symmetric
tridiagonal matrix. A variant of deflation by the Givens rotations is proposed in order to split
off the approximated eigenvalue. Such a deflation can be used instead of inverse iteration to
compute the corresponding eigenvector.
© 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Suppose that λ approximates an exact eigenvalue λ∗ of a real symmetric tridiag-
onal matrix

T =




a1 b1
b1 a2 b2

· · ·
· · bn−1

bn−1 an


 .

If bi /= 0, i = 1, . . . , n − 1, then it is very tempting to compute an eigenvector x of
T corresponding to λ∗ by solving the almost singular system (T − λI)x = 0 down-
wards:
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x1 = 1, x2 = −(a1 − λ)/b1,

xi = −[
bi−2xi−2 + (ai−1 − λ)xi−1

]
/bi−1, i = 3, . . . , n.

However, the above process is not always successful because the last equation bn−1
xn−1 + (an − λ)xn = 0 may be strongly violated. The main reason is not the round-
off error in computer arithmetic but the slight departure of λ from the true eigenvalue
λ∗. Indeed the last equation may be violated even if all operations are done in exact
arithmetic but with a slightly inaccurate λ. Wilkinson [6,7] tried to cure this defect
but could not succeed. Only in 1983, Godunov [4] found an elegant solution to this
problem. A detailed exposition of Godunov’s solution is found, e.g., in [3]. In 1995,
Fernando [2] independently proposed his own solution, which is applicable in more
general situation and looks slightly simpler than Godunov’s solution.

The present work was initially motivated by an attempt to combine Fernando’s
approach with the deflation techniques developed by Godunov and his collaborators,
and Sorensen’s implicitly restarted Lanczos [5] was considered among possible ap-
plications. In pursuit of this goal a new deflation procedure was discovered, which
can be referred to as an “inner deflation”. In the classical QR algorithm, deflation is
restricted to one of the ends of the tridiagonal band. However, in the proposed inner
deflation the Givens rotations start from both ends of the band and meet inside it.
The deflated eigenvalue emerges at the meeting point on the main diagonal of the
transformed tridiagonal matrix. The rest of the transformed matrix forms a tridiago-
nal band with a bulge near the meeting point that can be chased in any direction. The
inner deflation is simple and robust and provides an alternative to inverse iteration
for computing several eigenvectors of T. The inner deflation idea has previously been
outlined in [1, Section 3.5].

2. The inner deflation

Let us denote the QR factorization of T − λI by Q+R and QL factorization of
T − λI by Q−L. Then

Q+ = G+
1 G+

2 · · ·G+
n−1, Q− = G−

n−1G
−
n−2 · · ·G−

1 ,

where the Givens rotations

G+
i =




I

c+
i s+

i−s+
i c+

i

I


 , G−

i =




I

c−
i s−

i−s−
i c−

i

I




have the blocks(
c±
i s±

i−s±
i c±

i

)
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at the intersection of rows i, i + 1 and columns i, i + 1. The upper triangular matrix
R is computed downwards:

r11 = a1 − λ, r12 = b1,[
c+
i −s+

i

s+
i c+

i

] [
rii ri,i+1 0
bi ai+1 − λ bi+1

]
=

[
Rii Ri,i+1 Ri,i+2
0 ri+1,i+1 ri+1,i+2

]
,

i = 1, . . . , n − 2,[
c+
n−1 −s+

n−1
s+
n−1 c+

n−1

] [
rn−1,n−1 rn−1,n

bn−1 an − λ

]
=

[
Rn−1,n−1 Rn−1,n

0 Rnn

]
,

while the lower triangular matrix L is computed upwards:

ln,n−1 = bn−1, lnn = an − λ,[
c−
i −s−

i

s−
i c−

i

] [
bi−1 ai − λ bi

0 li+1,i li+1,i+1

]
=

[
li,i−1 lii 0

Li+1,i−1 Li+1,i Li+1,i+1

]
,

i = n − 1, . . . , 2,[
c−

1 −s−
1

s−
1 c−

1

] [
a1 − λ b1

l21 l22

]
=

[
L11 0
L21 L22

]
.

Let us fix some k, 1 � k � n − 1, and apply the k − 1 rotations G+
1 , G+

2 , . . . , G+
k−1

and n − k − 1 rotations G−
n−1, G

−
n−2, . . . , G

−
k+1 to the matrix T − λI from the left.

The result will be(
G+

1 G+
2 · · ·G+

k−1G
−
n−1G

−
n−2 · · ·G−

k+1

)T
(T − λI)

=




R11 R12 R13
· · ·

Rk−1,k−1 Rk−1,k Rk−1,k+1
rkk rk,k+1

lk+1,k lk+1,k+1
Lk+2,k Lk+2,k+1 Lk+2,k+2

· · ·
Ln,n−2 Ln,n−1 Lnn




.

After this an additional Givens rotation

Gk =




I

ck sk
−sk ck

I




is applied in order to get a zero at entry (k, k + 1):[
ck −sk
sk ck

] [
rkk rk,k+1

lk+1,k lk+1,k+1

]
=

[
Ľkk 0

Ľk+1,k Ľk+1,k+1

]
.
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Note that we could similarly have applied a rotation to zero out entry (k + 1, k) to
obtain a singleton in the (k + 1)st row. For the sake of convenience we introduce the
matrices Qn = Q+ and

Qk = G+
1 G+

2 · · ·G+
k−1G

−
n−1G

−
n−2 · · ·G−

k+1Gk, 1 � k � n − 1.

As demonstrated above the only possible nonzero entry in the kth row of Nk =
QT

k (T − λI) is Ľkk for 1 � k � n − 1 and Rnn for k = n. At the same time the
matrix QT

k (T − λI)Qk has the following structure:

QT
k (T − λI)Qk =




× ×
× × ×

· · ·
× × ×

× × × × ×
× × × ×
× × × ×
× × × × ×

× × ×
· · ·

× ×




,

which is a real symmetric tridiagonal matrix plus a bulge at entries (k + 2, k − 1)

and (k − 1, k + 2). Since the 2-norms of the kth rows of QT
k (T − λI)Qk and

QT
k (T − λI) are equal, the norm of the kth row of QT

k (T − λI)Qk is �k , where

� = [
�1, �2, . . . , �n

] = [|Ľ11|, |Ľ22|, . . . , |Ľn−1,n−1|, |Rnn|
]
.

Let us choose k such that �k = mini �i . It is shown in the next section that
mini �i � √

n |λ∗ − λ|. Therefore, if
√

n |λ∗ − λ| is negligibly small, then the kth
row and column of QT

k (T − λI)Qk are approximately null, i.e.,

QT
k (T − λI)Qk ≈




× ×
× × ×

· · ·
× × ×

× × 0 × ×
0 0 0 0
× 0 × ×
× 0 × × ×

× × ×
· · ·

× ×




. (1)

In order to recognize the latter structure we use the permutation matrix

�k =

Ik−1 0 0

0 0 1
0 In−k 0


 ,
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which is obtained from I by moving its kth column to the end. Then

�T
k QT

k (T − λI)Qk�k ≈
(

T̂ 0
0 0

)
,

where T̂ is symmetric tridiagonal with a bulge at entries (k − 1, k + 1) and
(k + 1, k − 1):

(
T̂ 0
0 0

)
=




× ×
× × ×

· · ·
× × ×

× × × ×
× × ×
× × × ×

× × ×
· · ·

× × ×
× × 0

0 0




.

The bulge can be easily chased down or up by suitable Givens rotations.
It is easy to show that one inner deflation costs �(n) arithmetic operations. Note

that in (1), the kth column of Qk , i.e., Qkek , is an approximate eigenvector. Thus m
eigenvectors can be recovered from m successive inner deflations in �(m2n) opera-
tions.

3. Error analysis

If x is a unit eigenvector of T corresponding to λ∗, then (T − λI)x = (λ∗ − λ)x.
Since the only possible nonzero element of the kth row of QT

k (T − λI) lies on
the main diagonal and its absolute value equals �k , �k|xk| = |eT

k [QT
k (T − λI)]x| =

|λ∗ − λ||eT
k QT

k x|. Let us choose k0 such that |xk0 | = maxi |xi |, whence |xk0 | � 1/
√

n

owing to ‖x‖2 = 1. From the equality �k = |λ∗ − λ||(Qkek)
Tx|/|xk| we derive the

promised estimate

min
i

�i � �k0 �
√

n |λ∗ − λ|.
Note that Qk0ek0 approximates the eigenvector x, so |(Qk0ek0)

Tx| is close to 1 when
λ∗ is an isolated eigenvalue.

Now the above analysis is modified in order to take rounding errors into account.
Note that the effect of underflow is negligible in our case. It is well known that the
computed value of Nk = QT

k (T − λI) may be written as Ñk = Q̃T
k (T − λI) + �k ,

where Q̃k and Ñk are the computed values of Qk and Nk , respectively, and ‖�k‖2 �
C(n)ε‖T − λI‖2, where C(n) is a polynomial of small degree with coefficients of
order O(1) and ε is the machine epsilon. Thus
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±�̃kxk = eT
k Ñkx

= eT
k

[
Q̃T

k (T − λI)
]
x + eT

k �kx

= eT
k Q̃T

k (λ∗ − λ)x + eT
k �kx,

where �̃k = |Ñk(k, k)| is the computed value of �k . Again by choosing k0 such that
|xk0 | = maxi |xi | we derive the final estimate

min
i

�̃i � �̃k0 �
√

n |λ∗ − λ| + √
nC(n)ε‖T − λI‖2.

4. Numerical example

Consider the positive definite tridiagonal matrix from [4],

T =




2 1
1 1 + ρ ρ

ρ 2ρ ρ

ρ 1 + ρ 1
1 2


 ,

where ρ � 1. The smallest eigenvalue of this matrix lies in the interval (0, 2ρ). Set-
ting ρ to machine precision (≈ 2.22 × 10−16 in IEEE double precision arithmetic)
and λ = 0, we find the computed � values to be:

�̃ = [
.666667 .408248 .444089 × 10−15 .408248 .666667

]
.

Thus in this case k0 = 3 and no other value of k allows deflation.
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