

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 375–396

THE METRIC NEARNESS PROBLEM∗

JUSTIN BRICKELL† , INDERJIT S. DHILLON† , SUVRIT SRA† , AND JOEL A. TROPP‡

Abstract. Metric nearness refers to the problem of optimally restoring metric properties to
distance measurements that happen to be nonmetric due to measurement errors or otherwise. Met-
ric data can be important in various settings, for example, in clustering, classification, metric-based
indexing, query processing, and graph theoretic approximation algorithms. This paper formulates
and solves the metric nearness problem: Given a set of pairwise dissimilarities, find a “nearest” set
of distances that satisfy the properties of a metric—principally the triangle inequality. For solving
this problem, the paper develops efficient triangle fixing algorithms that are based on an iterative
projection method. An intriguing aspect of the metric nearness problem is that a special case turns
out to be equivalent to the all pairs shortest paths problem. The paper exploits this equivalence and
develops a new algorithm for the latter problem using a primal-dual method. Applications to graph
clustering are provided as an illustration. We include experiments that demonstrate the computa-
tional superiority of triangle fixing over general purpose convex programming software. Finally, we
conclude by suggesting various useful extensions and generalizations to metric nearness.

Key words. matrix nearness problems, metric, distance matrix, metric nearness, all pairs
shortest paths, triangle inequality

AMS subject classifications. 05C12, 05C85, 54E35, 65Y20, 90C06, 90C08

DOI. 10.1137/060653391

1. Introduction. Most applications make some assumptions about the prop-
erties that the input data should satisfy. Due to measurement errors, noise, or an
inability to gather data completely, an application may receive data that does not
conform to its requirements. For example, imagine taking measurements as a part of
some experiment. The theory suggests that the quantities measured should represent
distance values amongst points in a discrete metric space. However, measurements
being what they are, one ends up with a set of numbers that do not represent ac-
tual distance values, primarily because they fail to satisfy the triangle inequality. It
might be beneficial to somehow optimally massage the measurements to obtain a set
of “nearest” distance values that obey the properties of a metric.

It could also happen that experimental expenses and difficulties prevent one from
making all the measurements. Before this incomplete set of measurements can be
used in an application it might need to be tweaked, preferably minimally. As before,
obtaining a “nearest” set of distance values (measurements) seems to be desirable.

Both scenarios above lead to the metric nearness problem: Given a set of input
distances, find a “nearest” set of output distances that satisfy the properties of a
metric. The notion of nearness is quantified by the function that measures distortion
between the input and output distances.

Matrix nearness problems [10] offer a natural framework for pursuing the above-
mentioned ideas. If there are n points, we may collect the measurements into an

∗Received by the editors March 2, 2006; accepted for publication (in revised form) by R. Nabben
September 11, 2007; published electronically April 23, 2008. This research was supported by NSF
grant CCF-0431257, NSF Career Award ACI-0093404, and NSF-ITR award IIS-0325116. A prelim-
inary version of this work appeared at NIPS 2004, Vancouver, Canada.

http://www.siam.org/journals/simax/30-1/65339.html
†Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

(jlbrick@cs.utexas.edu, inderjit@cs.utexas.edu, suvrit@cs.utexas.edu).
‡Department of Mathematics, University of Michigan at Ann Arbor, Ann Arbor, MI 48109

(jtropp@umich.edu).

375

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

376 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

n × n symmetric matrix whose (j, k) entry represents the distance between points j
and k. Then we seek to approximate this matrix by another (say M) whose entries
satisfy the triangle inequalities. That is, mij ≤ mik + mkj for every triple (i, k, j).
Any such matrix will represent the distances among n points in some metric space.
We calculate approximation error with a distortion measure that depends on how the
corrected matrix should relate to the input matrix. For example, one might prefer
to change a few entries significantly or to change all the entries a little. This paper
considers metric nearness problems that use vector norms for characterizing distortion.

There is no analytic solution to the metric nearness problem. Fortunately this
problem lends itself to a convex formulation, whereby developing algorithms for solv-
ing it becomes much easier. However, despite the natural convexity of the formu-
lations, the large number of triangle inequality constraints can make traditional ap-
proaches or general purpose convex programming software much too slow. This paper
provides solutions to the metric nearness problem that exploit its inherent structure
for efficiency gains.

The remainder of this paper is structured as follows. Section 1.1 highlights the
principal contributions of this paper. Section 2 develops a convex formulation of
the metric nearness problem. Following that, section 3 provides efficient triangle
fixing algorithms for solving the metric nearness problems described in section 2. An
interesting connection of metric nearness with the all pairs shortest paths (APSP)
problem is studied in section 4. This connection leads to a curious new primal-dual
algorithm for APSP (Algorithm 4.1).

Applications of metric nearness to clustering are discussed in section 5. Experi-
ments highlighting running time studies and comparisons against the CPLEX software
are given in section 6.1, whereas experiments illustrating the behavior of the primal-
dual metric nearness algorithm are the subject of section 6.2.

Section 7.1 discusses some variations to the metric nearness problem that may
also be studied. Section 7.2 describes possible future work and extensions to this
paper, while two open problems are mentioned in section 7.3. Finally, section 7.4
summarizes related work and concludes this paper.

1.1. Contributions of this paper. In preliminary work [7], the authors pre-
sented the basic ideas about convex formulations of metric nearness and triangle fixing
algorithms. However, many of the details necessary for understanding and actually
implementing the triangle fixing algorithms were missing. This paper fills that gap by
presenting a detailed derivation for �1 (consequently �∞) and �2 norm–based metric
nearness problems. Pseudocode for both the �1 and �2 problems is given along with
the derivations.

When one allows only decreasing changes to the input, then metric nearness
becomes equivalent to the APSP problem [22]. This paper studies this decrease-only
version of metric nearness, and consequently obtains a new primal-dual algorithm for
solving the APSP problem. This algorithm possesses some interesting characteristics
related to its convergence behavior that are discussed in this paper.

The paper discusses applications to the Max-Cut problem. We also developed
efficient C++ code for metric nearness that outperforms CPLEX by factors of up to
30, and it may be requested from the authors.

2. Problem formulation. We begin our formulation with a few basic defini-
tions. We define a dissimilarity matrix to be a symmetric, nonnegative matrix with a
zero diagonal. Such matrices are used to represent pairwise proximity data between
objects of a certain type. A distance matrix is defined to be a dissimilarity matrix

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 377

whose entries satisfy the triangle inequalities. Specifically, M is a distance matrix if

mij ≥ 0, mii = 0, mij = mji,

and

mij ≤ mik + mkj for distinct triples (i, k, j).

We remark that symmetry, while part of the definition of a metric, is not crucial to
our algorithms; asymmetry can be handled at the expense of doubling the running
time and storage.

The distance matrices studied in this paper are assumed to arise from measuring
interpoint distances between n points in a pseudometric space (i.e., two distinct points
can lie at zero distance from each other). Consequently, distance matrices contain
N =

(
n
2

)
parameters, and we denote the set of all n × n distance matrices by MN .

We observe that the set MN is a closed, convex polyhedral cone.
Assume that the input is a dissimilarity matrix D. Metric nearness seeks a

distance matrix M that is closest to D, with respect to some measure of “closeness.”
Formally, we seek a matrix M so that

(2.1) M ∈ argmin
X∈MN

‖X −D‖,

where ‖ · ‖ is a norm. Though it is possible to use any norm in the metric nearness
problem (2.1), we restrict our attention to the vector �p norms, wherein we treat the
strict upper triangular part of our matrices as vectors.

Theorem 2.1 (attainment of minimum). The functional f(X) = ‖X − D‖
always attains its minimum on MN . Moreover, every local minimum is a global
minimum.

Proof. The latter claim follows immediately from the convexity of f . It remains
to show that f(X) always attains its minimum on the cone MN . For convenience, we
pass to the function g(Y) = ‖Y ‖. Notice that if g attains a minimum on MN −D,
then f(X) attains a minimum on MN . The function g is a closed convex function,
and it is homogeneous of degree one, so we can compute its recession function as

(g0+)(Y) = lim
h→0

(g(hY) − g(0))/h = lim
h→0

g(hY)/h = g(Y).

But g is nonnegative, so its only directions of recession are directions in which it is
constant. Since MN−D is a closed, polyhedral cone, we may apply [23, Theorem 27.3]
to conclude that g attains a minimum on this cone, whereby f attains its minimum
on MN .

2.1. Metric nearness for the �2 norm. We start with a formulation for the
vector �2 norm–based metric nearness problem. Given the input dissimilarity matrix
D = [dij] (where dij = dji), we wish to obtain a distance matrix X that minimizes
the squared error

1

2

∑
i<j

(xij − dij)
2.

Note that the sum above ranges over i < j, since the involved matrices are symmetric
and have a zero diagonal.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

378 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

Let Tn be the set of 3
(
n
3

)
triples, each of which corresponds to a triangle inequality

that the entries of an n× n distance matrix must satisfy. Formally,

(2.2) Tn = {(i, j, k), (j, k, i), (k, i, j) : 1 ≤ i < k < j ≤ n},

where the triple (i, k, j) corresponds to the triangle inequality

xij ≤ xik + xkj .

With the introduction of an auxiliary matrix E = X−D that represents the changes
to the original dissimilarities, the �2 metric nearness problem can be rewritten as the
following quadratic program:

minimize
eij

1

2

∑
i<j

e2
ij(2.3)

subject to eij − eik − ekj ≤ dik + dkj − dij = vikj for all (i, k, j) ∈ Tn.(2.4)

The triangle inequality constraints are encoded by (2.4). Since the �2 norm is strictly
convex, the solution to (2.3) is unique. The variable vikj quantifies the violation in
the (i, k, j) triangle inequality. Note that nonnegativity of xij need not be enforced
explicitly as it is implied by the triangle inequalities.

2.2. Metric nearness for the �1 and �∞ norms. When measuring approxi-
mation error using the �1 norm, we wish to minimize

(2.5)
∑
i<j

|eij |,

where eij = xij − dij as in the previous section. However, to write the problem as a
linear program, we need to introduce additional variables fij = |eij |. The resulting
problem is the following linear program:

minimize
eij ,fij

∑
i<j

(
1 · fij + 0 · eij

)
(2.6)

subject to
eij − eik − ekj ≤ vikj for all (i, k, j) ∈ Tn,

−eij − fij ≤ 0, 1 ≤ i < j ≤ n,
eij − fij ≤ 0, 1 ≤ i < j ≤ n.

(2.7)

The fact that fij = |eij | is accomplished by the last two sets of inequalities in (2.7).

Similarly, for the �∞ nearness problem, we introduce a variable ζ = maxij |eij |
that represents the vector �∞ norm of E. The �∞ nearness problem becomes

minimize
eij ,ζ

ζ +
∑
i<j

0 · eij(2.8)

subject to
eij − eik − ekj ≤ vikj for all (i, k, j) ∈ Tn,

−eij − ζ ≤ 0, 1 ≤ i < j ≤ n,
eij − ζ ≤ 0, 1 ≤ i < j ≤ n.

(2.9)

The last two sets of inequalities in (2.9) express the fact |eij | ≤ ζ for all i and j.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 379

2.3. Metric nearness for �p norms. Metric nearness may be easily formulated
for �p norms, where 1 < p < ∞. The problem is the following convex program:

minimize
eij

1

p

∑
i<j

|eij |p

subject to eij − eik − ekj ≤ vikj for all (i, k, j) ∈ Tn.

Since the �p norms are strictly convex for 1 < p < ∞, the associated metric
nearness problems have unique solutions. There is a basic intuition for choosing p
when solving the nearness problems. The �1 norm error is computed as the absolute
sum of changes to the input matrix, while �∞ reflects only the maximum absolute
change. The other �p norms interpolate between these two extremes. Thus, a small
value of p typically results in a solution that prefers a few large changes to the original
data, while a large p typically results in a solution with many small changes. In
practice, however, the �1, �2, and �∞ problems are computationally easier to solve than
those using arbitrary �p norms. Thus, we focus primarily on these three problems.

3. Triangle fixing algorithms. The previous section formulated the metric
nearness problem as a quadratic program for the �2 norm, as a linear program for �1
and �∞ norms, and as a convex program for �p norms. Using off-the-shelf software for
these formulations might appear to be an attractive way to solve the corresponding
problems. However, it turns out that the computational time and storage require-
ments of such an approach can be prohibitive. An efficient algorithm must exploit
the inherent structure offered by the triangle inequalities. In this section, we develop
triangle fixing algorithms, which take advantage of this structure to efficiently solve
the problem for �p norms. These algorithms iterate through the triangle inequalities,
optimally enforcing any inequality that is not satisfied. While enforcing the triangle
inequalities, one needs to introduce appropriate correction terms to guide the iterative
algorithm to the globally optimal solution. The details are provided below.

3.1. Triangle fixing for �2 metric nearness. Our approach for solving (2.3)
is iterative, and is based on the technique described in [2]. Collecting all the eij values
into vector e and the violation amounts vijk into v, problem (2.3) may be rewritten
as

min
e

1

2
eTe

subject to Ae ≤ v,
(3.1)

where matrix A encodes the triangle inequalities (2.4), whereby each row of A has
one +1 entry and two −1 entries.

The Lagrangian of (3.1) is

L(e,z) =
1

2
eTe + 〈z,Ae− v〉,

where z is the dual vector. A necessary condition for optimality of (3.1) is

(3.2)
∂L

∂e
= 0 =⇒ e = −ATz, z ≥ 0.

Using (3.2) we see that the dual problem corresponding to (3.1) is

(3.3) max
z≥0

g(z) = −1

2
zTAATz − zTv.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

380 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

Algorithm 3.1. Metric nearness for �2 norm.

Metric Nearness L2(D, κ)
Input: Dissimilarity matrix D, tolerance κ
Output: M = argminX∈MN

‖X − D‖2.
{Initialize the primal and the dual variables}
eij ← 0 for 1 ≤ i < j ≤ n
(zijk, zjki, zkij) ← 0 for 1 ≤ i < k < j ≤ n
δ ← 1 + κ
while (δ > κ) {convergence test}

foreach triangle inequality (i, k, j)
v ← dik + dkj − dij {Compute violation}
θ∗ ← 1

3
(eij − eik − ekj − v) (�)

θ ← max{θ∗,−zikj} {Stay within half-space of constraint}
eij ← eij − θ, eik ← eik + θ, ekj ← ekj + θ (��)
zikj ← zikj + θ {Update dual variable}

end foreach
δ ← sum of changes in the eij values

end while
return M = D + E

We solve (3.1) iteratively, wherein we initialize both e and z to zero as this
choice satisfies (3.2). At each subsequent iteration we update the dual vector z one
coordinate at a time, thereby resulting in a dual coordinate ascent procedure, while
maintaining (3.2). Assume that the dual variable corresponding to inequality (i, k, j)
is updated, i.e., z′ikj = zikj + θ. Then the corresponding update to the primal is

obtained via (3.2), i.e., e′ = e−θaikj (using the fact that e′ = −ATz′), where aikj is
the column vector containing the entries of the (i, j, k) row of A. Recall that aikj has
only three nonzero entries corresponding to the edges (i, j), (i, k), and (k, j). Thus,
the update to e amounts to “fixing” (enforcing) one triangle inequality at a time,
hence the name of our procedure. The parameter θ is computed by solving

max
θ

g(z + θ1ikj)

subject to zikj + θ ≥ 0,
(3.4)

where 1ikj indicates the standard basis vector that is zero in all positions except the
ikj entry, which equals unity. Using (3.2) and (3.3), we may rewrite (3.4) as

max
θ

g(z) − 1

2
‖aikj‖2θ2 + (aT

ikje− vikj)θ

subject to θ ≥ −zikj .
(3.5)

Consider optimizing (3.5) in an unconstrained manner. It is easily seen that

(3.6) θ∗ =
1

‖aikj‖2
(aT

ikje− vikj) =
1

3
(aT

ikje− vikj)

is the maximum. If θ∗ ≥ −zikj , we are done; otherwise the maximum of (3.5) will be
achieved at θ = −zikj . Thus, we obtain θ = max{θ∗,−zikj} as the answer to (3.5).
Algorithm 3.1 puts together all these ideas to give the complete iterative triangle
fixing procedure.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 381

Remarks. The procedure derived above ensures that at each iteration g(z′) ≥
g(z), i.e., it is a dual coordinate ascent procedure. Following [2], it can be shown that
in the limit, the Ae ≤ v constraints are satisfied. Since (3.2) is also maintained at
each step, the KKT conditions, which are necessary and sufficient for this problem,
are satisfied in the limit. Thus, the triangle fixing procedure converges to the optimal
solution of (3.1). In fact, Algorithm 3.1 is an efficient version of Bregman’s method
for minimizing a convex function subject to linear inequality constraints [2]. Our
algorithm exploits the structure of the problem to obtain its efficiency.

3.2. Triangle fixing for �1 and �∞. Triangle fixing is somewhat less direct
for the �1 and �∞ problems. The reason these norms pose an additional challenge
is because they are not strictly convex; the convergence of the basic triangle fixing
procedure depends on the strict convexity of the norm used. We illustrate only the
�1 case; the development for �∞ takes the same course.

With the introduction of vector and matrix notation, the �1 matrix nearness
problem may be rewritten as

min
e,f

0Te + 1Tf

subject to Ae ≤ v, −e− f ≤ 0, e− f ≤ 0.
(3.7)

The auxiliary variable f is interpreted as the elementwise absolute value of e. The
violations to the triangle inequalities are again given by the vector v.

To solve the linear program (3.7) without sacrificing the advantages of triangle
fixing we replace it with an equivalent quadratic program. This replacement hinges
upon a connection between linear and quadratic programs that may be motivated by
the observation

argming ‖g + ε−1c‖2 = argming (gTg + 2ε−1gT c + ε−2cT c) ≈ argming gT c

if ε is chosen to be sufficiently small (so that the 2ε−1gT c term dominates the objective
function). The following theorem, which follows from a result of [17, Theorem 2.1-a-i],
makes the above connection concrete.

Theorem 3.1 (�1 metric nearness). Let g = [e;f] and c = [0;1] be partitioned
conformally. If (3.7) has a solution, then there exists an ε0 > 0, such that for all
ε ≤ ε0,

(3.8) argmin
g∈G

‖g + ε−1c‖2 = argmin
g∈G�

‖g‖2,

where G is the feasible set for (3.7) and G� is the set of optimal solutions to (3.7).
The minimizer of (3.8) is unique.

From (3.7) one can see that the triangle inequality constraints involve only e and
not f . This circumstance permits us to use triangle fixing once again. As before,
we go through the constraints one by one. The first 3

(
n
3

)
constraints are triangle

constraints and are handled by triangle fixing. The remaining 2
(
n
2

)
absolute value

constraints are very simple and thus are enforced easily.
For the �2 case, the dual variables (corresponding to each constraint) were repre-

sented by the vector z. For (3.8), we let the dual variables be [z; λ; μ]; vector z cor-
responds to the triangle inequalities, while vectors λ and μ correspond to −e−f ≤ 0
and e− f ≤ 0, respectively. Together, nonnegative values of z, λ, and μ correspond
to the feasible set G alluded to by Theorem 3.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

382 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

Algorithm 3.2. Metric nearness for �1 norm.

Metric Nearness L1(D, ε, κ)
Input: Dissimilarity matrix D; tolerance κ; �1 parameter ε
Output: M ∈ {argminX∈MN

‖X − D‖1}
{Initialize primal and dual variables}
eij ← 0; fij = −ε−1 for 1 ≤ i < j ≤ n {Primal variables}
(zijk, zjki, zkij) ← 0 for 1 ≤ i < k < j ≤ n {Dual variables – triangles}
λij ← πij ← 0 for 1 ≤ i < j ≤ n {Dual variables – Other}
δ ← 1 + κ
while (δ > κ) {convergence test}

Do triangle fixing on the eij as in Algorithm 3.1
{Enforce −e − f ≤ 0 and e − f ≤ 0 as follows}
μ ← 1

2
(e + f) {Projection parameters}

θ ← min{μ,λ} {Update amount}
λ ← λ − θ {Update dual vector corr. to −e − f ≤ 0}
e ← e − θ; f ← f − θ {Update primal variables}
ν ← 1

2
(f − e)

θ ← min{ν,π} {Update amount}
π ← π − θ {Update dual vector corr. to e − f ≤ 0}
e ← e + θ; f ← f − θ {Update primal variables}
{Update convergence test parameter}
δ ← sum of absolute changes in eij .

end.

Our augmented triangle fixing procedure is as follows. First we initialize e, f , z,
λ, and μ so that the first order optimality conditions derived from (3.8) are initially
true. Thereafter, we enforce constraints one by one to ensure that the dual functional
corresponding to (3.8) is increasing and that first order optimality conditions are main-
tained. Written out as Algorithm 3.2, this procedure becomes an efficient adaptation
of Bregman’s method, thereby, after a sufficient number of iterations, converging to
the globally optimal solution.

Remarks. Algorithm 3.2 depends on the parameter ε that governs convergence
to the true optimal solution. It is an open problem to obtain an ε that guarantees
convergence. However, upon experimentation with random dissimilarity matrices we
found that setting ε−1 ≈ maxij dij worked well, i.e., led to convergence, for Algo-
rithm 3.2. Furthermore, from Theorem 3.1 we know that there exists a range within
which ε can lie, and in practice running Algorithm 3.2 a small number (2–3) of times
(with early stopping to save time) helps to determine a suitable value for ε for an
arbitrary input matrix.

3.3. Triangle fixing for other �p norms. We can go a step further and extend
triangle fixing to solve the metric nearness problem for all �p (1 < p < ∞) norms.
The problem may be compactly stated as

(3.9) min
e

1

p
‖e‖pp subject to Ae ≤ v.

Recall that for �2 metric nearness, at each iterative step we obtained e′ from
e by solving (3.2) after updating the dual variables z in a single coordinate. This
update to e may be viewed as the result of an orthogonal projection of e onto the
hyperplane defined by 〈aikj , e

′〉 = vikj (ignoring inequalities for the moment). For the
�p norm problem, we must instead perform a generalized projection, called a Bregman

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 383

projection, which involves solving the problem

(3.10) mine′ ϕ(e′) − ϕ(e) − 〈∇ϕ(e), e′ − e〉 such that 〈aikj , e
′〉 = vikj ,

where ϕ(x) = 1
p ‖x‖pp. We use (∇ϕ(x))i = sgn(xi) |xi|p−1 to determine the projection

(3.10) by solving

(3.11) ∇ϕ(e′) = ∇ϕ(e) + μaikj so that 〈aikj , e
′〉 = vikj .

Since aikj has only three nonzero entries, once again e needs to be updated in only
three components. Therefore, in Algorithm 3.1 we may replace (�) by an appropriate
numerical computation of the parameter μ, and replace (��) by the computation of
the new value of e as resulting from (3.11). As before, each iteration maintains the
necessary condition ∂L(e,z)/∂e = 0 while correcting the dual vector z, and the
overall algorithm converges to the optimum of (3.9).

4. Metric nearness and APSP. The APSP problem [3] is an important and
well-studied problem in graph theory that still continues to interest researchers. For a
given weighted graph G, APSP computes an associated matrix of distances M whose
entry mij gives the weight of a shortest path between vertices i and j. Optionally,
shortest paths between all pairs of vertices corresponding to these distances are also
obtained.

On the surface, APSP appears to have no connection with the metric nearness
problem. However, it turns out that APSP can be viewed as a special case of metric
nearness. We develop this connection below. Note that in the previous sections we
considered only symmetric matrices. However, in this section we consider asymmetric
distance matrices, which are more natural for the APSP problem, as they correspond
to directed graphs.

4.1. The relation of metric nearness to APSP. Let the input be a weighted
complete directed graph. We represent this graph by the (nonsymmetric) matrix D,
where dij denotes the edge weight of edge (i, j). On D we perform a restricted version
of metric nearness that permits only decreasing changes to the dij values. Curiously
this decrease-only version of metric nearness is equivalent to APSP.

Lemma 4.1 (decrease-only metric nearness is APSP). Let MA ∈ MN be the
APSP solution for D. Then MA is also the nearest “decrease-only” metric solution.
In fact, any metric solution M ∈ MN that is elementwise smaller than D is also
smaller than MA, i.e., for all M ∈ MN , if M ≤ D, then M ≤ MA.

A proof of this lemma may be found in Appendix A.1. This connection between
APSP and decrease-only metric nearness (DOMN) suggests that the latter may be
solved by using any off-the-shelf algorithm for APSP. More interestingly, one can turn
the problem around and obtain a new method to solve APSP by solving the DOMN
problem. In this section, we present a new algorithm for APSP based on solving a
linear programming formulation of DOMN.

APSP for dense graphs is commonly performed using the Floyd–Warshall algo-
rithm, which has a complexity of Θ(n3). Unlike the Floyd–Warshall algorithm, which
proceeds by fixing the triangles of the graph in a predetermined order, our DOMN
algorithm fixes triangles in a data-dependent order. Empirically, our algorithm con-
verges more quickly to the solution than the Floyd–Warshall algorithm does, despite
having the same asymptotic worst-case behavior.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

384 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

4.2. The linear programming formulation of DOMN and its dual. Lemma
4.1 suggests that APSP solves the DOMN problem regardless of the norm used to
measure the error. We, however, focus on the �1 norm problem along with its lin-
ear programming formulation. The linear program is interesting both because it is a
novel formulation for solving APSP and because its dual allows us to construct short-
est paths, if desired. We apply the primal-dual technique for solving the resulting
linear programs and obtain a new APSP algorithm as a consequence.

4.2.1. Formulation. Let X represent a decrease-only distance matrix corre-
sponding to the input matrix D. Then the entries of X must satisfy,

xij ≤ dij for all (i, j),(4.1)

xij ≤ xik + xkj for all (i, k, j).(4.2)

Finding the matrix with the least �1 perturbation requires solving the problem

minimize
xij

∑
ij

(dij − xij) subject to (4.1) and (4.2).

Note that we are dealing directly with the values xij rather than the error values
eij = dij − xij , as we did in sections 2.1 and 2.2. Since the dij are fixed we may
replace this minimization by the equivalent problem

(4.3)

maximize
xij

∑
ij

xij

subject to xij ≤ dij for all (i, j),
xij − xik − xkj ≤ 0 for all (i, k, j).

The dual problem corresponding to (4.3) is

(4.4)

minimize
πij

∑
ij

πijdij

subject to πij +
∑
k 	=i,j

(γikj − γijk − γkij) = 1 for all (i, j),

πij ≥ 0 for all (i, j),
γikj ≥ 0 for all (i, k, j),

where the dual variables πij and γikj correspond to the decrease-only constraints (4.1)
and the triangle inequality constraints (4.2), respectively.

It is illustrative to cast the linear program (4.4) as a network flow problem, in
which we must satisfy a demand for a single unit of flow between every pair of vertices
i and j. We can accomplish this by either sending the flow directly via the edge (i, j)
(which corresponds to setting πij = 1) or bypassing the edge (i, j) and routing through
some other vertex k (which corresponds to setting γikj = 1); in the latter case, we
increase the demand for flow between (i, k) and (k, j) by 1.

We note that while there is a unique optimal solution to the linear program (4.3),
the linear program (4.4) has several optimal solutions, some of which involve noninte-
gral assignments to the γikj variables. This nonuniqueness is not unexpected, because
while there is only one value that the shortest distance between two nodes in M can
attain, there can be several shortest paths that achieve this distance value (paths
which may contain many intermediate nodes, each of which allows a γikj variable to
assume a positive assignment).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 385

4.3. A primal-dual algorithm for DOMN/APSP. We apply the primal-
dual method [19, 16] to solve the linear programs for DOMN, and thereby obtain a new
algorithm for APSP. Most treatments of the primal-dual method have a minimization
of the primal problem and a maximization of the dual problem. Thus we will call
(4.3) the dual problem, and (4.4) the primal problem. The primal-dual method begins
with a feasible solution to the dual that is improved at each step by optimizing an
associated restricted primal problem. In our case, we find it easier to optimize the
associated restricted dual, whereby our method proceeds as follows:

1. Begin with a feasible solution to the dual problem. One such feasible solution
is to set each xij to the smallest dij value.

2. Find the set P consisting of those constraints that do not have any additional
slack. The decrease-only constraint xij ≤ dij (corresponding to dual variable
πij) will be in P iff xij = dij , and the triangle constraint xij − xik − xkj ≤ 0
(corresponding to dual variable γikj) will be in P iff xij = xik + xkj .

3. Find a solution to the associated restricted dual

(4.5)

maximize
∑
ij

uij

subject to uij ≤ 0 if πij ∈ P,
uij − uik − ukj ≤ 0 if γikj ∈ P,

uij ≤ 1 for all (i, j).

The solution uij to the associated restricted dual identifies which variables
can be increased while maintaining dual feasibility.

4. If uij = 0, then the current value of xij is the optimal dual variable assign-
ment. Otherwise, improve the xij assignment by adding εuij to xij , where ε
is as large as possible while still maintaining dual feasibility. Return to step 2
with the new xij assignment.

By characterizing the solution of the associated restricted dual and the calculation
of ε for the DOMN problem, we can give an efficient primal-dual algorithm. Observe
that the solution to the associated restricted dual is that uij = 1 if the edge (i, j)
is increasable, and 0 otherwise. Computing ε is equivalent to determining which
of the increasable edges has the least capacity for increase. Rather than use linear
programming to determine the increasable edge set and computing ε explicitly, we can
track upper bounds uij in addition to the lower bounds tracked by the xij variables.
These upper bounds start as the dij values, but are reduced as edges become triangle
constrained. Then the increasable set is simply the set of edges for which xij < uij ,
and ε is the difference between the lower bound of edges in the increasable set and
the largest upper bound. Algorithm 4.1 implements these optimizations. I, the set of
increasable edges, is the complement of P .

4.4. Priority queue DOMN algorithm. Algorithm 4.1 requires O(n4) time,
but we can do better by noticing that the only time the lower bounds are used is to
check the condition ue = le. For edges (i, j) not in I, we have uij = lij , whereas
all edges (i, j) in I have lij equal to the smallest upper bound. Therefore, we can
replace I with a priority queue ordered by upper bound, and we do not need to keep
track of lower bounds at all (even though the original dual variable values xij were
lower bounds). Algorithm 4.2 implements these changes and requires only O(n3)
time when implemented using a Fibonacci heap. Like the Floyd–Warshall algorithm,
Algorithm 4.2 considers all edges in some order, and then fixes all triangles involving
that edge. However, the Floyd–Warshall algorithm uses a fixed data-independent

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

386 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

Algorithm 4.1. DOMN: simple O(n4) implementation.

Domn Alg1(D)
Input: Dissimilarity matrix D
Output: M = APSP (D).
{Initialization}
uij ← dij for all i, j {Initial upper bounds}
xij ← min

e′∈E
ue′ {Initial lower bounds}

I ← E {Initial set of increasable edges}
while (I �= ∅)

foreach (i, j) ∈ I with uij = xij

I ← I − {(i, j)} {(i, j) is no longer increasable}
foreach k �= i, j

uik = min(uik, uij + ujk) {Update upper bounds}
end foreach

end foreach
foreach (i, j) ∈ I

xij ← min
e′∈I

ue′ {Update lower bounds}
end foreach

end while
return M where mij = xij

Algorithm 4.2. DOMN: improved O(n3) implementation.

Domn Alg2(D)
Input: Dissimilarity matrix D
Output: M = APSP (D).
{Initialization}
uij ← dij for all i, j {Initial upper bounds}
Q.Enqueue

(
(i, j), uij

)
for all (i, j) {Put all edges in priority-queue}

while (Q �= ∅)
(i, j) ← Q.First() {Remove edge with lowest upper bound}
foreach k �= i, j

uik = min(uik, uij + ujk) {Update upper bounds}
Q.UpdatePriority

(
(i, k), uik

)
{Reorder priority queue}

end foreach
end while
return M where mij = uij

order, whereas our algorithm uses a data-dependent order. As a result, our algorithm
converges to the APSP/DOMN solution more rapidly, even though it still requires
O(n3) time to complete.

5. An application to clustering. The metric nearness problem can be used
to develop efficient algorithms for clustering that provide guarantees on the quality of
the output in comparison with the optimal clustering. The Max-Cut problem offers
an especially attractive example. A cut of a graph is a partition of the vertices into
two disjoint sets, and the value of a cut is the total weight of all edges that cross the
partition. Max-Cut simply asks for the cut of a graph with maximum value. If the
size of each edge weight is proportional to the dissimilarity between the two vertices,
solving Max-Cut can be interpreted as finding the best clustering of the vertices into
two sets.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 387

For a general set of weights, Max-Cut is hard enough [20] that the solution
cannot be well approximated in polynomial time (unless P = NP) [1]. On the other
hand, for weights that do satisfy the triangle inequality, de la Vega and Kenyon have
exhibited a randomized algorithm that can approximate the solution arbitrarily well
in polynomial time [5]. That is, for a given ε > 0, their method can (with high
probability) compute in polynomial time a cut whose value is no smaller than (1− ε)
times the value of the optimal cut. Of course, the time complexity grows quickly as
ε shrinks.

Metric nearness plays an important role here. First, we approximate the original
graph by a metric graph. Then we use the fast algorithm to produce a nearly optimal
cut of the metric graph. The same cut of the original graph also has a nearly optimal
value, which can be bounded in terms of the approximation error from the metric
nearness problem.

Theorem 5.1. Suppose that D is a dissimilarity matrix and that M is a distance
matrix. If S is a cut of M whose value exceeds (1− ε) maxcut(M), then we have the
bounds

cutS(D) ≥ (1 − ε) maxcut(D) −
(
1 − ε

2

)
‖M −D‖1 and(5.1)

cutS(D) ≥ 1 − ε

‖M/D‖∞ ‖D/M‖∞
maxcut(D),(5.2)

where “/” represents elementwise division and ‖·‖∞ denotes the �∞ norm that ignores
the matrix diagonal. If mjk = djk = 0, then the infinity norm also ignores the (j, k)
entry of its argument.

To find the optimal M for bound (5.1), we simply solve the �1 metric nearness
problem. The optimal M for (5.2) cannot be obtained without solving a nonconvex
optimization problem.

Proof. For a set of vertices S, the value of the corresponding cut is computed by
the linear function

cutS(D) =
∑
j∈S

∑
k/∈S

djk.

The maximum cut just optimizes this functional over all subsets S of the vertex set
{1, 2, . . . , n}:

maxcut(D) = max
S

∑
j∈S

∑
k/∈S

djk.

Obviously, cutS(D) ≤ maxcut(D). It can be shown that maxcut(| · |) is a matrix
norm. In particular, it satisfies the triangle inequality for norms. It is also clear that

maxcut(|T |) ≤ 1

2

∑
j 	=k

|tjk| =
1

2
‖T ‖1

for any symmetric matrix T with a zero diagonal.

Let us begin with bound (5.1). Suppose that S is a (1 − ε)-optimal cut of M .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

388 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

Then

cutS(D) = cutS(M) + cutS(D −M)

≥ (1 − ε) maxcut(M) − cutS(|D −M |)

≥ (1 − ε) maxcut(D + (M −D)) − 1

2
‖D −M‖1

≥ (1 − ε) (maxcut(D) − maxcut(|M −D|)) − 1

2
‖M −D‖1

≥ (1 − ε) maxcut(D) − (1 − ε/2) ‖M −D‖1.

The proof for the bound (5.2) follows a similar outline. First, we implicitly define
a relative error matrix E with the relation M = D�E. We assume that mjk = 0 iff
djk = 0 to ensure that E can be defined. If not, the resulting error bound would be
trivial anyway. Let r = min{ejk : djk = 0} and R = max{ejk : djk = 0}. For any zero
entry of D, take the corresponding entry of E in the range [r,R]. In what follows, we
use “/” for elementwise division.

Next, observe that

cutS(M) = cutS(D �E) =
∑
j∈S

∑
k/∈S

djk ejk

≤ max
j 	=k

ejk
∑
j∈S

∑
k/∈S

djk

≤ ‖E‖∞ cutS(D).

Similarly,

maxcut(D) = maxcut(M/E) ≤ ‖1/E‖∞ maxcut(M).

Then we compute

cutS(D) ≥ cutS(M)

‖E‖∞

≥ 1 − ε

‖E‖∞
maxcut(M)

≥ 1 − ε

‖E‖∞ ‖1/E‖∞
maxcut(D).

This technique can be extended to other types of problems that are computa-
tionally easier for metric graphs [12]. Mettu and Plaxton have also considered fast
algorithms for clustering “nearly metric” data, but their approach relies instead on
weak versions of the triangle inequality [18]. Fast approximation algorithms for vari-
ous other metric problems such as k-median, MAX-TSP, etc., are discussed in [13];
our method allows extending these approximation algorithms to nonmetric data.

6. Experiments. We implemented metric nearness in C++ wherein we coded
Algorithms 3.1 and 3.2. In this section we describe some experiments based on our
implementation. All experiments were carried out in double precision on a P4/2.5GHz
processor machine with 2GB RAM, running Linux.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 389

50 55 60 65 70 75 80 85 90 95 100
0

50

100

150

200

250

300

350

400

Size of input matrix (n x n)

R
un

ni
ng

 ti
m

e
(s

ec
s)

CPLEX
L

2
 Triangle Fixing

Fig. 6.1. Running time comparison between CPLEX and the �2 triangle fixing algorithm.

6.1. Running time. In this section we show some running time comparisons
between CPLEX—a state-of-the-art linear and quadratic optimization software—and
our implementations of triangle fixing. Our results clearly indicate the superiority
of triangle fixing over CPLEX. For these experiments, we used random dissimilarity
matrices of dimensions up to 100 × 100. The final values of the objective function
achieved by CPLEX and our implementation agreed to five significant digits.

Figure 6.1 compares CPLEX quadratic programming to our implementation of
�2 triangle fixing (see Algorithm 3.1). From the figure one can see that the triangle
fixing procedure is up to 30 times faster than CPLEX’s fastest method for solving
the metric nearness quadratic program. Our experiments suggest that the �2 triangle
fixing procedure scales as O(n3).

For �1 metric nearness, we compared CPLEX’s fastest algorithm for metric near-
ness (determined by running all six choices available and selecting the fastest timing),
and our implementation of the augmented triangle fixing procedure for solving the
�1 metric nearness problem. Our implementation runs up to 15 times faster than
CPLEX, as indicated by Figure 6.2. As suggested previously, we used ε = maxij dij
for our experiments.

6.2. Decrease only metric nearness/APSP experiments. Although the
Floyd–Warshall algorithm and the primal-dual algorithm, Algorithm 4.2, both have
an asymptotic runtime of O(n3), the latter converges more quickly to the answer for
certain classes of problems. Floyd–Warshall chooses an order of triangles to correct
without any guidance, whereas the primal-dual algorithm prefers to correct triangles
that include shorter edges. We can certainly imagine a problem instance where the
violating triangles have longer edges, and in this case the preference for shorter edges
does not help.

For randomly generated test cases, however, our primal-dual algorithm does con-
verge more quickly than Floyd–Warshall. To illustrate this observation, we generated
random matrices of dimension 200×200 that had a zero diagonal and entries between
0.1 and 10. We then determined the correct answer before running both algorithms,
halting the computation at each iteration to determine the distance between the cur-
rent distance matrix and the final metric. Distance was computed as the l1 vector

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

390 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Size of input matrix (n x n)

R
un

ni
ng

 ti
m

e
(s

ec
s)

CPLEX
L

1
 Triangle Fixing

Fig. 6.2. Running time comparison between CPLEX and augmented triangle fixing (�1).

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

2

4

6

8

10

12
x 10

4

Algorithm progress (iterations)

D
is

ta
nc

e
fr

om
 a

ns
w

er

Primal−Dual
Floyd−Warshall

Fig. 6.3. Convergence comparison of Floyd–Warshall and the primal-dual algorithm

distance. Figure 6.3 gives these results, which clearly show the primal-dual algorithm
converging faster than Floyd–Warshall.

To determine the approximate time to convergence as a function of n, we gen-
erated n × n matrices for values of n from 25 to 225. Figure 6.4 plots the number
of iterations required to converge for both Floyd–Warshall and the primal dual algo-
rithm. The exponents in the big-O notation runtimes were approximated by fitting
the curve to the best a · nb approximation. While Floyd–Warshall takes the entire
O(n3) time to converge, the primal-dual algorithm converges in about O(n2.8) time.
Even more striking is Figure 6.5, which plots the number of iterations the algorithms
required to nearly converge (where nearly converging means being within 0.5∗n of the
metric solution). Here Floyd–Warshall still required O(n3) time, but the primal-dual
algorithm needed only about O(n2.5) time.

Unfortunately, we cannot yet take advantage of this rapid convergence to improve

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 391

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

4

Size of problem (n)

Ite
ra

tio
ns

 to
 c

on
ve

rg
e

Primal−Dual
Floyd−Warshall

Fig. 6.4. Iterations to converge for Floyd–Warshall and the primal-dual algorithm. Each
iteration represents O(n) computations.

0 50 100 150 200 250
0

1

2

3

4

5

6
x 10

4

Size of problem (n)

Ite
ra

tio
ns

 to
 n

ea
rly

 c
on

ve
rg

e

Primal−Dual
Floyd−Warshall

Fig. 6.5. Iterations to nearly converge for Floyd–Warshall and the primal-dual algorithm. Each
iteration represents O(n) computations.

the runtime of the APSP primal-dual algorithms. Ideally, we could terminate the
algorithm when we had modified enough edges to cause the graph to be a metric.
After the graph is a metric, there are no triangles in violation, so the additional steps
of the algorithm do not modify the graph in any way. However, we are unaware of
any computationally efficient way to solve the problem of metricity. That is, given a
graph, return “true” if the graph is a metric, and “false” otherwise. One way to solve
this is to run APSP on the graph, and then check to see if any edges were shortened.
This observation yields an upper bound of O(APSP) on the metricity problem. It
follows that we cannot terminate the APSP primal-dual algorithms early, even if they
have converged to the correct result, because testing for the termination condition
has the same complexity as the problem itself.

7. Discussion. Metric nearness is a rich problem. In this paper we formally
introduced the problem and derived iterative algorithms for solving it for the vector

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

392 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

�p norms. A special case of metric nearness was shown to be equivalent to the all
pairs shortest paths problem, which led to a new algorithm for APSP. We studied ap-
plications of metric nearness to Max-Cut clustering. Experimental results illustrate
the computational advantages of triangle fixing over generic optimization methods.

7.1. Variations. One may derive numerous variations of the metric nearness
problem. The simplest of these involve the modification of the triangle inequality
constraints in some interesting manners. These variations are all easily solved using
our framework. Examples follow.

1. In section 4 we discussed metric nearness with the restriction that permit-
ted only decreasing changes to the entries of the input dissimilarity matrix.
Similarly, one may also look at the problem where only increasing changes
are permitted. Geometric or graph theoretic interpretations of this problem
remain to be considered.

2. When performing metric nearness on nonsymmetric input graphs, one can
choose either not to impose symmetry (as we did in the decrease-only section)
or to impose symmetry. The latter case introduces additional constraints, but
can be solved in our framework with only slight modifications.

3. Some applications may desire rank or order constraints to be enforced. That
is, if the input satisfies dij < dpq, then we also require mij < mpq. Such
a requirement can be useful in scenarios where the relative ordering of the
dissimilarity values has a significance for the underlying application.

4. Box constraints, i.e., constraints of type lij ≤ mij ≤ uij . Such constraints
can be useful when a true metric, as opposed to a pseudometric, is desired
(achieved by setting lij > 0). Upper bounds on the distance values may be
utilized to prevent certain undesirable solutions.

5. Enforcement of λ-triangle inequalities that take the form λijmij ≤ λikmik +
λkjmkj . Since the structure of the inequalities remains unaltered, this prob-
lem can also be solved by triangle fixing.

Other variations involve generalization of the basic problem. The most important
of such generalizations is one that introduces a weighting scheme to the problem. Here
we propose to obtain a distance matrix M such that

M ∈ argmin
X∈MN

‖W � (X −D)‖,

where ‖·‖ is a norm, � denotes the elementwise matrix product, and W is a weighting
matrix (a symmetric nonnegative matrix). The weight matrix reflects our confidence
in the entries of D. When each dij represents a measurement with variance σ2

ij , we

might set wij = 1/σ2
ij . If an entry of D is missing, one can set the corresponding

weight to zero (however, the resulting problem loses strict convexity, whereby one
should set this weight to a small value instead of zero).

7.2. Future work. Metric nearness is a relatively new problem. Many aspects
could form a basis for future work and further consideration. The most immediate
concerns that interest us are as follows:

1. Extensions to triangle fixing; for example, one may speed up the procedure
by fixing all the independent triangle inequalities in parallel. One could also
attempt to fix a few dependent triangle inequalities at the same time, and
such an approach will result in a dual block coordinate ascent scheme [27].

2. Studying the convergence of the triangle fixing algorithms at least for the �2
case. If possible, it would be interesting to furnish a proof of convergence for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 393

our algorithms that is independent of the convergence of the more general
Bregman’s method.

3. Exploring applications of metric nearness, e.g., applications to constrained
clustering or various other applications that make use of proximity data and
would profit from having metric data.

7.3. Open problems. Two interesting open problems spring out of metric near-
ness. First is the metricity problem that seeks to verify if the input dissimilarity
matrix is actually a distance matrix. Some related work that probabilistically tests
metric properties of an input dissimilarity matrix can be found in [21]. Whether the
metric verification problem has the same complexity as the metric nearness problem
remains to be ascertained. Second is the search for faster algorithms for the general
metric nearness problem. Along with faster algorithms, the possibility of guaranteed
polynomial-time (noniterative procedures) algorithms still remains.

7.4. Related work. Metric nearness is a relatively new problem that was in-
troduced by the authors, where preliminary work includes [6, 7].

The most relevant research appears in recent papers of Roth et al. [24, 25]. They
observe that machine learning applications often require metric data, and they propose
a technique for converting general dissimilarity data into metric data. Their method,
constant-shift embedding, increases all the dissimilarities by an equal amount to pro-
duce a set of Euclidean distances (i.e., a set of numbers that can be realized as the
pairwise distances among an ensemble of points in a Euclidean space). The size of the
translation depends on the data, so the relative and absolute changes to the dissimi-
larity values can be large. Our approach is completely different. We seek a consistent
set of distances that deviates as little as possible from the original measurements. In
our approach, the resulting set of distances can arise from an arbitrary metric space;
we do not restrict our attention to obtaining Euclidean distances. In consequence, we
expect metric nearness to provide superior denoising. Moreover, our techniques can
also learn distances that are missing entirely.

The technique of shifting the spectrum leads to an omission of the information
carried by the negative eigenvalues of the input matrix. Laub and Müller [15] explore
how the negative part of the spectrum could code for relevant features of the underly-
ing data. Their method once again is based around computing an embedding, which
is different from metric nearness, since the latter aims to only obtain a metric and
constructs no embedding.

There is at least one other method for inferring a metric that proposes a tech-
nique for learning a Mahalanobis distance for data in R

s [28], that is, a metric
dist(x,y) =

√
(x− y)TG(x− y), where G is an s × s positive semidefinite ma-

trix. The user specifies that various pairs of points are similar or dissimilar. Then
the matrix G is computed by minimizing the total squared distances between similar
points while forcing the total distances between dissimilar points to exceed one. The
article provides explicit algorithms for the cases where G is diagonal and where G is
an arbitrary positive semidefinite matrix. In comparison, the metric nearness problem
is not restricted to Mahalanobis distances; it can learn a general discrete metric. It
also allows us to use specific distance measurements and to indicate our confidence
in those measurements (by means of a weight matrix), rather than forcing a binary
choice of “similar” or “dissimilar.”

The metric nearness problem may appear similar to metric multidimensional scal-
ing [14], but we emphasize that the two problems are distinct. The latter problem
endeavors to find an ensemble of points in a prescribed metric space—usually a Eu-

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

394 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

clidean space—such that the distances between these points are close to the set of
input distances. In contrast, metric nearness does not seek an embedding—it does
not impose any hypotheses on the underlying space other than requiring it to be a
metric space. For more details on Euclidean distance matrices, see [9, 10, 26].

Related to metrics are ultrametrics; a distance matrix M is said to be an ultra-
metric if mij ≤ max{mik,mkj} for every distinct triple of indices (i, k, j). It is known
that finding the nearest (in �1 and �2 norms) ultrametric to a given input matrix
is NP-complete [4]. However, the �∞-nearest ultrametric can be computed in O(n2)
time [8]. Hubert, Arabie, and Meulman [11] consider the problem of representing a
dissimilarity matrix by a sum of matrices having a particular form, including a form
that restricts the matrices to being ultrametrics.

Appendix. More on metric nearness. This appendix includes additional
informative material pertinent to metric nearness.

A.1. Metric nearness and APSP. Lemma A.1 formalizes the equivalence
between a “decrease-only” version of metric nearness and APSP. This equivalence
was originally suggested by [22].

Lemma A.1 (decrease only metric nearness is APSP). Let MA ∈ MN be the
APSP solution for D. Then MA is also the nearest “decrease-only” metric solution.
Furthermore, for any M ∈ MN , if M ≤ D, then M ≤ MA.

Proof. We prove the last statement of the lemma, noting that it immediately
implies the rest.

Assume the edge weights mA
ij of MA are sorted in increasing order, and that the

least-weighted edge for which M exceeds MA is mij , i.e., mij > mA
ij . Since MA is an

APSP solution for D, each edge weight mA
ij either equals dij or is the sum of weights

of edges involved in a shortest path of length less than dij , as shown in Figure A.1.

Fig. A.1. Shortest path between i and j via k.

In the figure, k is some intermediate vertex on a shortest path from i to j. The
zig-zag lines denote paths from i → k and k → j. Since M is a metric solution,
mij ≤ mik + mkj . Now mA

ik ≤ mA
ij and mA

kj ≤ mA
ij , since mA

ij = mA
ik + mA

kj . By

our assumption mij > mA
ij is the first place where a component of M exceeds a

component of MA (taken in sorted order), hence mik ≤ mA
ik and mkj ≤ mA

kj , which

in turn implies that mij ≤ mA
ij . We have arrived at a contradiction to our initial

assumption, which completes the proof of our claim.

A.1.1. Equivalence of APSP to DOMN. Lemma A.1 shows that the optimal
assignment of the xij variables in linear program (4.3) is the same as the distances
given by the APSP solution. In this section, we will investigate an equivalence between
the optimal assignment of the πij and γikj variables in linear program (4.4) and the
paths given by the APSP solution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

METRIC NEARNESS PROBLEM 395

DOMN from APSP. Given an APSP solution, we construct an optimal solution
to the DOMN problem (4.3) using the following procedure:

• If the edge (i, j) is used by n shortest paths, then set πij = n.
• If the edge (i, j) is used by n shortest paths en route to node k, then set
γijk = n.

Feasibility of the above assignment. Clearly the nonnegativity constraints πij ≥ 0
and γikj ≥ 0 are satisfied. We must show that the constraint

πij +
∑
k 	=i,j

(γikj − γijk − γkij) = 1

is satisfied for all edges (i, j).
For vertex pairs i and j in which the shortest path from i to j is the edge (i, j), this

assignment will be consistent with the constraint because all shortest paths involving
the edge (i, j) fall into one of three categories: the path from i to j, paths to j that
end with the edge (i, j), and paths to another vertex k that pass through the edge
(i, j). The latter two categories contribute both a +1 and a −1 to the constraint,
while the first category contributes a +1, resulting in a net sum of 1.

For vertex pairs i and j in which the shortest path from i to j begins with the
edge (i, k), this assignment is also consistent with the constraint. There are two types
of shortest paths ending at node j and using edge (i, k): the path that starts at i, and
paths that start at a node l and pass through (i, k) before finishing at j. The latter
type of path contributes both a +1 and a −1 to the constraint, while the first type
contributes a +1 for a total of 1.

Optimality of the assignment. Under the proposed variable assignment procedure,
the objective function for (4.4) is the sum of all path distances. Because the paths
were taken from an APSP solution, this objective is minimized.

APSP from DOMN. Given a optimal solution to (4.4), we construct an APSP
solution using the following procedure:

• If πij is positive, then the edge (i, j) is a shortest path from i to j.
• If γikj is positive, then there is a shortest path from i to j that passes through

k; we may recursively find the shortest paths from i to k and from k to j.

REFERENCES

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. Assoc. Comput. Mach., 45 (1998), pp. 501–555.

[2] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms, and Applications,
Oxford University Press, Oxford, 1997.

[3] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 2nd
ed., MIT Press, Cambridge, MA, 2001.

[4] W. H. E. Day, Computational complexity of inferring phylogenies from dissimilarity matrices,
Bull. Math. Biol., 49 (1987), pp. 461–467.

[5] W. F. de la Vega and C. Kenyon, A randomized approximation scheme for Metric MAX-
CUT, J. Comput. System Sci., 63 (2001), pp. 531–541.

[6] I. S. Dhillon, S. Sra, and J. A. Tropp, The Metric Nearness Problems with Applications,
Tech. report TR-03-23, Computer Sciences, University of Texas at Austin, Austin, TX,
2003.

[7] I. S. Dhillon, S. Sra, and J. A. Tropp, Triangle fixing algorithms for the metric nearness
problem, in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss,
and L. Bottou, eds., MIT Press, Cambridge, MA, 2005.

[8] M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolutionary
trees, Algorithmica, 13 (1995), pp. 155–179.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

396 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

[9] J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra
Appl., 67 (1985), pp. 81–97.

[10] N. J. Higham, Matrix nearness problems and applications, in Applications of Matrix Theory,
M. J. C. Gower and S. Barnett, eds., Oxford University Press, Oxford, 1989, pp. 1–27.

[11] L. J. Hubert, P. Arabie, and J. Meulman, The representation of symmetric proximity data:
Dimensions and classifications, Computer J., 41 (1998), pp. 566–577.

[12] P. Indyk, A sublinear-time approximation scheme for clustering in metric spaces, in Proceed-
ings of the 40th Annual Symposium on Foundations of Computer Science, IEEE, 1999,
pp. 154–159.

[13] P. Indyk, Sublinear time algorithms for metric space problems, in Proceedings of the 31st
Annual Symposium on Theory of Computing, ACM, 1999, pp. 428–434.

[14] J. B. Kruskal and M. Wish, Multidimensional Scaling, Quantitative Applications in the
Social Sciences, Sage Publications, Newbury Park, CA, 1978.

[15] J. Laub and K.-R. Müller, Feature discovery in non-metric pairwise data, J. Mach. Learn.
Res., 5 (2004), pp. 801–818.

[16] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Kluwer Academic, Boston,
MA, 1984.

[17] O. L. Mangasarian, Normal solutions of linear programs, Math. Programming Stud., 22
(1984), pp. 206–216.

[18] R. R. Mettu and C. G. Plaxton, The online median problem, SIAM J. Comput., 32 (2003),
pp. 816–832.

[19] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-
ity, Dover, Mineola, NY, 2000.

[20] C. Papadimitriou and M. Yannakakis, Optimization, approximation and complexity classes,
J. Comput. System Sci., 43 (1991), pp. 425–440.

[21] M. Parnas and D. Ron, Testing metric properties, in Proceedings of the Annual Symposium
on Theory of Computing, ACM, 2001, pp. 276–285.

[22] C. G. Plaxton, Personal communication, 2003–2004.
[23] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[24] V. Roth, J. Laub, J. M. Buhmann, and K.-R. Müller, Going metric: Denoising pairwise

data, in Advances in Neural Information Processing Systems 15, S. Becker, S. Thrun, and
K. Obermayer, eds., MIT Press, Cambridge, MA, 2003, pp. 841–848.

[25] V. Roth, J. Laub, M. Kawanabe, and J. M. Buhmann, Optimal cluster preserving embedding
of nonmetric proximity data, IEEE Trans. Pattern Anal. Machine Intelligence, 25 (2003),
pp. 1540–1551.

[26] I. J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la definition axiomatique d’une
classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert,” Ann. of
Math., 36 (1935), pp. 724–732.

[27] P. Tseng, Dual coordinate ascent methods for nonstrictly convex minimization, Math. Pro-
gramming, 59 (1993), pp. 231–247.

[28] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, Distance metric learning, with appli-
cation to clustering with side constraints, in Advances in Neural Information Processing
Systems 15, S. Becker, S. Thrun, and K. Obermayer, eds., MIT Press, Cambridge, MA,
2003, pp. 521–528.

