
Co-clustering documents and words using Bipartite
Spectral Graph Partitioning

Inderjit S. Dhillon
Department of Computer Sciences

University of Texas, Austin, TX 78712

inderjit@cs.utexas.edu

ABSTRACT
Both document clustering and word clustering are well stud-
ied problems. Most existing algorithms cluster documents
and words separately but not simultaneously. In this paper
we present the novel idea of modeling the document collec-
tion as a bipartite graph between documents and words, us-
ing which the simultaneous clustering problem can be posed
as a bipartite graph partitioning problem. To solve the par-
titioning problem, we use a new spectral co-clustering algo-
rithm that uses the second left and right singular vectors of
an appropriately scaled word-document matrix to yield good
bipartitionings. The spectral algorithm enjoys some opti-
mality properties; it can be shown that the singular vectors
solve a real relaxation to the NP-complete graph bipartition-
ing problem. We present experimental results to verify that
the resulting co-clustering algorithm works well in practice.

1. INTRODUCTION
Clustering is the grouping together of similar objects. Given

a collection of unlabeled documents, document clustering
can help in organizing the collection thereby facilitating fu-
ture navigation and search. A starting point for applying
clustering algorithms to document collections is to create
a vector space model [20]. The basic idea is (a) to extract
unique content-bearing words from the set of documents
treating these words as features and (b) to then represent
each document as a vector in this feature space. Thus the
entire document collection may be represented by a word-
by-document matrix A whose rows correspond to words and
columns to documents. A non-zero entry in A, say Aij , in-
dicates the presence of word i in document j, while a zero
entry indicates an absence. Typically, a large number of
words exist in even a moderately sized set of documents, for
example, in one test case we use 4303 words in 3893 docu-
ments. However, each document generally contains only a
small number of words and hence, A is typically very sparse
with almost 99% of the matrix entries being zero.

Existing document clustering methods include agglomer-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD 2001San Francisco, California, USA
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

ative clustering[25], the partitional k-means algorithm[7],
projection based methods including LSA[21], self-organizing
maps[18] and multidimensional scaling[16]. For computa-
tional efficiency required in on-line clustering, hybrid ap-
proaches have been considered such as in[5]. Graph-theoretic
techniques have also been considered for clustering; many
earlier hierarchical agglomerative clustering algorithms[9] and
some recent work[3, 23] model the similarity between docu-
ments by a graph whose vertices correspond to documents
and weighted edges or hyperedges give the similarity be-
tween vertices. However these methods are computationally
prohibitive for large collections since the amount of work
required just to form the graph is quadratic in the number
of documents.

Words may be clustered on the basis of the documents in
which they co-occur; such clustering has been used in the
automatic construction of a statistical thesaurus and in the
enhancement of queries[4]. The underlying assumption is
that words that typically appear together should be associ-
ated with similar concepts. Word clustering has also been
profitably used in the automatic classification of documents,
see[1]. More on word clustering may be found in [24].

In this paper, we consider the problem of simultaneous or
co-clustering of documents and words. Most of the existing
work is on one-way clustering, i.e., either document or word
clustering. A common theme among existing algorithms is
to cluster documents based upon their word distributions
while word clustering is determined by co-occurrence in doc-
uments. This points to a duality between document and
term clustering. We pose this dual clustering problem in
terms of finding minimum cut vertex partitions in a bipar-
tite graph between documents and words. Finding a globally
optimal solution to such a graph partitioning problem is NP-
complete; however, we show that the second left and right
singular vectors of a suitably normalized word-document
matrix give an optimal solution to the real relaxation of
this discrete optimization problem. Based upon this obser-
vation, we present a spectral algorithm that simultaneously
partitions documents and words, and demonstrate that the
algorithm gives good global solutions in practice.

A word about notation: small-bold letters such as x, u,
p will denote column vectors, capital-bold letters such as
A, M , B will denote matrices, and script letters such as
V,D,W will usually denote vertex sets.

2. BIPARTITE GRAPH MODEL
First we introduce some relevant terminology about graphs.

A graph G = (V, E) is a set of vertices V = {1, 2, . . . , |V|}



and a set of edges {i, j} each with edge weight Eij . The
adjacency matrix M of a graph is defined by

Mij =

{
Eij , if there is an edge {i, j},
0, otherwise.

Given a partitioning of the vertex set V into two subsets
V1 and V2, the cut between them will play an important
role in this paper. Formally,

cut(V1,V2) =
∑

i∈V1,j∈V2

Mij . (1)

The definition of cut is easily extended to k vertex subsets,

cut(V1,V2, . . . ,Vk) =
∑
i<j

cut(Vi,Vj). (2)

We now introduce our bipartite graph model for represent-
ing a document collection. An undirected bipartite graph
is a triple G = (D,W, E) where D = {d1, . . . , dn}, W =
{w1, . . . , wm} are two sets of vertices and E is the set of
edges {{di, wj} : di ∈ D, wj ∈ W}. In our case D is the set
of documents and W is the set of words they contain. An
edge {di, wj} exists if word wj occurs in document di; note
that the edges are undirected. In this model, there are no
edges between words or between documents.

An edge signifies an association between a document and
a word. By putting positive weights on the edges, we can
capture the strength of this association. One possibility is
to have edge-weights equal term frequencies. In fact, most
of the term-weighting formulae used in information retrieval
may be used as edge-weights, see [20] for more details.

Consider the m×n word-by-document matrix A such that
Aij equals the edge-weight Eij . It is easy to verify that the
adjacency matrix of the bipartite graph may be written as

M =

[
0 A

AT 0

]
,

where we have ordered the vertices such that the first m ver-
tices index the words while the last n index the documents.

We now show that the cut between different vertex sub-
sets, as defined in (1) and (2), emerges naturally from our
formulation of word and document clustering.

2.1 Simultaneous Clustering
A basic premise behind our algorithm is the observation:

Duality of word & document clustering: Word cluster-
ing induces document clustering while document clustering
induces word clustering.

Given disjoint document clusters D1, . . . ,Dk, the corre-
sponding word clusters W1, . . . ,Wk may be determined as
follows. A given word wi belongs to the word cluster Wm

if its association with the document cluster Dm is greater
than its association with any other document cluster. Using
our graph model, a natural measure of the association of a
word with a document cluster is the sum of the edge-weights
to all documents in the cluster. Thus,

Wm =

wi :
∑

j∈Dm

Aij ≥
∑

j∈Dl

Aij , ∀ l = 1, . . . , k

 .

Thus each of the word clusters is determined by the docu-
ment clustering. Similarly given word clusters W1, . . . ,Wk,

the induced document clustering is given by

Dm =

dj :
∑

i∈Wm

Aij ≥
∑

i∈W l

Aij , ∀ l = 1, . . . , k

 .

Note that this characterization is recursive in nature since
document clusters determine word clusters, which in turn
determine (better) document clusters. Clearly the “best”
word and document clustering would correspond to a par-
titioning of the graph such that the crossing edges between
partitions have minimum weight. This is achieved when

cut(W1 ∪ D1, . . . ,Wk ∪ Dk) = min
V1,... ,Vk

cut(V1, . . . ,Vk)

where V1, . . . ,Vk is any k-partitioning of the bipartite graph.

3. GRAPH PARTITIONING
Given a graph G = (V, E), the classical graph bipartition-

ing problem is to find nearly equally-sized vertex subsets
V∗1,V∗2 of V such that cut(V∗1,V∗2) = minV1,V2

cut(V1,V2).
Graph partitioning is an important problem and arises in
various applications, such as circuit partitioning, telephone
network design, load balancing in parallel computation, etc.
However it is well known that this problem is NP-complete[12].
But many effective heuristic methods exist, such as, the
Kernighan-Lin(KL)[17] and the Fiduccia-Mattheyses(FM)[10]
algorithms. However, both the KL and FM algorithms search
in the local vicinity of given initial partitionings and have a
tendency to get stuck in local minima.

3.1 Spectral Graph Bipartitioning
Spectral graph partitioning is another effective heuristic

that was introduced in the early 1970s[15, 8, 11], and pop-
ularized in 1990[19]. Spectral partitioning generally gives
better global solutions than the KL or FM methods.

We now introduce the spectral partitioning heuristic. Sup-
pose the graph G = (V, E) has n vertices and m edges. The
n×m incidence matrix of G, denoted by IG has one row per
vertex and one column per edge. The column corresponding
to edge {i, j} of IG is zero except for the i-th and j-th en-
tries, which are

√
Eij and −

√
Eij respectively, where Eij is

the corresponding edge weight. Note that there is some am-
biguity in this definition, since the positions of the positive
and negative entries seem arbitrary. However this ambiguity
will not be important to us.

Definition 1. The Laplacian matrix L = LG of G is an
n× n symmetric matrix, with one row and column for each
vertex, such that

Lij =


∑

k Eik, i = j
−Eij , i 6= j and there is an edge {i, j}
0 otherwise.

(3)

Theorem 1. The Laplacian matrix L = LG of the graph
G has the following properties.

1. L = D−M , where M is the adjacency matrix and D
is the diagonal “degree” matrix with Dii =

∑
k Eik.

2. L = IGIG
T .

3. L is a symmetric positive semi-definite matrix. Thus
all eigenvalues of L are real and non-negative, and L
has a full set of n real and orthogonal eigenvectors.

4. Let e = [1, . . . , 1]T . Then Le = 0. Thus 0 is an
eigenvalue of L and e is the corresponding eigenvector.



5. If the graph G has c connected components then L has
c eigenvalues that equal 0.

6. For any vector x, xT Lx =
∑

{i,j}∈E Eij(xi − xj)
2.

7. For any vector x, and scalars α and β

(αx + βe)T L(αx + βe) = α2xT Lx. (4)
Proof.

1. Part 1 follows from the definition of L.

2. This is easily seen by multiplying IG and IG
T .

3. By part 2, xT Lx = xT IGIT
Gx = yT y ≥ 0, for all

x. This implies that L is symmetric positive semi-
definite. All such matrices have non-negative real eigen-
values and a full set of n orthogonal eigenvectors[13].

4. Given any vector x, Lx = IG(IG
T x). Let k be the

row of IG
T x that corresponds to the edge {i, j}, then

it is easy to see that

(IG
T x)k =

√
Eij(xi − xj), (5)

and so when x = e, Le = 0.

5. See [11].

6. This follows from equation (5).

7. This follows from part 4 above. tu
For the rest of the paper, we will assume that the graph G

consists of exactly one connected component. We now see
how the eigenvalues and eigenvectors of L give us informa-
tion about partitioning the graph. Given a bipartitioning
of V into V1 and V2 (V1 ∪ V2 = V), let us define the parti-
tion vector p that captures this division,

pi =

{
+1, i ∈ V1,
−1, i ∈ V2.

(6)

Theorem 2. Given the Laplacian matrix L of G and a
partition vector p, the Rayleigh Quotient

pT Lp

pT p
=

1

n
· 4 cut(V1,V2).

Proof. Clearly pT p = n. By part 6 of Theorem 1, pT Lp =∑
{i,j}∈E Eij(pi − pj)

2. Thus edges within V1 or V2 do not

contribute to the above sum, while each edge between V1

and V2 contributes a value of 4 times the edge-weight. tu

3.2 Eigenvectors as optimal partition vectors
Clearly, by Theorem 2, the cut is minimized by the trivial

solution when all pi are either -1 or +1. Informally, the cut
captures the association between different partitions. We
need an objective function that in addition to small cut val-
ues also captures the need for more “balanced” clusters.

We now present such an objective function. Let each
vertex i be associated with a positive weight, denoted by
weight(i), and let W be the diagonal matrix of such weights.
For a subset of vertices V l define its weight to be weight(V l) =∑

i∈V l
weight(i) =

∑
i∈V l

Wii. We consider subsets V1 and

V2 to be “balanced” if their respective weights are equal.
The following objective function favors balanced clusters,

Q(V1,V2) =
cut(V1,V2)

weight(V1)
+

cut(V1,V2)

weight(V2)
. (7)

Given two different partitionings with the same cut value,
the above objective function value is smaller for the more
balanced partitioning. Thus minimizing Q(V1,V2) favors
partitions that have a small cut value and are balanced.

We now show that the Rayleigh Quotient of the follow-
ing generalized partition vector q equals the above objective
function value.

Lemma 1. Given graph G, let L and W be its Laplacian
and vertex weight matrices respectively. Let η1 = weight(V1)
and η2 = weight(V2). Then the generalized partition vec-
tor q with elements

qi =

 +
√

η2
η1

, i ∈ V1,

−
√

η1
η2

, i ∈ V2,

satisfies qT We = 0, and qT Wq = weight(V).

Proof. Let y = We, then yi = weight(i) = Wii. Thus

qT We =

√
η2

η1

∑
i∈V1

weight(i)−
√

η1

η2

∑
i∈V2

weight(i) = 0.

Similarly qT Wq =
∑n

i=1 Wiiq
2
i = η1 + η2 = weight(V). tu

Theorem 3. Using the notation of Lemma 1,

qT Lq

qT Wq
=

cut(V1,V2)

weight(V1)
+

cut(V1,V2)

weight(V2)
.

Proof. It is easy to show that the generalized partition
vector q may be written as

q =
η1 + η2

2
√

η1η2
p +

η2 − η1

2
√

η1η2
e,

where p is the partition vector of (6). Using part 7 of The-
orem 1, we see that

qT Lq =
(η1 + η2)

2

4η1η2
pT Lp.

Substituting the values of pT Lp and qT Wq, from Theo-
rem 2 and Lemma 1 respectively, proves the result. tu

Thus to find the global minimum of (7), we can restrict
our attention to generalized partition vectors of the form in
Lemma 1. Even though this problem is still NP-complete,
the following theorem shows that it is possible to find a real
relaxation to the optimal generalized partition vector.

Theorem 4. The problem

min
q 6=0

qT Lq

qT Wq
, subject to qT We = 0,

is solved when q is the eigenvector corresponding to the 2nd
smallest eigenvalue λ2 of the generalized eigenvalue problem,

Lz = λWz. (8)

Proof. This is a standard result from linear algebra[13]. tu

3.3 Ratio-cut and Normalized-cut objectives
Thus far we have not specified the particular choice of

vertex weights. A simple choice is to have weight(i) = 1 for
all vertices i. This leads to the ratio-cut objective which has
been considered in [14] (for circuit partitioning),

Ratio-cut(V1,V2) =
cut(V1,V2)

|V1|
+

cut(V1,V2)

|V2|
.

An interesting choice is to make the weight of each ver-
tex equal to the sum of the weights of edges incident on it,
i.e., weight(i) =

∑
k Eik. This leads to the normalized-

cut criterion that was used in [22] for image segmentation.
Note that for this choice of vertex weights, the vertex weight
matrix W equals the degree matrix D, and weight(Vi) =



cut(V1,V2)+within(Vi) for i = 1, 2, where within(Vi) is the
sum of the weights of edges with both end-points in Vi. Then
the normalized-cut objective function may be expressed as

N (V1,V2) =
cut(V1,V2)∑
i∈V1

∑
k Eik

+
cut(V1,V2)∑
i∈V2

∑
k Eik

,

= 2− S(V1,V2),

where S(V1,V2) =
within(V1)

weight(V1)
+

within(V2)

weight(V2)
.

Note that S(V1,V2) measures the strengths of associations
within each partition. Thus minimizing the normalized-cut
is equivalent to maximizing the proportion of edge weights
that lie within each partition.

4. THE SVD CONNECTION
In the previous section, we saw that the second eigenvector

of the generalized eigenvalue problem Lz = λDz provides
a real relaxation to the discrete optimization problem of
finding the minimum normalized cut. In this section, we
present algorithms to find document and word clusterings
using our bipartite graph model. In the bipartite case,

L =

[
D1 −A
−AT D2

]
, and D =

[
D1 0
0 D2

]
where D1 and D2 are diagonal matrices such that D1(i, i) =∑

j Aij , D2(j, j) =
∑

i Aij . Thus Lz = λDz may be
written as[

D1 −A
−AT D2

] [
x
y

]
= λ

[
D1 0
0 D2

] [
x
y

]
(9)

Assuming that both D1 and D2 are nonsingular, we can
rewrite the above equations as

D1
1/2x−D1

−1/2Ay = λD1
1/2x,

−D2
−1/2AT x + D2

1/2y = λD2
1/2y.

Letting u = D1
1/2x and v = D2

1/2y, and after a little
algebraic manipulation, we get

D1
−1/2AD2

−1/2v = (1− λ)u,

D2
−1/2AT D1

−1/2u = (1− λ)v.

These are precisely the equations that define the singular
value decomposition (SVD) of the normalized matrix An =

D1
−1/2AD2

−1/2. In particular, u and v are the left and
right singular vectors respectively, while (1 − λ) is the cor-
responding singular value. Thus instead of computing the
eigenvector of the second (smallest) eigenvalue of (9), we can
compute the left and right singular vectors corresponding to
the second (largest) singular value of An,

Anv2 = σ2u2, An
T u2 = σ2v2, (10)

where σ2 = 1 − λ2. Computationally, working on An is
much better since An is of size w × d while the matrix L
is of the larger size (w + d)× (w + d).

The right singular vector v2 will give us a bipartitioning
of documents while the left singular vector u2 will give us a
bipartitioning of the words. By examining the relations (10)
it is clear that this solution agrees with our intuition that
a partitioning of documents should induce a partitioning of
words, while a partitioning of words should imply a parti-
tioning of documents.

4.1 The Bipartitioning Algorithm
The singular vectors u2 and v2 of An give a real approx-

imation to the discrete optimization problem of minimizing
the normalized cut. Given u2 and v2 the key task is to
extract the optimal partition from these vectors.

The optimal generalized partition vector of Lemma 1 is
two-valued. Thus our strategy is to look for a bi-modal
distribution in the values of u2 and v2. Let m1 and m2

denote the bi-modal values that we are looking for. From
the previous section, the second eigenvector of L is given by

z2 =

[
D1

−1/2u2

D2
−1/2v2

]
. (11)

One way to approximate the optimal bipartitioning is by the
assignment of z2(i) to the bi-modal values mj (j = 1, 2) such
that the following sum-of-squares criterion is minimized,

2∑
j=1

∑
z2(i)∈mj

(z2(i)−mj)
2.

The above is exactly the objective function that the classical
k-means algorithm tries to minimize[9]. Thus we use the
following algorithm to co-cluster words and documents:

Algorithm Bipartition

1. Given A, form An = D1
−1/2AD2

−1/2.
2. Compute the second singular vectors of An, u2 and v2

and form the vector z2 as in (11).
3. Run the k-means algorithm on the 1-dimensional data z2

to obtain the desired bipartitioning.

The surprising aspect of the above algorithm is that we
run k-means simultaneously on the reduced representations
of both words and documents to get the co-clustering.

4.2 The Multipartitioning Algorithm
We can adapt our bipartitioning algorithm for the more

general problem of finding k word and document clusters.
One possibility is to use Algorithm Bipartition in a recursive
manner. However, we favor a more direct approach. Just
as the second singular vectors contain bi-modal informa-
tion, the ` = dlog2 ke singular vectors u2, u3, . . . , u`+1, and
v2, v3, . . . , v`+1 often contain k-modal information about
the data set. Thus we can form the `-dimensional data set

Z =

[
D1

−1/2U

D2
−1/2V

]
, (12)

where U = [u2, . . . , u`+1], and V = [v2, . . . , v`+1]. From
this reduced-dimensional data set, we look for the best k-
modal fit to the `-dimensional points m1, . . . , mk by as-
signing each `-dimensional row, Z(i), to mj such that the
sum-of-squares

k∑
j=1

∑
z2(i)∈mj

‖Z(i)−mj‖2

is minimized. This can again be done by the classical k-
means algorithm. Thus we obtain the following algorithm.

Algorithm Multipartition(k)

1. Given A, form An = D1
−1/2AD2

−1/2.
2. Compute ` = dlog2 ke singular vectors of An, u2, . . . u`+1

and v2, . . . v`+1, and form the matrix Z as in (12).
3. Run the k-means algorithm on the `-dimensional data Z

to obtain the desired k-way multipartitioning.



Name # Docs # Words # Nonzeros(A)
MedCran 2433 5042 117987
MedCran All 2433 17162 224325
MedCisi 2493 5447 109119
MedCisi All 2493 19194 213453
Classic3 3893 4303 176347
Classic3 30docs 30 1073 1585
Classic3 150docs 150 3652 7960
Yahoo K5 2340 1458 237969
Yahoo K1 2340 21839 349792

Table 1: Details of the data sets

5. EXPERIMENTAL RESULTS
For some of our experiments, we used the popular Med-

line (1033 medical abstracts), Cranfield (1400 aeronautical
systems abstracts) and Cisi (1460 information retrieval ab-
stracts) collections. These document sets can be down-
loaded from ftp://ftp.cs.cornell.edu/pub/smart. For testing
Algorithm Bipartition, we created mixtures consisting of 2
of these 3 collections. For example, MedCran contains docu-
ments from the Medline and Cranfield collections. Typically,
we removed stop words, and words occurring in < 0.2% and
> 15% of the documents. However, our algorithm has an
in-built scaling scheme and is robust in the presence of large
number of noise words, so we also formed word-document
matrices by including all words, even stop words.

For testing Algorithm Multipartition, we created the Clas-
sic3 data set by mixing together Medline, Cranfield and Cisi
which gives a total of 3893 documents. To show that our
algorithm works well on small data sets, we also created
subsets of Classic3 with 30 and 150 documents respectively.

Our final data set is a collection of 2340 Reuters news
articles downloaded from Yahoo in October 1997[2]. The
articles are from 6 categories: 142 from Business, 1384 from
Entertainment, 494 from Health, 114 from Politics, 141 from
Sports and 60 news articles from Technology. In the prepro-
cessing, HTML tags were removed and words were stemmed
using Porter’s algorithm. We used 2 matrices from this col-
lection: Yahoo K5 contains 1458 words while Yahoo K1 in-
cludes all 21839 words obtained after removing stop words.
Details on all our test collections are given in Table 1.

5.1 Bipartitioning Results
In this section, we present bipartitioning results on the

MedCran and MedCisi collections. Since we know the “true”
class label for each document, the confusion matrix cap-
tures the goodness of document clustering. In addition, the
measures of purity and entropy are easily derived from the
confusion matrix[6].

Table 2 summarizes the results of applying Algorithm Bi-
partition to the MedCran data set. The confusion matrix at
the top of the table shows that the document cluster D0

consists entirely of the Medline collection, while 1400 of the
1407 documents in D1 are from Cranfield. The bottom of
Table 2 displays the “top” 7 words in each of the word clus-
ters W0 and W1. The top words are those whose internal
edge weights are the greatest. By the co-clustering, the word
cluster Wi is associated with document cluster Di. It should
be observed that the top 7 words clearly convey the “con-
cept” of the associated document cluster.

Similarly, Table 3 shows that good bipartitions are also
obtained on the MedCisi data set. Algorithm Bipartition uses
the global spectral heuristic of using singular vectors which

Medline Cranfield
D0: 1026 0
D1: 7 1400

W0: patients cells blood children hormone cancer renal
W1: shock heat supersonic wing transfer buckling laminar

Table 2: Bipartitioning results for MedCran

Medline Cisi
D0: 970 0
D1: 63 1460

W0: cells patients blood hormone renal rats cancer
W1: libraries retrieval scientific research science system book

Table 3: Bipartitioning results for MedCisi

makes it robust in the presence of “noise” words. To demon-
strate this, we ran the algorithm on the data sets obtained
without removing even the stop words. The confusion ma-
trices of Table 4 show that the algorithm is able to recover
the original classes despite the presence of stop words.

5.2 Multipartitioning Results
In this section, we show that Algorithm Multipartition

gives us good results. Table 5 gives the confusion matrix
for the document clusters and the top 7 words of the associ-
ated word clusters found in Classic3. Note that since k = 3
in this case, the algorithm uses ` = dlog2 ke = 2 singular
vectors for co-clustering.

As mentioned earlier, the Yahoo K1 and Yahoo K5 data
sets contain 6 classes of news articles. Entertainment is the
dominant class containing 1384 documents while Technol-
ogy contains only 60 articles. Hence the classes are of varied
sizes. Table 6 gives the multipartitioning result obtained by
using ` = dlog2 ke = 3 singular vectors. It is clearly diffi-
cult to recover the original classes. However, the presence
of many zeroes in the confusion matrix is encouraging. Ta-
ble 6 shows that clusters D1 and D2 consist mainly of the
Entertainment class, while D4 and D5 are “purely” from
Health and Sports respectively. The word clusters show the
underlying concepts in the associated document clusters (re-
call that the words are stemmed in this example). Table 7
shows that similar document clustering is obtained when
fewer words are used.

Finally, Algorithm Multipartition does well on small collec-
tions also. Table 8 shows that even when mixing small (and
random) subsets of Medline, Cisi and Cranfield our algorithm
is able to recover these classes. This is in stark contrast to
the spherical k-means algorithm that gives poor results on
small document collections[7].

6. CONCLUSIONS
In this paper, we have introduced the novel idea of mod-

eling a document collection as a bipartite graph using which
we proposed a spectral algorithm for co-clustering words and
documents. This algorithm has some nice theoretical prop-
erties as it provides the optimal solution to a real relaxation
of the NP-complete co-clustering objective. In addition, our

Medline Cranfield
D0: 1014 0
D1: 19 1400

Medline Cisi
D0: 925 0
D1: 108 1460

Table 4: Results for MedCran All and MedCisi All



Med Cisi Cran
D0: 965 0 0
D1: 65 1458 10
D2: 3 2 1390

W0: patients cells blood hormone renal cancer rats
W1: library libraries retrieval scientific science book system
W2: boundary layer heat shock mach supersonic wing

Table 5: Multipartitioning results for Classic3

Bus Entertain Health Politics Sports Tech
D0: 120 82 0 52 0 57
D1: 0 833 0 1 100 0
D2: 0 259 0 0 0 0
D3: 22 215 102 61 1 3
D4: 0 0 392 0 0 0
D5: 0 0 0 0 40 0

W0: clinton campaign senat house court financ white
W1: septemb tv am week music set top
W2: film emmi star hollywood award comedi fienne
W3: world health new polit entertain tech sport
W4: surgeri injuri undergo hospit england accord recommend
W5: republ advanc wildcard match abdelatif ac adolph

Table 6: Multipartitioning results for Yahoo K1

algorithm works well on real examples as illustrated by our
experimental results.

7. REFERENCES
[1] L. D. Baker and A. McCallum. Distributional

clustering of words for text classification. In ACM
SIGIR, pages 96–103, 1998.

[2] D. Boley. Hierarchical taxonomies using divisive
partitioning. Technical Report TR-98-012, University
of Minnesota, 1998.

[3] D. Boley, M. Gini, R. Gross, E.-H. Han, K. Hastings,
G. Karypis, V. Kumar, B. Mobasher, and J. Moore.
Document categorization and query generation on the
World Wide Web using WebACE. AI Review, 1998.

[4] C. J. Crouch. A cluster-based approach to thesaurus
construction. In ACM SIGIR, pages 309–320, 1988.

[5] D. R. Cutting, D. R. Karger, J. O. Pedersen, and
J. W. Tukey. Scatter/gather: A cluster-based
approach to browsing large document collections. In
ACM SIGIR, 1992.

[6] I. S. Dhillon, J. Fan, and Y. Guan. Efficient clustering
of very large document collections. In V. K.
R. Grossman, C. Kamath and R. Namburu, editors,
Data Mining for Scientific and Engineering
Applications. Kluwer Academic Publishers, 2001.

[7] I. S. Dhillon and D. S. Modha. Concept
decompositions for large sparse text data using
clustering. Machine Learning, 42(1):143–175, January
2001. Also appears as IBM Research Report RJ
10147, July 1999.

[8] W. E. Donath and A. J. Hoffman. Lower bounds for
the partitioning of graphs. IBM Journal of Research
and Development, 17:420–425, 1973.

[9] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. John Wiley & Sons, 2000. 2nd Edition.

[10] C. M. Fiduccia and R. M. Mattheyses. A linear time
heuristic for improving network partitions. Technical

Bus Entertain Health Politics Sports Tech
D0: 120 113 0 1 0 59
D1: 0 1175 0 0 136 0
D2: 19 95 4 73 5 1
D3: 1 6 217 0 0 0
D4: 0 0 273 0 0 0
D5: 2 0 0 40 0 0

W0: compani stock financi pr busi wire quote
W1: film tv emmi comedi hollywood previou entertain
W2: presid washington bill court militari octob violat
W3: health help pm death famili rate lead
W4: surgeri injuri undergo hospit england recommend discov
W5: senat clinton campaign house white financ republicn

Table 7: Multipartitioning results for Yahoo K5

Med Cisi Cran
D0: 9 0 0
D1: 0 10 0
D2: 1 0 10

Med Cisi Cran
D0: 49 0 0
D1: 0 50 0
D2: 1 0 50

Table 8: Results for Classic3 30docs and Classic3 150docs

Report 82CRD130, GE Corporate Research, 1982.

[11] M. Fiedler. Algebraic connectivity of graphs.
Czecheslovak Mathematical Journal, 23:298–305, 1973.

[12] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Company, 1979.

[13] G. H. Golub and C. F. V. Loan. Matrix computations.
Johns Hopkins University Press, 3rd edition, 1996.

[14] L. Hagen and A. B. Kahng. New spectral methods for
ratio cut partitioning and clustering. IEEE
Transactions on CAD, 11:1074–1085, 1992.

[15] K. M. Hall. An r-dimensional quadratic placement
algorithm. Management Science, 11(3):219–229, 1970.

[16] R. V. Katter. Study of document representations:
Multidimensional scaling of indexing terms. System
Development Corporation, Santa Monica, CA, 1967.

[17] B. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 29(2):291–307, 1970.

[18] T. Kohonen. Self-organizing Maps. Springer, 1995.

[19] A. Pothen, H. Simon, and K.-P. Liou. Partitioning
sparse matrices with eigenvectors of graphs. SIAM
Journal on Matrix Analysis and Applications,
11(3):430–452, July 1990.

[20] G. Salton and M. J. McGill. Introduction to Modern
Retrieval. McGraw-Hill Book Company, 1983.

[21] H. Schütze and C. Silverstein. Projections for efficient
document clustering. In ACM SIGIR, 1997.

[22] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Trans. Pattern Analysis and
Machine Intelligence, 22(8):888–905, August 2000.

[23] A. Strehl, J. Ghosh, and R. Mooney. Impact of
similarity measures on web-page clustering. In AAAI
2000 Workshop on AI for Web Search, 2000.

[24] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, second edition, 1979.

[25] E. M. Voorhees. The effectiveness and efficiency of
agglomerative hierarchic clustering in document
retrieval. PhD thesis, Cornell University, 1986.


