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Abstract—Link prediction is a fundamental problem in social
network analysis and modern-day commercial applications such
as Facebook and Myspace. Most existing research approaches
this problem by exploring the topological structure of a social
network using only one source of information. However, in
many application domains, in addition to the social network
of interest, there are a number of auxiliary social networks
and/or derived proximity networks available. The contribution
of the paper is twofold: (1) a supervised learning framework
that can effectively and efficiently learn the dynamics of social
networks in the presence of auxiliary networks; (2) a feature
design scheme for constructing a rich variety of path-based
features using multiple sources, and an effective feature selection
strategy based on structured sparsity. Extensive experiments on
three real-world collaboration networks show that our model
can effectively learn to predict new links using multiple sources,
yielding higher prediction accuracy than unsupervised and single-
source supervised models.

Index Terms—social network; link prediction; multiple
sources; supervised learning;

I. INTRODUCTION

Social networks are dynamic by nature. They change
quickly over time when new relationships establish between
people (called actors), and when old relationships dissolve.
These relational changes, characteristics of the actors, charac-
teristics of pairs of actors, and random unexplained influences
are the joint contribution to the dynamics of a network
topology. Understanding the mechanisms by which the social
networks evolve is a fundamental question that is still not well
understood, and it forms the motivation for our work here.

In addition to the links in the network, we may also have
exogenous features with various level of uncertainty, most
interestingly the auxiliary networks between the same group of
vertices from heterogeneous sources. Take the Facebook net-
work for example, besides the friendship relations between the
users, there are other relations based on blog article citations
and commenting, or online messaging. Another example is the
so-called collaboration network among scientific researchers.
A collaboration relation forms between two researchers if
they have co-authored a paper, but there are other types of
relations or proximity that are informative for telling whether
they will have collaboration in the future, e.g., whether they
have attended the same conference, whether they have cited
the same papers, or whether they have published papers with
similar keywords.
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In this paper, we focus on exploiting the topological in-
formation for a basic computational problem underlying so-
cial network evolution—the link prediction problem. Given
snapshots of an evolving social network from time 1 to t,
we seek to accurately predict the edges that will be added to
the network during the interval from time t to a future time
t+ 1. This problem is also related to uncovering hidden links
in a network, which can be considered as a missing value
problem for entries of the graph’s adjacency matrix. Various
unsupervised [1], [11], [14] and supervised [7], [12], [20]
models have been proposed to address these problems, assum-
ing there is one network available. However, there is little work
on incorporating auxiliary sources in link prediction. Kashima
et al. [10] introduced a link propagation framework to exploit
multiple types of links between vertices. However, this work is
largely unsupervised, and only works for missing link recovery
in static networks. In constrast, we aim to find a predictive
model for evolving networks and learn the dynamics with a
supervised framework.

Overview: In Section II we give some background on
statistical network models for link prediction. In Section III we
present a dynamic model for network evolution with multiple
auxiliary networks. In Section IV we show how to fit the model
and make predictions using historical and auxiliary network
information. Then in Section V, we discuss regularization
strategies to trim these features with supervision. In Section VI
we present experimental results, which show that supervision
with multiple sources outperform single source methods.

Contribution: Our contribution in this paper is twofold:
(1) a supervised learning framework that can effectively and
efficiently learn the dynamics of social networks in the pres-
ence of auxiliary networks; and (2) a feature design scheme
for constructing a rich variety of path-based features using
multiple sources, and an effective feature selection strategy
based on structured sparsity. A longer and more detailed
version of this paper is the technical report [15].

II. BACKGROUND

Our work is motivated by the long thread of work in
statistical modeling of static and dynamical social networks,
as well as the work on heuristic but practically effective
unsupervised link prediction models. We now give a brief
introduction to the two contrasting threads of work, with
emphasis on the parts that are directly related to our model.



A. Unsupervised Link Prediction

Various models have been proposed for link prediction,
which, as summarized in [14], generally fall into three cate-
gories. The first category has methods based on vertex neigh-
borhoods, including Common neighbors [17], Adamic/Adar [1],
Preferential Attachment [3], [16]. The second category has
methods based on the ensemble of all paths, including Katz
[11] and Hitting Time, while the third category includes high
level approaches, such as matrix factorization and clustering.
All of these methods rely on a predictive score function for
all entries to get a ranking of edges that are likely to occur.

We will elaborate on the Katz measure [11], for its modeling
simplicity and its wide success in practice. More importantly,
as we will show later, Katz is closely related to the proposed
framework and provides a justification for our work. The
Katz measure directly sums over the collection of paths,
exponentially damped by length to count short paths more
heavily, leading to the β-parametrized measure:

scoreKatz(i, j) =
∞∑
l=1

βl|path〈l〉i,j |, (1)

where path〈l〉i,j is the set of all length-l paths from vertex i to
j. With the adjacency matrix A of the graph, one can verify
that for β < 1/‖A‖2, the score matrix is given by

scoreKatz =
∞∑
l=1

βlAl = (I− βA)−1 − I. (2)

When inverting (I − βA) becomes too expensive, one can
choose to stop after paths of length lmax in (2) to get the
truncated Katz score:

scoretKatz =
lmax∑
l=1

βlAl. (3)

It is easy to see that truncated Katz becomes a good approxi-
mation of Katz when β is small enough. In practice truncated
Katz often outperforms Katz for link prediction.

B. Dynamical Random Graph Models

In contrast to the heuristic methods for link prediction, there
is a group of models devoted to study the intrinsic mechanism
governing the topological changes of networks over time.
For a series of snapshots A(t) of a network at different
time steps, a statistical model for network evolution can be
estimated. Usually it is assumed that the underlying states of
the social network follow a stationary Markov process, and the
statistical modeling therefore boils down to the modeling of a
transition probability, P(A(t+1)|A(t)). For example, Robins
and Pattison [18] and Hanneke et al. [5] have studied a family
of models of network dynamics over discrete time steps, with
an exponential random graph model (ERGM) describing the
transition probability

P(A(t+1)|A(t)) ∝ e〈θ,Φ(A(t+1)|A(t))〉,

where Φ(A(t+1)|A(t)) denotes the vector of sufficient statis-
tics and θ denotes the vector with natural parameters.

III. LEARNING THE DYNAMICS

A. Dynamics of Social Network Evolutions

In this section we will describe in detail our model for
the dynamics of social network evolution in the presence of
multiple auxiliary networks. For simplicity, we only consider
the undirected unweighted graph, which implies that all rela-
tionships are mutual and weighted equally. It is straightforward
to extend these models to directed and/or weighted graphs.

Suppose we observe snapshots of an evolving social net-
work from time τ = 1, · · · , t, with the corresponding adja-
cency matrices A(1), · · · ,A(t). The task is to find a prediction
model for A(t+1). We assume no vertices are added or
removed during the evolution, but edges could form and/or
disappear at each time step. In addition to A(1), · · · ,A(t), we
have snapshots of a network from heterogeneous but related
source denoted B(1), · · · ,B(t).

We start describing our model with the following two
assumptions:

P(A(τ)|A(1:τ−1),B(1:τ−1)) = P(A(τ)|A(τ−1),B(τ−1)) (A1)

P(A(τ)|A(τ−1),B(τ−1)) =
∏
i,j

P(A
(τ)
ij |A

(τ−1),B(τ−1)) (A2)

In (A1) we assume the evolution of A(τ) is a Markov process,
where the probability of network state A(τ) is governed
jointly by A(τ−1) and B(τ−1). In (A2) we assume that
P(A(τ)|A(τ−1),B(τ−1)) fully factorizes. Both assumptions
are made for modeling tractability. We can loosen (A1) to
include the dependence of current snapshot on m previous
time steps yielding P(A(τ)|A(τ−m:τ−1),B(τ−m:τ−1)) which
makes more sense in a collaboration network, since the
underlying relationship may not appear as observable events
(e.g., co-authoring a paper) in the duration time of a certain
snapshot. For notational simplicity, we will describe the case
for m = 1, while discussing the case of multiple retrospective
steps only when the extension is not trivial.

B. Probabilistic Model

We generalize the ERGM [5], [18] to describe the transition
probability

P(A(τ)|A(τ−1),B(τ−1)) ∝ e〈θ,Φ(A(τ)|A(τ−1),B(τ−1))〉,

where Φ(A(τ)|A(τ−1),B(τ−1)) is the “sufficient statistics” as-
sociated with A(τ) conditioned on the historical states A(τ−1)

and B(τ−1), and θ = [θ1, · · · , θK ]> denotes the natural
parameters to be learned. Using (A2) we can simplify and
model the probability for each link P(A(τ)

ij |A(τ−1),B(τ−1))
as

1
Zij(θ,A(τ−1),B(τ−1))

e
∑K

k=1
θkφk(A

(τ)
ij
|A(τ−1),B(τ−1)),

where φk(A(τ)
ij |A(τ−1),B(τ−1)) is the kth statistic associated

with pair (i, j), and Zij(θ,A(τ−1),B(τ−1)) is the normaliza-
tion constant. Since we are modeling the presence/absence of
the link A(τ)

ij , one natural choice of the feature φk is

φk(A
(τ)
ij |A

(τ−1),B(τ−1)) = A
(τ)
ij · gk,ij(A

(τ−1),B(τ−1)) (4)



where A
(τ)
ij ∈ {0, 1}, and gk,ij(A(τ−1),B(τ−1)) is the kth

feature extracted from previous snapshot A(τ−1) and B(τ−1)

for pair (i, j). Usually gk,ij(A(τ−1),B(τ−1)) summarizes a
certain local property from A(τ−1) and B(τ−1) of interest
to the generation of link (i, j), e.g. gk,ij(A(τ−1),B(τ−1)) =∑
nB

(τ−1)
in B

(τ−1)
nj gives the number of common neighbors in

B(τ−1). Note that we assume all the links are formed based
on the same local dynamics. This implies the same parameter
θk for all (i, j) in each gk,ij .

Introducing the latent potential

pθ(i, j) =
K∑
k=1

θkgk,ij(A(τ−1),B(τ−1)), (5)

it follows from (4) that the model is a logistic regression

P(A(τ)
ij = 1|A(τ−1),B(τ−1)) =

epθ(i,j)

1 + epθ(i,j)
. (6)

This implies that the probability of having a link formed
beteween i and j at time τ is governed by (5), which is a linear
combination of gk,ij(A(τ−1),B(τ−1)) from snapshot τ − 1.

IV. MODEL FITTING

Suppose we want to predict the links in snapshot A(t+1),
and have as observations the historical snapshots of the
main network A(1), · · · ,A(t) as well as auxiliary network
B(1), · · · ,B(t). Extension to more than one auxiliary network
is straightforward.

A. Model Fitting and Prediction

The task of model fitting is to determine θ from obser-
vations A(1), · · · ,A(t) and B(1), · · · ,B(t), and predict the
links in A(t+1). The problem we focus on is the formation of
new links in the main network, i.e. links that do not appear
in the retrospective steps. Let Eτ denote the set of links in
snapshot τ , let Nτ denote new links formed in time interval
[τ, τ +1], and Zτ denote the complement of Eτ ∪Nτ . Clearly
Eτ+1 = Eτ ∪Nτ while Eτ ∪Nτ ∪Zτ is the set of all possible
pairs. The task is to find θ = [θ1, · · · , θn]> that maximize the
likelihood of the observed new links from τ = 2, · · · , t;

θ∗ = arg max
θ

t∏
τ=2

( ∏
i,j∈Nτ∪Zτ

P
(
A

(τ)
ij |A

(τ−1),B(τ−1)
))
.

With the model in (6), we minimize the negative log likelihood

L(θ) = −
t∑

τ=2

( ∑
i,j∈Nτ∪Zτ

K∑
k=1

θkgk,ij
(
A(τ−1),B(τ−1)

)
−

∑
i,j∈Zτ∪Nτ

log
(

1 + e
∑K

k=1
θkgk,ij

(
A(τ−1),B(τ−1)

)))
,

which is convex in θ and various optimization routines can be
used to get a global minimum.

Once the optimal parameter θ∗ is obtained, the prediction
of A(t+1) can be carried out using the potential in (5)

scoreθ∗(i, j) = pθ∗(i, j) =
∑
k

θ∗kgk,ij(A
(t),B(t)), (7)

which can also be justified since scoreθ∗(i, j) is also the log

odds ratio log
P(A

(t+1)
ij

=1|A(t),B(t))

P(A
(t+1)
ij

=0|A(t),B(t))
. We use the score function

(instead of the actual probability) in link prediction if only the
ranking of the predicted links are needed.

B. Square Loss Surrogate

The logistic regression model is still computationally ex-
pensive for many real-world applications. Here we show that
the simple square loss can be used as a cheap and effective
surrogate for the logistic regression objective.

It is easy to see that the potential pθ(i, j) in (5) is positive
when the probability of A(t)

ij = 1 (“link”) is greater than
A

(t)
ij = 0 (“no link”), and vice versa. A simple heuristic of

fitting the scores of “linked” pairs to +1 and “not-linked”
pairs to −1 leads to the surrogate objective function for θ,

Llsq(θ) =
∑

i,j∈Nt∪Zt

‖pθ(i, j)− sign(A(t)
ij − 0.5)‖2 (8)

where sign(·) returns the sign (+1 or −1) of the input
argument. Equation (8) can be rearranged into the following
matrix form Llsq(θ) = ‖Sθ−y‖22, where the number of rows
in S is |Nt ∪ Zt| and y is a target vector with +1 or −1.

C. Path-counting Features

The features gk,ij(A(τ),B(τ)) in (4) could take a great
variety of knowledge about the possible links between vertices
i and j. These could be features based on the topological
properties of the network, e.g. Preferential Attachment [3],
[16] and Adamic/Adar [1], clustering coefficients [9], [17],
or based on demographical and other kind of informations
about the vertices. In this paper, we are particularly interested
in path-counting features, since it has been shown to be a
simple but informative measure of proximity between vertices.
Also, our supervised model with path-counting features are
natural extension to popular unsupervised models such as Katz
measure (and hence nearest neighbors).

The path-counting features for a single graph/network
source are simply the number of length-l paths with l =
1, · · · , lmax. With any unweighted graph the lth pairwise
feature on any snapshot τ can be computed using

gl,ij(A(τ)) = |path〈l〉i,j | = [(A(τ))l]ij , (9)

or simply Gl = (A(τ))l for all pairs (i, j). In this paper
we use (9) for weighted graphs also. It is easy to verify that
the features corresponding to paths with length 0, 1, · · · , lmax,
i.e. G0,G1, · · · ,Glmax , are given by terms in the polynomial
(A(τ) +I)lmax , where the identity matrix I is for the “length-0”
paths, which also servers as an offset in the logistic regression.

With multiple sources, we will have a much richer set of
paths if we allow cross routes between networks from different
sources. The best way to understand this is through the concept
of a multigraph [6], which allows more than one edge between
two vertices. Suppose we have a multigraph M, between any
two vertices there could be an edge from A(τ) and an edge
from B(τ). For description convenience, we can have the two



kind of edges color-coded, “A” colored versus “B” colored.
This results in three types of paths in M:

1) Pure color paths with only edges of A, e.g., i A−→ j
A−→ k;

2) Pure color paths with only edges of B, e.g., i B−→ j
B−→ k;

3) Hybrid color paths with edges of both A and B, e.g.,
i

B−→ j
A−→ k, as illustrated in Figure 1.

A
i j k

B B

A

Fig. 1. Example of a hybrid color path, i
B−→ j

A−→ k

The counting of the type-1 and type-2 paths with length-l
are simply given as (A(τ))l and (B(τ))l. A simple extension to
the path counting features in the single source case would be to
use pure color paths only, i.e. type-1 and type-2. Counting the
type-3 paths is more complicated since we want to distinguish
paths between two vertices not only by their lengths, but also
by color of edges in the path. For example, we may want

path-1: i
B−→ i′

A−→ j′
A−→ j and path-2: i

B−→ i′
B−→ j′

A−→ j

to have different weights, because edges of A could be more
informative than edges of B in predicting the links in A(τ+1).
In the supervised learning framework, we wish to have a
feature for each particular color combination. Considering only
undirected graphs, we require gk,ij(·) = gk,ji(·), for any pair
(i, j) and any k, and therefore count paths with reverse color
patterns as the same. One can verify that the number of paths
up to length lmax from all combination types are given by terms
in the following matrix polynomial

(I + A(τ) + B(τ))lmax , (10)

and, say, paths with pattern “ o
B−→ o

B−→ o
A−→ o ” can be

counted efficiently using the matrix B(τ)B(τ)A(τ).
With multiple auxiliary sources, denoted B, C, D, · · · , the

features in matrix form are given by terms in the polynomial

(I + A(τ) + B(τ) + C(τ) + D(τ) + · · · )lmax . (11)

In practice, we may consider more than one retrospective
step, and hence several separate multigraphs, each corre-
sponding to a time step. To control the number of features,
we do not allow any path combination between different
time steps. Therefore in the case of k + 1 retrospective
steps, the features set for predicting A(τ+1) are terms from
(I + A(τ−k) + B(τ−k))lmax , · · · , (I + A(τ) + B(τ))lmax .

D. Generalization to the Katz Measure
We now show that the score function (7) generalizes popular

unsupervised models in several ways when using the path-
counting features. From Section IV-C, when only considering
the feature from the main network, the feature associated with
length-l paths is Gl(A(t)) = (A(t))l in matrix form. The score
function therefore becomes

score =
lmax∑
l=1

θ∗l Gl(A(t)) =
lmax∑
l=1

θ∗l (A(t))l. (12)

Clearly (12) generalizes the truncated Katz measure by re-
placing the exponential damping factor βl in (3) with a more
general parameter θl, and hence introduces more modeling
flexibility. With auxiliary sources like B(t), the feature set will
get much richer and the score function will have additional
power terms (B(t))l, corresponding to the pure color paths,
and mixed terms, e.g. B(t)A(t)B(t), corresponding to hybrid
color paths. Both types of terms could lend substantial pre-
diction capability to the prediction model. Moreover, we may
consider more than one retrospective step, which generalizes
the truncated Katz measure even more.

V. REGULARIZATION

The path-counting features for multiple sources yield a rich
set of features. In fact, with c different sources, the number of
features associated with length-l paths is exponential in l. Thus
the model fitting is prone to over-fitting as the observations
are extremely noisy, and the dimensionality of the feature
space is high due to the multiple sources with potentially
irrelevant features. When predicting with multiple sources, it
could be the case that some auxiliary sources do not contain
information valuable for prediction. In addition one particular
path pattern or feature may not be useful even though the
component source is informative. These characteristics of our
problem call for a sensible feature selection strategy, and
in particular sparsity-promoting regularization schemes. As is
shown in [15, Section 6], the least squares objective is a rather
effective surrogate of the logistic regression with much lower
complexity. So, in this section we will focus only on the least
squares objective, and consider the `1 and hierarchical sparsity
(HS) regularization on θ to filter out irrelevant features.

Lasso: Using the `1 regularization we get the Lasso regres-
sion model [8] with the objective function

LLasso(θ) = ‖Sθ − y‖22 + λ‖θ‖1, (13)

where λ controls the sparsity in θ. This regularization can be
applied to both pure color paths and hybrid paths.

Hierarchical Sparsity: The `1 regularization in Lasso is
flat in the sense that it puts uniform regularization on all
features. More sophisticated group-Lasso based regularization
designs consider the hierarchical structure inherent to the task
[2], [21]. The structure in our problem lies in the way the
composite paths are constructed. We wish that if a path pattern
(or feature) ω is knocked out, all the path patterns containing
ω as sub-pattern should receive zero weight too. This relation
between features can be fully expressed as a directed acyclic
graph (DAG). In Figure 2 we illustrate how two sources are
mixed together to form a DAG up to power l = 3. For example,
if the path pattern o

B−→ o
B−→ o (or equivalently the feature in

matrix form BB) has zero weight, we wish that all the features
containing BB, e.g., BBA, BBB and ABB, to be excluded
from the variable set. Consider the dashed circles in Figure 2.
The remaining set of features becomes A, B, AA, AB, BA,
AAA, AAB, ABA, BAB.

To enforce this kind of feature preference, we can use
the composite absolute norm introduced by Zhao et al. [21].



BBAA BA

B

AAA AAB ABA ABB

AB

A

BBBBBA

Fig. 2. An illustration of the hierarchical sparsity from two sources.

This is implemented through group Lasso with overlapping
groups. With a DAG (V, E), a group Gv ⊂ V with “root”
node v contains v and all of its offsprings, and we denote
the set of all such groups G = {v ∪ all offsprings of v|v ∈
V}. The `∞ norm for each group g ∈ G is defined as
‖θg‖∞ = maxv∈g |θv| and the composite norm is simply
‖θG‖c =

∑
g∈G ‖θg‖∞. The cost function with this hierar-

chically structured penalty is defined as

LHS(θ) = ‖Sθ − y‖22 + λ‖θG‖c. (14)

Note that all features comply with the sparsity structure as
well as the hierarchy of the DAG. Note also that this sparsity
structure is promoted but not enforced. In practice undesired
feature combinations could still appear, especially when the
regularization parameter λ is small.

VI. EXPERIMENTAL RESULTS

A. The Data Sets

We adopted three real-world data sets from the scientific
publication domain: (1) arXiv publications from 1992 to 2003
in high energy physics (theory). We formed four snapshots
from non-overlapping intervals of three years; (2) CiteSeer
publications from 1995 to 2003. We divided this data set
into three subsets: CS-1 with publications from 1995 to 1997;
CS-2 with publications from 1998 to 2000; and CS-3 with
publications from 2001 to 2003. For each subset, we formed
three snapshots based on the publications of one year. (3) SIAM
(Society of Industrial and Applied Mathematics) publications
from 1999 to 2004 covering 11 journals and proceedings.

Several networks are formed with the authors being the
vertices: co-authorship A: Aij = 1 if author i and author
j co-authored a paper; co-citation B: Bij = 1 if author i and
author j have cited same papers; co-reference C: Cij = 1 if
papers by author i and author j are cited by the same paper;
text similarity D: Dij = 1 if the cosine similarity between
papers (represented with the “bag-of-words“ model) published
by author i and author j is over a threshold. We will predict
on co-authorship A with other networks B, C, D as auxiliary
data. Results using networks B and C as targets are similar
in spirit to the results presented here. Some statistics of each
data set are given in Table I.

B. Models

We use the following models in our experiments.

TABLE I
SOME STATISTICS OF THE ARXIV, CITESEER (CS-1, CS-2, CS-3)

AND SIAM DATA SETS. HERE “CORE” DENOTES THE NUMBER OF
AUTHORS WITH AT LEAST ONE PUBLICATION IN ANY GIVEN SNAPSHOT

DURING TRAINING. “TRAIN” AND “TEST”DENOTE THE NUMBER OF LINKS.

data set HepTh CS-1 CS-2 CS-3 SIAM
core 1381 2321 2448 1182 6891

train

A 14507 9683 13634 8703 5528
B 61674 35509 41956 21781 5431
C 22075 11269 16294 11988 5124
D 39596 19776 30931 20283 6504

test

A 6788 6809 9609 6262 2764
B 20523 17067 19464 12764 2715
C 15459 6591 10100 6297 2562
D 11576 12643 18799 9860 2586

Unsupervised Models: KATZ-S Katz measure based on a
single source (A); KATZ-C Katz measure based on all sources,
(A+B+C+D); and similarly TKATZ-S and TKATZ-C with
the truncated Katz measure. We used an optimal β in all cases.

Supervised Models: The supervised learning models are
SL-S with single source; SL-P with only pure color paths;
and SL-H with hybrid color paths. We may also have `1 or
hierarchical structured regularization, which will for example
be denoted with SL-H(L1) or SL-H(HS), respectively.

We have conducted extensive tests of our prediction model
on a variety of collaboration networks. We use the Katz and
truncated Katz as the representatives of unsupervised models,
because of their overall good performance in link predic-
tion [14] and their close relation to our path-counting features.
Within the proposed supervised framework, we also intend to
compare ones with single source and multiple sources, as well
as models with different feature designs and regularization.

C. Experimental Settings

For any data set with t+1 snapshots, we use A(1) to A(t) for
training, and A(t+1) for testing. Once a model parameter θ is
learned, we use a corresponding score function to predict new
links in A(t+1). We select |Nt| “feasible” pairs with highest
scores as our predictions of new links for time t + 1 and
calculated the proportion of true links in terms of percentage.

D. Results and Analysis

The performance of the above mentioned models are re-
ported in Table II. Basically we achieve improved performance
with supervised models and multiple sources.

1) The Role of Supervision: The clear message from Ta-
ble II is “supervision helps in link prediction”. In particular,
The single-source supervised model SL-S, which has more
parameters, is overall better than unsupervised counterparts,
e.g. TKATZ-S. Supervision also helps in learning a proper way
to synthesize information from multiple auxiliary sources, as
in SL-P and SL-H and their regularized versions. This turns
out to be much more effective than the naive way to combine
different sources, as in KATZ-C and TKATZ-C.

2) The Role of Multiple Sources: Multiple auxiliary sources
greatly help the prediction on the target network in the



TABLE II
LINK PREDICTION RESULTS IN TERMS OF PRECISION ON THREE CITESEER

SUBSETS, ARXIV-HEPTH DATA SET AND SIAM DATA SET.

lmax CS-1 CS-2 CS-3 arXiv SIAM
KATZ-S 19.3 13.2 20.4 2.26 32.6
KATZ-C 21.1 14.8 15.3 0.38 34.6

TKATZ-S
2 19.5 16.4 21.6 1.41 41.1
4 19.3 13.2 20.4 2.26 32.2

TKATZ-C
2 21.1 14.8 15.0 0.38 32.1
4 21.1 14.8 15.0 0.38 32.0

SL-S
2 19.6 16.8 19.2 2.30 41.5
4 24.1 21.2 24.6 2.83 41.5

SL-P
2 19.3 16.1 15.1 1.95 49.2
4 24.1 23.4 22.5 2.12 50.7

SL-P(L1) 2 19.3 16.1 15.1 2.08 49.2
4 24.1 23.4 22.5 2.21 50.6

SL-H
2 32.5 27.3 34.2 2.08 50.9
4 32.6 27.3 34.3 2.48 52.3

SL-H(L1) 2 32.5 27.3 34.0 2.48 50.8
4 32.5 27.3 34.0 2.12 52.3

SL-H(HS) 2 33.9 27.7 34.9 1.95 51.1
4 33.4 27.9 34.2 2.48 52.6

supervised framework. On all data sets, except arXiv, multiple-
source supervised models (SL-P, SL-H, and their regularized
versions) are clearly better than the single-source supervised
models SL-S, especially when the information from auxiliary
sources are encoded in a richer feature set. From Table II,
it is not rare that a naive combination of network sources in
KATZ-C and TKATZ-C yields inferior performance than the
single source unsupervised model. On arXiv we observe over
80% decrease of accuracy when using multiple sources in an
unsupervised way. We also argue that the supervised frame-
work can effectively discriminate useful auxiliary sources and
features from the irrelevant and distractive ones, as is seen on
arXiv with multiple-source supervised models.

3) Feature Design and Regularization: We are clearly
benefiting from the rich set of features. It can be seen by
comparing SL-P with SL-H. For all prediction tasks, SL-H
performs better than SL-P, showing the predictive power of
cross-source paths in feature design. Moreover, the regulariza-
tion promoting structured sparsity helps to further improve the
accuracy. For all the tasks SL-H(HS) is better than SL-H and
SL-H(L1).

VII. CONCLUSION AND DISCUSSION

In this paper, we have proposed a novel and general
framework for supervised link prediction. Our model can
effectively and efficiently learn the network dynamics from
a time series of network snapshots, and therefore improve the
link prediction accuracy. In addition, multiple graphs over the
same set of vertices but from different sources can be naturally
incorporated into the framework. We have performed extensive
set of experiments on real-world data sets. The experimental
results confirm that prediction accuracy is improved using
supervision and multiple sources of information.

Despite the empirical success of the proposed model, a few
directions remain to be explored. (1) We have not exploited the
ability of our models to take features other than path counts.

As suggested in [9], [13], many features and other network
characteristics can be informative for link formation, most of
which can be readily used in our framework. (2) It is still
unclear what probabilistic model is most appropriate for the
predictive modeling of links. For example, we could adopt
the Prackett-Luce ranking model [4] to describe the latent
mechanism of link generation, and view all the new links
as observed to be top-ranked. (3) Many social networks are
massive in size and therefore pose a scalability issue [19]. We
plan to address and conduct research on all these issues.
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