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Abstract

We present a new algorithm for computing the singular value decomposi-

tion (SVD) of a matrix. The algorithm is based on using divide-and-conquer

to compute the SVD of a bidiagonal matrix. Compared to the previous al-

gorithm (based on QR-iteration) the new algorithm is at least 9 times faster

on bidiagonal matrices of dimension n = 400, when running on a DEC Alpha

with optimized BLAS. The speedup increases with dimension n. For the dense

singular value decomposition, the speedup ranges from 2.2 to 3.9 for n = 400.

When used to solve dense, square linear least squares problems, the operation

count drops from 12n3 to 8
3
n3, and the speedup ranges from 2.3 to 3.8 for

n = 400. This means using the SVD for the least squares problem averages

only 4.8 times slower than using simple QR decomposition, whereas it used to

be over 15 times slower. We show how to modify the old least squares solver

based on the SVD with QR-iteration to attain slightly better speedup, at the

cost of O(n2) storage. This makes the SVD a much more economical tool than

it was before.
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1 Introduction

Given a matrix A 2 Rm�n with m � n, the singular value decomposition (SVD) of A
is de�ned as

A = X

 
�
0

!
Y T ; (1.1)

where X 2 Rm�m and Y 2 Rn�n are orthogonal matrices, and � 2 Rn�n is a non-
negative diagonal matrix. The columns of X and Y are the left singular vectors and
the right singular vectors of A, respectively, and the diagonal entries �1; � � � ; �n of �
are the singular values of A.

One of the many applications of the SVD is to the solution of the linear least

squares problem:
min
x2Rn

kAx� bk2 ;

where b 2 Rm is a given vector. It is well-known that in the case where A has full
column rank (i.e., � is invertible), the solution to the above problem is

xLS = Y
�
��1 0

�
XT b : (1.2)

When A is rank de�cient, the above problem is usually solved with additional con-
straints, which may be easily expressed by replacing ��1 by its pseudo-inverse or
other approximate inverse. The SVD is also a very useful tool for other constrained
least squares problems [13].

Of the various technique for solving rank de�cient and constrained least squares
problems, the SVD is considered the most reliable. Unfortunately, it is also the
most expensive. When m = n, the SVD based on QR-iteration takes 12n3 oating
point operations (ops) on average, whereas QR decomposition takes only 4

3
n3 ops, 9

times fewer [13, p. 248]. In fact, on current computer architectures with steep memory
hierarchies, the using the SVD may take over 15 times longer than QR decomposition.
This is because the QR decomposition algorithm can be reorganized to exploit the
memory hierarchy [3], but the conventional SVD algorithm is much less amenable to
this reorganization.

The SVD is usually computed in two phases:

Phase I: Use orthogonal transformations to reduce A to an upper bidiagonal matrix:

A = (U1 U2)

 
B

0

!
V T ; (1.3)

where (U1 U2) 2 Rm�m and V 2 Rn�n are orthogonal matrices, with U1 2

Rm�n and U2 2 Rm�(m�n), and

B =

0
BBBBB@

�1 �1

�2
. . .
. . . �n�1

�n

1
CCCCCA
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is an upper bidiagonal matrix.

Phase II: Compute the SVD of B:

B = Q�W T (1.4)

where Q and W are orthogonal matrices.

The SVD of A is then computed as

A = (U1Q U2)

 
�
0

!
(V W )T

Phase II has previously been implemented using QR-iteration [11, 12, 8] or qd
iteration [22, 24]. This has been the bottleneck of the overall algorithm, taking up to
80% of the total time.

We have made three contributions toward overcoming this bottleneck. First, we
have implemented a variation of the bidiagonal divide-and-conquer algorithm (BDC)
of Gu and Eisenstat [17], which is based on previous work by Arbenz and Golub [2],
Cuppen [6], Golub [14], Gu and Eisenstat [15], and Jessup and Sorensen [19], for com-
puting the SVD of B. Our numerical experiments indicate that our implementation
of BDC averages 9-10 times faster for n = 400 than the LAPACK implementation
SBDSQR [1] of the traditional QR based algorithm. This implementation, combined
with LAPACK routines for Phase I and the rest of Phase II, is from 2.3 to 3.9 times
faster than the corresponding LAPACK implementation [1] for computing the full
SVD of A when n = 400.

Our second contribution is a \factored form" version of the BDC, which allows
us to compute the SVD of B in O(n2) ops by representing Q and W as products of
O(log2 n) certain structured orthogonal matrices. Once A has been reduced to upper
bidiagonal form (Phase I), this new version of BDC allows us to �nish the rest of the
computation in (1.2) in O(mn) ops. Since the cost of Phase I is about 4mn2�4n3=3
ops, about twice the cost of computing a QR factorization on A, our result means
that the op count of the SVD based least squares solver is only about twice that of
the QR based solver. The \factored form" version is also useful for the case where
the least squares solution is subject to some simple constraints [13].

Third, we implement another technique for representing the SVD in factored form,
originally suggested in [5], and also known to Rutishauser in the context of Jacobi's
method [23]. The idea is to store all the Givens rotation produced during the bidi-
agonal QR iteration and apply them directly to the solution vector, rather than
accumulating them. This simple change to the current LAPACK routine for solving
the least squares problem with the SVD, also reduces the op count to just twice that
of QR decomposition, but at the cost of O(n2) storage.

Based purely on operation counts, we expect either of our two least squares algo-
rithms to take only about twice as long as the fastest method (QR decomposition).
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This is in fact nearly the case on the DEC Alpha when we use Fortran implementa-
tions of the Basic Linear Algebra Subroutines, or BLAS [10, 9], but not when we use
the BLAS optimized especially for the DEC Alpha. This is because the QR decom-
position can be reorganized to do almost all its oating point operations by calls to
Level 3 BLAS, whereas Phase I of the SVD does half its ops in the Level 3 BLAS
and half in Level 2 BLAS. In Fortran, the Level 2 and 3 BLAS are comparable in
speed; the optimized Level 3 BLAS are up to 4 times faster than the Level 2 BLAS.
Thus, using optimized BLAS, the new SVD based least squares solvers are about 4.4
times slower than QR decomposition for n = 400, not twice as slow.

It may be possible to break the \BLAS 2" barrier in reduction to bidiagonal
form by exploiting successive band reduction techniques proposed for the symmetric
eigenproblem [4], but we have not yet pursued this.

The rest of the paper is organized as follows: Section 2 describes the basic idea of
BDC and its \factored form" version, and shows how to use them to compute the full
SVD and the least squares solution. Section 3 presents our numerical results. And
Section 4 summarizes our conclusions.

2 Solving the full SVD and the least squares prob-

lem using bidiagonal divide-and-conquer (BDC)

In section 2.1 we outline the bidiagonal divide-and-conquer algorithm. In section 2.2
we show how to use it to solve the least squares problem quickly. And in Section 2.3
we show how to solve the least squares problem quickly by modifying the conventional
SVD solution based on QR-iteration.

2.1 BDC and its \factored form" version

BDC recursively divides B into two subproblems as follows1:

B =

0
B@ B1 0

�kek �ke1
0 B2

1
CA ; (2.5)

where B1 2 R(k�1)�k and B2 2 R(n�k)�(n�k) are upper bidiagonal matrices, and ej is
the j-th unit vector of appropriate dimension. We take k = bn=2c.

Assume that we are given the SVDs of B1 and B2:

B1 = Q1(D1 0)W T
1 and B2 = Q2D2W

T
2 ;

1This is actually the dividing strategy used in [2]; BDC in [17] takes out a column (instead of a
row) of B at a time.
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where Qi and Wi are orthogonal matrices of appropriate dimensions, and the Di are
non-negative diagonal matrices. Let (lT1 �1) be the last row of W1, and let fT2 be
the �rst row of W2. Plugging these into (2.5), we get

B =

0
B@ Q1 0 0

0 1 0
0 0 Q2

1
CA
0
B@ D1 0 0

�kl
T
1 �k�1 �kf

T
2

0 0 D2

1
CA
 
W1 0
0 W2

!T
: (2.6)

Note that the middle matrix is quite simple in that its entries can be non-zero only
on the diagonal and in the k-th row. We will discuss the computation of its SVD later
in this section. Let S�GT be the SVD of the middle matrix. Plugging it into (2.6),
we get the SVD of B as (see (1.4))

B = Q�W T

with

Q =

0
B@ Q1 0 0

0 1 0
0 0 Q2

1
CAS and W =

 
W1 0
0 W2

!
G :

To compute the SVDs of B1 and B2, this process can be recursively applied until
the sizes of the subproblems are su�ciently small2. These small subproblems are
then solved using a QR type algorithm (SBDSQR in LAPACK). There can be at most
O(log2 n) levels of recursion.

BDC also has a recursion for computing just the singular values. Let fT1 be the
�rst row of W1; let lT2 be the last row of W2; and let fT and lT be the �rst and last
rows of W , respectively. Suppose that Di, fi, li, and �1 are given for i = 1; 2. Then
we can compute �, f , and l by computing the SVD of the middle matrix in (2.6) as
S�GT , and computing

fT = (fT1 0)G and lT = (0 lT2 )G :

The \factored form" version of BDC is based on the singular value recursion. We
store S and G for each subproblem in the recursion, and never explicitly form any Q
and W at any level, except the bottom level where we use a QR type algorithm.

In order to compute the SVD of the middle matrix in (2.6), we note that, by
permuting the k-th row and column to the �rst row and column, this matrix can be
written as

M =

0
BBBB@

z1 z2 � � � zn
d2

. . .

dn

1
CCCCA ; (2.7)

2Strictly speaking, this process is not quite recursive since, unlike B, B1 is not a square matrix.
This is true for the following singular value recursion also. See [17] for the complete recursions.
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where di's are the diagonal elements of D1 and D2; and zi's are entries of the k-th
row of the middle matrix, with z1 being the (k; k) entry. We permute the matrix
M so we can write D = diag(d1; d2; : : : ; dn) with3 0 � d1 � d2 � : : : � dn, and
z = (z1; z2; : : : ; zn)T . We further assume that

dj+1 � dj � �kMk2 and jzjj � �kMk2 ; (2.8)

where � is a small multiple of � speci�ed in [17]. Any matrix of the form (2.7) can
be reduced to one that satis�es these conditions by the deation procedure described
in [17].

The following lemma characterizes the singular values and singular vectors of M .

Lemma 1 (Jessup and Sorensen [18]) Let S�GT be the SVD of M with

S = (s1; : : : ; sn) ; � = diag(�1; : : : ; �n) and G = (g1; : : : ; gn) ;

where 0 < �1 < : : : < �n: Then the singular values f�ig
n
i=1 satisfy the interlacing

property
0 = d1 < �1 < d2 < : : : < dn < �n < dn + jjzjj2 ;

and the secular equation

f(�) = 1 +
nX

k=1

z2k
d2k � �2

= 0 :

The singular vectors satisfy

si =

 
�1;

d2z2

d22 � �2
i

; : : : ;
dnzn

d2n � �2
i

!T ,vuut1 +
nX

k=2

(dkzk)2

(d2k � �2
i )

2
; (2.9)

gi =

 
z1

d21 � �2
i

; : : : ;
zn

d2n � �2
i

!T ,vuut nX
k=1

z2k

(d2k � �2
i )

2
: (2.10)

On the other hand, given D and all the singular values, we can construct a matrix
with the same structure as (2.7).

Lemma 2 (Gu and Eisenstat [17]) Given a diagonal matrix D = diag(d1; d2; : : : ; dn)
and a set of numbers f�̂ig

n
i=1 satisfying the interlacing property

0 � d1 < �̂1 < d2 < : : : < dn < �̂n ; (2.11)

there exists a matrix

M̂ =

0
BBBB@

ẑ1 ẑ2 � � � ẑn
d2

. . .

dn

1
CCCCA

3
d1 is introduced to simplify the presentation.
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whose singular values are f�̂ig
n
i=1. The vector ẑ = (ẑ1; ẑ2; : : : ; ẑn)T is determined by

jẑij =

vuuut(�̂2
n � d2i )

i�1Y
k=1

(�̂2
k � d2i )

(d2k � d2i )

n�1Y
k=i

(�̂2
k � d2i )�

d2k+1 � d2i

� ; (2.12)

where the sign of ẑi can be chosen arbitrarily.

We use the root-�nder provided by R.-C. Li [21] to �nd approximate singular
values f�̂kgnk=1. Following [17], we then compute fẑkgnk=1 by using (2.12) and compute
the left and right singular vectors of M using (2.9) and (2.10), except we replace zk
by ẑk using the sign of zk. It has been shown [17] that this procedure is numerically
stable, provided that one computes the di�erences di�dj to high relative accuracy, for
1 � i � j � n. This assumption is automatically satis�ed on most modern computers
except some earlier Cray machines (Cray XMP, YMP, C90 and 2) which do not have
a guard digit. We overcome this di�culty by using the following technique provided
by Kahan [20]. Before the singular values are computed, we �rst compute

di := (di + di)� di for i = 1; : : : ; n :

On machines with a guard digit, this does not change di at all (barring overow), but
it chops o� the last bit of di on the the above mentioned Cray machines. After doing
so, the di�erences di � dj can be computed to high relative accuracy even on these
machines. To the best of our knowledge, our code should work on any commercially
signi�cant modern North America computers.

Since S and G are generally dense matrices, storing them explicitly will take O(n2)
storage for the whole recursion. However, we note that they can be reconstructed
from fẑkg

n
k=1, f�̂kg

n
k=1, and fdkgk = 1n whenever they are needed4. Hence in our

implementation, we store these data rather than S and G themselves. This increases
the cost of BDC by O(n2) overall, but reduces the memory requirement from O(n2)
to O(n log2 n), since there are O(log2 n) levels of recursion.

The subroutine for the bidiagonal SVD is called SBDSDC, and the dense SVD
routine that calls it is called SGESBD-DC; these names will be used in section 3.

2.2 Solving the full SVD and the least squares problem

In the current version of LAPACK, in Phase I of the SVD computation (see Section 1),
the matrices (U1 U2) and V are generated as products of Householder transforma-
tions, and in Phase II, the matrices Q and W are generated as products of Givens
rotations. When the full SVD of A is desired, (U1 U2) and V are explicitly computed
and the Givens rotations in Q and W are applied to U1 and V as soon as they are
generated.

4The actual implementation is slightly more complicated for e�ciency and stability reasons.
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When the least squares solution (1.2) is desired, it is then computed as

x1 � UT
1 b ; x2 � QTx1 ; x3 � ��1x2 and xLS = (VW )x3 ; (2.13)

where x1 is computed by applying the Householder transformations directly to b, x2
is computed by applying the Givens rotations directly to x1, and xLS is computed
by explicitly forming the matrix VW , as is done in the dense SVD case, and then
applying VW to x3. We note that computing VW takes O(n3) ops in general.

In contrast, for the full SVD computation, we �rst compute the matricesQ andW
explicitly, by organizing the computation to use level 3 BLAS as much as possible, and
then compute U1Q and V W by applying the sequence of Householder transformations
to Q and W , respectively. This approach is similar to that used for computing the
full eigendecomposition of a dense symmetric matrix by using Cuppen's divide-and-
conquer algorithm [25]. The current implementation requires 3n2 + O(n) workspace
in order to use the level-3 BLAS. We have developed some techniques to reduce this
workspace requirement to O(nNB), where NB is the block size, a machine dependent
parameter that balances the e�ciency of level-3 BLAS and workspace requirement.
We plan to use these techniques in a future version of our implementation.

To compute the least squares solution (1.2), we use the \factored form" version
of BDC. After Phase I, A is reduced to the upper bidiagonal matrix B, with the
orthogonal transformations (U1 U2) and V returned as products of Householder
transformations. We then compute x1 as in (2.13). This can be done in O(mn)
ops [13]. To compute x2, we note that Q is represented as a product of O(log2 n)
orthogonal matrices, the i-th of which is block diagonal with the diagonal blocks being
1's and left singular vector matrices on the i-th level in the recursion. Since there
are 2i�1 submatrices on the i-th level with each submatrix having size O(n=2i�1), the
cost of applying the transposes of these matrices to a vector is

O

��
n=2i�1

�2�
� 2i�1 = O

�
n2=2i�1

�
;

summing all these costs up, the cost for computing x2 = QTx1 is

O(log2 n)X
i=1

O
�
n2=2i�1

�
= O(n2)

ops. Computing x3 takes O(n) ops. To compute xLS from x3, we do not explicitly
form VW . Instead, we compute

x4 �Wx3 and xLS = V x4 : (2.14)

By the same argument as above, x4 can be computed in O(n2) ops. Finally, it
is again well known that computing xLS as V x4 takes O(n2) ops [13]. Overall,
computing xLS after Phase I takes O(mn) ops.

The routine for solving the least squares problem using divide-and-conquer is
called SGELSD; this name will be used in section 3.
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2.3 A Fast SVD Least Squares Solver Based on QR Itera-

tion

It turns out that explicit computation of VW can be avoided even with the QR based
SVD algorithms, as originally noted in [5]. Instead of computing xLS as (VW )x3, we
can again compute xLS as in (2.14). x4 can be computed by saving all O(n2) Givens
rotations performed in computing the SVD of B, and applying them to x3 in reverse
order; xLS can then be computed as V x4 as above. Let t be the total number of such
Givens rotations. Then the cost of computing xLS after Phase I is O(mn + t) ops.
Since we usually expect t = O(n2), this cost is again O(mn) ops. One drawback
with this approach, however, is that it requires O(t) storage, and we cannot bound t

exactly beforehand.
The routine implementing this idea is called SGELSS-QRf (for \QR iteration,

factored"); this name will be used in section 3. The existing LAPACK routine will
be called SGELSS-QR.

3 Numerical Experiments

We ran the following experiments on a Dec Alpha 3000/500X with a 200Mhz clock, 8
KByte �rst level cache and 512 KByte second level cache. The optimized BLAS were
those in DEC's mathematical software library dxml. We compiled using f77 with
the -O optimization option. All experiments were run in single precision, i.e. 32-bit,
IEEE oating point arithmetic. We let � = 2�23 denote the machine precision.

Table 1 lists the names of the subroutines we test and what they do. The reader
may want to refer to this table to interpret the following performance tables.

3.1 Performance of the BLAS and basic LAPACK decom-

positions

Table 2 reports on the speed in Megaops of the BLAS, SGEMV (matrix-vector mul-
tiplication) and SGEMM (matrix-matrix multiplication). It also reports the speeds
of LU decomposition (SGETRF), QR decomposition (SGEQRF) and bidiagonal re-
duction (SGEBRD). It does this both for Fortran BLAS and optimized BLAS. All
matrices are dimensioned (LDA,N), where LDA = 513. The block size NB in the
blocked algorithms for SGETRF, SGEQRF and SGEBRD was 32. It is interesting to
see that the performance of SGEMV is a strongly nonmonotonic function of matrix
dimension. We believe this is because for N < 256, the matrix �ts in second level
cache without conicts, whereas for N � 256, cache conicts and cache misses occur.
The Level 3 BLAS routines like SGEMM can more easily compensate for this than
Level 2 BLAS like SGEMV.
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Table 1: Names and descriptions of routines tested

Name Description Status
SGEMV Matrix-vector multiply Level 2 BLAS
SGEMM Matrix-matrix multiply Level 3 BLAS
SGETRF LU decomposition in LAPACK
SGEQRF QR decomposition in LAPACK
SGEBRD Reduction to bidiagonal form in LAPACK
SBDSQR Compute complete SVD of a bidiagonal in LAPACK

matrix using QR iteration
SBDSDC Compute complete SVD of a bidiagonal new routine

matrix using divide-and-conquer
SGESVD-QR Compute complete SVD of a dense matrix in LAPACK

using QR iteration as SGESVD
SGESVD-DC Compute complete SVD of a dense matrix new routine

using divide-and-conquer
SGELS Solve the least squares problem using in LAPACK

QR decomposition
SGELSX Solve the least squares problem using in LAPACK

QR decomposition with pivoting
SGELSS-QR Solve the least squares problem using in LAPACK

the SVD based on QR-iteration as SGELSS
SGELSS-QRf Solve the least squares problem using new routine

the SVD based on QR-iteration but where
the left singular vectors are left factored

SGELSD Solve the least squares problem using new routine
the SVD based on divide-and-conquer
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Table 2: Speed of BLAS and LAPACK Routines (NB = 32, LDA = 513)

Speed in megaops using optimized BLAS
Dimension

Routine Description 50 100 200 300 400 500
SGEMV matrix-vector multiply 64.7 60.6 64.2 44.7 39.3 35.7
SGEMM matrix-matrix multiply 128.1 146.4 134.4 136.3 136.8 140.3
SGETRF LU decomposition 42.0 56.5 78.9 88.9 93.8 94.0
SGEQRF QR decomposition 44.0 51.4 77.5 90.9 97.6 102.9
SGEBRD Bidiagonal reduction 38.5 49.1 52.1 50.5 50.6 51.3

Speed in megaops using Fortran BLAS
Dimension

Routine Description 50 100 200 300 400 500
SGEMV matrix-vector multiply 51.7 50.2 51.0 41.5 36.8 32.6
SGEMM matrix-matrix multiply 42.7 48.8 51.4 41.4 36.3 32.5
SGETRF LU decomposition 28.0 30.8 39.7 42.9 44.2 45.3
SGEQRF QR decomposition 35.2 38.5 36.2 35.8 35.5 35.1
SGEBRD Bidiagonal reduction 31.5 41.1 33.0 31.9 32.3 32.6

3.2 Performance of the Bidiagonal SVD

We report on the speed of the bidiagonal SVD (computing all singular values and
left and right singular vectors). We used four types of test matrices, all generated by
LAPACK test matrix generator SLATMS:

Type 1. These bidiagonal matrices were randomly generated with singular values
distributed arithmetically from � up to 1.

Type 2. These bidiagonal matrices were randomly generated with singular values
distributed geometrically from � up to 1.

Type 3. These bidiagonal matrices have 1 singular value at 1 and the other n � 1
clustered at �.

Type 4. These bidiagonal matrices were generated by taking a dense matrix with
independent random entries uniformly distributed in (�1; 1), and reducing it to
bidiagonal form.

Table 3 shows the speedup of SBDSDC, the bidiagonal SVD based on divide-
and-conquer, with respect to SBDSQR, the bidiagonal SVD based on QR-iteration
(all singular values and left and right singular vectors are computed). As can be
seen, the speedup is a growing function of matrix dimension. Indeed, the running
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Table 3: Speedup of SBDSDC over SBDSQR

Speedup using optimized BLAS
Dimension

Test Matrix 50 100 200 300 400
type 1 1.48 2.71 5.53 7.94 9.47
type 2 1.33 2.35 5.79 8.67 11.33
type 3 18.00 55.10 68.97 97.59 121.43
type 4 1.59 2.93 6.00 8.57 10.56

Speedup using Fortran BLAS
Dimension

Test Matrix 50 100 200 300 400
type 1 1.58 2.27 3.67 4.47 5.00
type 2 1.33 2.41 4.78 6.67 7.67
type 3 42.86 55.10 62.07 82.81 116.67
type 4 1.62 2.27 4.00 4.94 5.76

time for SBDSDC appears to grow like n2:3 rather than n3, as for SBDSQR. Also,
the speedup is better when using the optimized BLAS rather than Fortran BLAS,
because SBDSDC spends much of its time in SGEMM, whereas SBDSQR cannot
even use Level 2 BLAS.

3.3 Performance of the Dense SVD

We report on the speed of the dense SVD (computing all singular values and left and
right singular vectors). We used the same four test matrix types as before, but now
all are dense.

Table 4 shows how much the dense SVD speeds up when using divide-and-conquer
instead of QR, both for optimized BLAS and Fortran BLAS. When n = 400, the
speedups range from 2.19 to 3.86 for the optimized BLAS, and much less for For-
tran BLAS. This is because using optimized BLAS helps SBDSDC much more than
SBDSQR, as seen in Table 3.

Table 5 shows what fraction of time the dense SVD spends doing the bidiagonal
SVD. The results are shown only for optimized BLAS; the Fortran BLAS fractions
are comparable but slightly lower. The most signi�cant result is that the bidiagonal
fraction goes from being 60% to 80% of the total time for SGESVD-QR to at most
25% for SGESVD-DC, for large matrices. This means that the bidiagonal SVD has
gone from being the bottleneck in the dense SVD to a small fraction of time.

Thus, any signi�cant further improvements in the speed of the dense SVD must
come from speeding up the non-bidiagonal part of the computation. One way to



13

Table 4: Speedup of SGESVD-DC over SGESVD-QR

Speedup using optimized BLAS
Dimension

Test Matrix 50 100 200 300 400
type 1 1.07 1.65 2.55 2.85 3.07
type 2 0.97 1.29 1.79 2.03 2.19
type 3 2.22 3.08 3.42 3.85 3.86
type 4 1.16 1.70 2.55 2.91 3.29

Speedup using Fortran BLAS
Dimension

Test Matrix 50 100 200 300 400
type 1 0.92 1.16 1.62 1.74 1.69
type 2 0.76 0.92 1.35 1.35 1.38
type 3 1.69 1.86 1.93 1.80 1.92
type 4 0.97 1.19 1.62 1.76 1.75

do this is to abandon computing the singular vectors explicitly, leaving them in the
factored form provided by the algorithm. We exploit this possibility in the next
section.

3.4 Performance of Solvers for the Linear Least Squares

Problem

We consider solving N -by-N least squares problems with single right hand sides. We
use the same four test matrices as before. The algorithms we consider are

� SGELS - QR decomposition (currently in LAPACK)

� SGELSX - QR decomposition with pivoting (currently in LAPACK)

� SGELSS-QR - SVD (currently in LAPACK)

� SGELSS-QRf - SVD but maintaining the left singular vectors of the bidiagonal
matrix as a list of O(N2) Givens rotations

� SGELSD - SVD based on divide-and-conquer, factored form

We present square problems only, sinceM -by-N problems withM � N are generally
reduced to an N -by-N problem by an initial QR decomposition, and this dominates
all later computations.
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Table 5: Fraction of time Dense SVD spends in Bidiagonal SVD (optimized BLAS)

Fraction of SGESVD-DC spent in SBDSDC
Dimension

Test Matrix 50 100 200 300 400
type 1 0.50 0.42 0.35 0.29 0.25
type 2 0.43 0.30 0.20 0.16 0.13
type 3 0.09 0.04 0.04 0.03 0.02
type 4 0.51 0.41 0.32 0.27 0.25

Fraction of SGESVD-QR spent in SBDSQR
Dimension

Test Matrix 50 100 200 300 400
type 1 0.69 0.70 0.75 0.79 0.78
type 2 0.59 0.55 0.65 0.66 0.67
type 3 0.71 0.73 0.74 0.81 0.77
type 4 0.70 0.71 0.75 0.79 0.79

In addition to measuring the speedup of SGELSD and SGELSS-QRf over SGELSS-
QR, we measure times relative to SGELS, the fastest, and least reliable, of all the
methods. This quanti�es the tradeo� between speed and reliability inherent in this
problem. Results shown in tables are for optimized BLAS only.

Table 6 shows that both new least squares solvers, SGELSS-QRf and SGELSD,
are signi�cantly faster than the older SGELSS. Table 7 shows that a fully reliable
SVD-based solution to the linear least square problem now costs no more than 4.35
times as much as the fastest solver (SGELS), whereas it used to cost as much as 15
times more. Furthermore, it is only about twice as expensive as the more reliable
QR with pivoting scheme used in SGELSX. \Completely reliable" rank-revealing QR
schemes have been designed [16], and these are likely to be intermediate in speed
between SGELSX and the SVD based schemes. The table entry describing the speed
of SGEBRD (bidiagonal reduction), which is performed by all SVD based schemes
we consider, shows that at best we can expect to run 3.37 times faster than SGELS,
and we are close to this lower bound.

When using Fortran BLAS, the time for SGELSD decreases to about 2.5 times as
much as SGELS, and SGEBRD takes about twice as long as SGELS, as predicted by
the operation counts.

3.5 Accuracy Assessment

We use two measures of accuracy of the computed SVD A = X�Y T : the residual
maxi kAyi � �ixik=(��1) and the orthogonality of the singular vectors max(kY Y T �
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Table 6: Speedups of New SVD-based Least Squares Solvers

Speedup of SGELSD over SGELSS-QR
Dimension

Test Matrix 50 100 200 300 400
type 1 0.87 1.33 2.36 2.95 3.18
type 2 0.86 1.27 2.07 2.18 2.32
type 3 2.77 3.38 3.78 4.00 3.82
type 4 0.89 1.43 2.54 3.21 3.18

Speedup of SGELSS-QRf over SGELSS-QR
Dimension

Test Matrix 50 100 200 300 400
type 1 1.50 2.00 2.93 3.47 3.59
type 2 1.33 1.69 2.35 2.47 2.38
type 3 1.57 2.00 2.98 3.29 3.33
type 4 1.48 2.00 3.10 3.59 3.50

Ik=�; kXXT � Ik=�), where � is machine precision. Ideally these two measure should
be O(1) for any dimension, but we would not be unhappy to get numbers growing
with N , perhaps as O(N), although we cannot prove so tight a bound. In fact, the
QR based SVD routines exhibit measures as large as 2N for N = 400, though they
are usually much smaller, whereas the ratios for divide-and-conquer routines were
never larger than 13. In other words, the divide-and-conquer based SVD is not only
faster but more accurate than the QR based approach.

The above results are for dense matrices. It turns out one can prove tighter relative
error bounds for singular values and singular vectors for the QR-based bidiagonal
SVD [8, 7]. We currently cannot guarantee this high relative accuracy with divide-
and-conquer, just the absolute accuracy described in the last paragraph.

4 Conclusions

We have described a new implementation of the singular value decomposition which
is both faster and more accurate than its predecessor. It achieves this by using a
divide-and-conquer bidiagonal SVD algorithm instead of QR iteration. The speedup
on bidiagonal matrices grows with dimension, so that for 400-by-400 matrices, the
bidiagonal SVD is taking just 25% of the total time for the dense SVD, whereas the
older bidiagonal SVD took up to 80% of the total time. This means the bidiagonal
SVD is no longer the bottleneck in the computation.

We have also shown how to achieve large speedups for solving the linear least
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Table 7: Timings of Least Squares Solvers relative to SGELS

Time(SGELSX) / Time(SGELS)
Dimension

Test Matrix 50 100 200 300 400
type 1 1.49 1.29 1.60 1.88 2.39
type 2 1.49 1.45 1.87 2.19 2.72
type 3 1.32 1.09 1.53 1.84 2.39
type 4 1.15 1.16 1.53 1.84 2.39

Time(SGEBRD) / Time(SGELS)
Dimension

Test Matrix 50 100 200 300 400
all types 1.32 1.68 2.73 2.79 3.37

Time(SGELSS-QRf) / Time(SGELS)
Dimension

Test Matrix 50 100 200 300 400
type 1 3.73 3.23 3.87 3.95 4.24
type 2 3.05 2.68 3.40 3.49 4.02
type 3 3.90 3.44 3.80 3.95 4.24
type 4 3.38 3.23 3.87 3.95 4.35

Time(SGELSD) / Time(SGELS)
Dimension

Test Matrix 50 100 200 300 400
type 1 6.44 4.84 4.80 4.65 4.78
type 2 4.75 3.55 3.87 3.95 4.13
type 3 2.20 2.03 3.00 3.26 3.70
type 4 5.59 4.52 4.73 4.42 4.78

Time(SGELSS-QR) / Time(SGELS)
Dimension

Test Matrix 50 100 200 300 400
type 1 5.59 6.45 11.33 13.72 15.22
type 2 4.07 4.52 8.00 8.60 9.57
type 3 6.10 6.88 11.33 13.02 14.13
type 4 5.00 6.45 12.00 14.19 15.22
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squares problem using the SVD.While the old SVD based least squares solver required
12n3 ops and took up to 15 times longer than the fastest backward stable solution,
the new SVD based routines require just 8

3
n3 ops and take 4.4 times as long. These

results make the SVD a more practical tool in a variety of computations.
Our improved routines will be part of a future LAPACK release.
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