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Abstract

Various problems in machine learning, databases, andtatatinvolve
pairwise distances among a set of objects. It is often dasifar these
distances to satisfy the properties of a metric, espediaéytriangle in-
equality. Applications where metric data is useful includestering,
classification, metric-based indexing, and approximaditgorithms for
various graph problems. This paper presentdMiéic Nearness Prob-
lem Given a dissimilarity matrix, find the “nearest” matrix asthnces
that satisfy the triangle inequalities. F€y nearness measures, this pa-
per develops efficientriangle fixing algorithms that compute globally
optimal solutions by exploiting the inherent structure lo¢ fproblem.
Empirically, the algorithms have time and storage costs dha linear
in the number of triangle constraints. The methods can atsedsily
parallelized for additional speed.

1 Introduction

Imagine that a lazy graduate student has been asked to raghsupairwise distances
among a group of objects in a metric space. He does not coenfiietexperiment, and
he must figure out the remaining numbers before his advisem®from her conference.
Obviously, all the distances need to be consistent, buttthiteat does not know very much
about the space in which the objects are embedded. One walvé&hss problem is to find
the “nearest” complete set of distances that satisfy thagite inequalities. This procedure
respects the measurements that have already been takerfovbihg the missing numbers
to behave like distances.

More charitably, suppose that the student has finished theriement, but—measurements
being what they are—the numbers do not satisfy the triangiguality. The student knows
that they must represent distances, so he would like to gadba data so that it corre-
sponds with his priori knowledge. Once again, the solution seems to require trerésé’
set of distances that satisfy the triangle inequalities.

Matrix nearness problems [6] offer a natural framework feveloping this idea. If there
aren points, we may collect the measurements intonar n symmetric matrix whose
(4, k) entry represents the dissimilarity between fk andk-th points. Then, we seek to
approximate this matrix by another whose entries satishtiiangle inequalities. That is,



mae < my; + myjy for every triple(4, j, k). Any such matrix will represent the distances
amongn points in some metric space. We calculate approximatiaor &ith a distortion
measure that depends on how the corrected matrix shoule telahe input matrix. For
example, one might prefer to change a few entries significanto change all the entries
a little.

We call the problem of approximating general dissimiladata by metric data thieletric
Nearness (MN) ProbleniThis simply stated problem has not previously been stydaikd
though the literature does contain some related topicsSgeton 1.1). This paper presents
a formulation of the Metric Nearness Problem (Section 29y, iashows that every locally
optimal solution is globally optimal. To solve the problene wresent triangle-fixing al-
gorithms that take advantage of its structure to produckadip optimal solutions. It can
be computationally prohibitive, both in time and storagesdlve the MN problem without
these efficiencies.

1.1 Related Work

The Metric Nearness (MN) problem is novel, but the literatcontains some related work.

The most relevant research appears in a recent paper of Rath[@1]. They observe
that machine learning applications often require metria,dand they propose a technique
for metrizing dissimilarity data. Their method, constahtft embedding, increases all the
dissimilarities by an equal amount to produce a set of Eealiddistances (i.e., a set of
numbers that can be realized as the pairwise distances aamegsemble of points in a
Euclidean space). The size of the translation depends odetiae so the relative and ab-
solute changes to the dissimilarity values can be large.approach to metrizing data is
completely different. We seek a consistent set of distatitagleviates as little as pos-
sible from the original measurements. In our approach, the iaguiet of distances can
arise from an arbitrary metric space; we do not restrict ttenéion to obtaining Euclidean
distances. In consequence, we expect metric nearness/idgsuperior denoising. More-
over, our techniques can also learn distances that arengiestirely.

There is at least one other method for inferring a metric. Aitla of Xing et al. [12]
proposes a technique for learning a Mahalanobis distarragata inR®. That is, a metric
dist(z,y) = /(z —y)TG(z — y), whereG is ans x s positive semi-definite matrix.
The user specifies that various pairs of points are similatiggimilar. Then the matrix
G is computed by minimizing the totalquareddistances between similar points while
forcing the total distances between dissimilar points toeexl one. The article provides
explicit algorithms for the cases wheteis diagonal and wheré& is an arbitrary positive
semi-definite matrix. In comparison, the metric nearnesblpm is not restricted to Ma-
halanobis distances; it can learn a general discrete méttatso allows us to use specific
distance measurements and to indicate our confidence ie theasurements (by means of
a weight matrix), rather than forcing a binary choice of “B&f or “dissimilar.”

The Metric Nearness Problem may appear similar to metrictiNDimensional Scaling
(MDS) [8], but we emphasize that the two problems distinct The MDS problem en-
deavors to find an ensemble of points ip@scribedmetric space (usually a Euclidean
space) such that the distances between these points aeet@lthee set of input distances.
In contrast, the MN problem does not seek to find an embeddimgact MN does not
impose any hypotheses on the underlying space other thamirggjt to be a metric space.

The outline of rest of the paper is as follows. Section 2 fdlyrdescribes the MN problem.
In Section 3, we present algorithms that allow us to solve Mdbfems with/,, nearness
measures. Some applications and experimental resultsvfall Section 4. Section 5 dis-
cusses our results, some interesting connections, anibjbitiss for future research.



2 TheMetric Nearness Problem

We begin with some basic definitions. We defirdissimilarity matrixto be a nonnegative,
symmetric matrix with zero diagonal. Meanwhile dsstance matrixis defined to be a
dissimilarity matrix whose entries satisfy the triangledguoialities. That isM is a distance
matrix if and only if it is a dissimilarity matrix aneh,;;, < m;; + m;; for every triple of
distinct indices(s, j, k). Distance matrices arise from measuring the distances gmon
points in a pseudo-metric space (i.e., two distinct poiatsle at zero distance from each
other). A distance matrix contain§ = n (n — 1)/2 free parameters, so we denote the
collection of all distance matrices by . The set# is a closed, convex cone.

The metric nearness problem requests a distance nibfrikhat is closest to a given dis-
similarity matrix D with respect to some measure of “closeness.” In this workjesgrict
our attention to closeness measures that arise from nonpesifigally, we seek a distance
matrix M so that,

M € {argmin HW@ (X — D)H} , (2.1)
Xetn

where|| - || is @ norm,W is a symmetric non-negative weight matrix, ara tlenotes the
elementwise (Hadamard) product of two matrices. The weigdlrix reflects our confi-
dence in the entries dD. When eachl;; represents a measurement with variamﬁ“jewe
might setw;; = 1/a§j. If an entry of D is missing, one can set the corresponding weight
to zero.

Theorem 2.1. The functionX — ”W ® (X — D)|| always attains its minimum om?y .
Moreover, every local minimum is a global minimum. If, in &iddh, the norm is strictly
convex and the weight matrix has no zeros or infinities offlisgonal, then there is a
unique global minimum.

Proof. The main task is to show that the objective function has nectiions of recession,
S0 it must attain a finite minimum om?;. Details appear in [4]. O

It is possible to use any norm in the metric nearness probleve. further restrict our
attention to the/, norms. The associated Metric Nearness Problems are

1/p

XHEH//I}N |:Z ’wjk (Ijk — djk)|p for1 < p < 00, and (22)
J#k
Xrgy[N rjn;]z( |wjk (xjr — djk)| for p = oco. (2.3)

Note that the/, norms are strictly convex fdr < p < oo, and therefore the solution to (2.2)

is unique. There is a basic intuition for choosingThe ¢; horm gives the absolute sum

of the (weighted) changes to the input matrix, while the only reflects the maximum
absolute change. The oth&y norms interpolate between these extremes. Therefore, a
small value of typically results in a solution that makes a few large charigehe original
data, while a large value gftypically yields a solution with many small changes.

3 Algorithms

This section describes efficient algorithms for solving Mhetric Nearness Problems (2.2)
and (2.3). For ease of exposition, we assume all weights talempe. At first, it may
appear that one should use quadratic programming (QP) a@twhery = 2, linear pro-
gramming (LP) software whep = 1 or p = oo, and convex programming software for
the remainingp. It turns out that the time and storage requirements of {hg@ach can
be prohibitive. An efficient algorithm must exploit the stture of the triangle inequalities.
In this paper, we develop one such approach, which may beedieg ariangle-fixing



algorithm This method examines each triple of points in turn and agityrenforces any
triangle inequality that fails. (The definition of “optinfalepends on thé, nearness mea-
sure.) By introducing appropriate corrections, we can enthat this iterative algorithm
converges to a globally optimal solution of MN.

Notation. We mustintroduce some additional notation before proecegdio each matrix
X of dissimilarities or distances, we associate the vectimrmed by stacking the columns
of the lower triangle, left to right. We use;; to refer to the(s, j) entry of the matrix as
well as the corresponding component of the vector. Definenatcaint matrixA so that
M is a distance matrix if and only il < 0. Note that each row oA contains three
nonzero entries-1, —1, and—1.

3.1 MN for the /5 norm

We first develop a triangle-fixing algorithm for solving (R:\ith respect to thé, norm.
This case turns out to be the simplest and most illuminataggc It also plays a pivotal
role in the algorithms for thé, and/., MN problems.

Given a dissimilarity vectod, we wish to find its orthogonal projectiam onto the cone
M. Let us introduce an auxiliary variable= m — d that represents the changes to the
original distances. We also defihe= — Ad. The negative entries éfindicate how much
each triangle inequality is violated. The problem becomes

mine |le||2,

. 3.1
subject toAe < b. (3.1)
After finding the minimizek*, we can use the relatiom* = d+ e* to recover the optimal
distance vector.

Here is our approach. We initialize the vector of changeseto £ = 0), and then we
begin to cycle through the triangles. Suppose thatithg k) triangle inequality is violated,
i.e.,e;; —ejr — exi > bijr. We wish to remedy this violation by making @g-minimal
adjustment ot;;, e;;, andey;. In other words, the vectar is projected orthogonally onto
the constraint sefe’ : ej; — e, — e}, < b;i}. This is tantamount to solving

ming: %[(e;j —eij)? + (e — ein)? + (ef; — eki)Q)},

3.2
subject to e'ij — e;k — e = bijk- (3.2)

It is easy to check that the solution is given by
€ < €ij — Mijh, € — €jk + Mijhs and  e}; — e + Mijks (3-3)

wherep;j, = x(eij — e — eri — bijr) > 0. Only three components of the vecter
need to be updated. The updates in (3.3) show that the lazdgstweight in the triangle
is decreased, while the other two edge weights are increased

In turn, we fix each violated triangle inequality using (3.3e must also introduce a
correction term to guide the algorithm to the global minimuithe corrections have a
simple interpretation in terms of the dual of the minimipatiproblem (3.1). Each dual
variable corresponds to the violation in a single triangleguality, and each individual
correction results in a decrease in the violation. We cotinntil no triangle receives a
significant update.

Algorithm 3.1 displays the complete iterative scheme thefgems triangle fixing along
with appropriate corrections.



ALGORITHM 3.1: Triangle Fixing Fo¥s norm.

TRIANGLE_FIXING (D, €)
Input: Input dissimilarity matrixD, tolerance:
Output: M = argminy. 4, || X — D|2.
fori1<i<j<k<n

(Zijks Zjki> 2kij) < 0 {Initialize correction termgs
for1<i<j<n

eij — 0 {Initial error values for each dissimilarity;; }
d—1+ce {Parameter for testing convergefce
while (§ > ¢) {convergence test

foreach triangle(, j, k)
b dy; + dji, — dij

p— 3(eij — ek — eri — b) (%)
0 — min{—p, z;;x } {Stay within half-space of constrajnt
eij «—eij — 0, ek —ejn+0,er —er; +0 (k)
Zijk — Zijk — 0 {Update correction terin
end foreach
& « sum of changes in thevalues
end while

reeurn M =D + FE

Remark: Algorithm 3.1 is an efficient adaptation of Bregman’s metlibd By itself,
Bregman’s method would suffer the same storage and conirutadsts as a general con-
vex optimization algorithm. Our triangle fixing operaticadfow us to compactly represent
and compute the intermediate variables required to soleithblem. The correctness and
convergence properties of Algorithm 3.1 follow from tho$@&cegman’s method. Further-
more, our algorithms are very easy to implement.

3.2 MN for the/; and /., norms

The basic triangle fixing algorithm succeeds only when themesed in (2.2) is strictly
convex. Hence, it cannot be applied directly to thend/., cases. These require a more
sophisticated approach.

First, observe that the problem of minimizing thenorm of the changes can be written as
an LP:
min 07e + 17 f
ef (3.4)
subjecttoAe<b, —-e—f<0, e—f<O0.

The auxiliary variablef can be interpreted as the absolute value. &imilarly, minimizing
the /., norm of the changes can be accomplished with the LP

min 07e + ¢
e (3.5)
subjecttoAe <b, —-e—-(1<0, e—(1<0.

We interpretl = ||| 0.

Solving these linear programs using standard software egrdhibitively expensive be-
cause of the large number of constraints. Moreover, theisokiare not unique because
the /; and/., norms are not strictly convex. Instead, we replace the LP Quaaratic
program (QP) that is strictly convex and returns the sofutibthe LP that has minimum
£s-norm. For the/; case, we have the following result.



Theorem 3.1 (¢; Metric Nearness). Letz = [e; f] ande = [0; 1] be partitioned confor-
mally. If (3.4) has a solution, then there exists\g > 0, such that for allx < Ag,

argmin ||z + X '¢[s = argmin |z|s, (3.6)
zeZ zeZ*

where Z is the feasible set fof3.4) and Z* is the set of optimal solutions {8.4). The

minimizer of (3.6)is unique.

Theorem 3.1 follows from a result of Mangasarian [9, TheoPelra-i]. A similar theorem
may be stated for the,, case.

The QP (3.6) can be solved using an augmented triangle-fediggrithm since the ma-
jority of the constraints in (3.6) are triangle inequaktieAs in thel, case, the triangle
constraints are enforced using (3.3). Each remaining cainsis enforced by computing
an orthogonal projection onto the corresponding halfsp&iée refer the reader to [5] for
the detalils.

3.3 MNfor ¢, norms(1 < p < c0)

Next, we explain how to use triangle fixing to solve the MN geob for the remainind,
norms,1 < p < oo. The computational costs are somewhat higher becausegbetiam
requires solving a nonlinear equation. The problem may bagg as

1 .
mine » el subjectto  Ae <b. (3.7)

To enforce a triangle constraint optimally in thenorm, we need to compute a projection
of the vectore onto the constraint set. Defingx) = 1% |lz||2, and note thatVp(x)); =

sgn(x;) |z;[P~. The projection ok onto the(i, j, k) violating constraint is the solution of
mine: p(e') — ¢(e) — (Vp(e), e’ —e) subjectto az;ke’ = bijk,

wherea;;;, is the row of the constraint matrix corresponding to thengla inequality
(i, 4, k). The projection may be determined by solving

V(€)= Vo(e) + wij aijk sothat a e = b (3.8)

Sincea;;, has only three nonzero entries, we see thanly needs to be updated in three
components. Therefore, in Algorithm 3.1 we may repléegeby an appropriate numerical

computation of the parametgs;;, and replacdxx) by the computation of the new value
of e. Further details are available in [5].

4 Applications and Experiments

Replacing a general graph (dissimilarity matrix) by a neetniaph (distance matrix) can
enable us to use efficient approximation algorithms for Nf?eHgraph problems (M -
CuT clustering) that have guaranteed error for metric dategfample, see [7]. The error
from MN will carry over to the graph problem, while retainitige bounds on total error
incurred. As an example, constant factor approximationritlyms for MAX-CuUT exist
for metric graphs [3], and can be used for clustering apptina. See [4] for more details.

Applications that use dissimilarity values, such as chustg classification, searching, and
indexing, could potentially be sped up if the data is metiidN is a natural candidate for
enforcing metric properties on the data to permit thesedigese

We were originally motivated to formulate and solve MN by aljem that arose in connec-
tion with biological databases [13]. This problem involeggproximating mPAM matrices,



which are a derivative of mutation probability matricestl2at arise in protein sequencing.
They represent a certain measure of dissimilarity for ariegon in protein sequencing.

Owing to the manner in which these matrices are formed, theg hot to be distance ma-
trices. Query operations in biological databases havedtengial to be dramatically sped
up if the data were metric (using a metric based indexingreele Thus, one approach is
to find the nearest distance matrix to each mPAM matrix andhateapproximation in the

metric based indexing scheme.

We approximated various mPAM matrices by their nearesadist matrices. The relative
errors of the approximatiorlsD — M ||/||D|| are reported in Table 1.

Table 1: Relative errors for mPAM dataséf (s, (., nearness, respectively)

ID-M]|:, | [D=M]s | [D-—M]

Dataset ‘ D=

MPAMS50 0.339 0.402 0.278
mPAM100 | 0.142 0.231 0.206
mPAM150 | 0.054 0.121 0.151
mPAM250 | 0.004 0.025 0.042
mPAM300 | 0.002 0.017 0.056

4.1 Experiments
The MN problem has an input of siZé = n(n — 1)/2, and the number of constraints is

roughly N3/2. We ran experiments to ascertain the empirical behaviohefalgorithm.
Figure 1 shows log—log plots of the running time of our algoris for solving the/,

Log-Log plot showing runtime behavior of |, MN Log-Log plot of running time for I, MN

inning time in se

Log(Ru
«

y=15x-6.1| |
e RUNNING tiMe]

4 5 6 7 8 7 71 72 13 14 15 76 11 18 19 8
Log(N) - N is the input size Log(N) - where N is the input size

Figure 1: Running time fof; and/>; norm solutions (plots have different scales).

and/, Metric Nearness Problems. Note that the time cost appedrs @ N3/2), which

is linear in the number of constraints. The results plotted in the &gwere obtained
by executing the algorithms on random dissimilarity masic The procedure was halted
when the distance values changed less thar? from one iteration to the next. For both
problems, the results were obtained with a simplerMAB implementation. Nevertheless,
this basic version outperforms AMLAB’S optimization package by one or two orders of
magnitude (depending on the problem), while numericallyi@dng similar results. A
more sophisticated (C or parallel) implementation coulgrove the running time even
more, which would allow us to study larger problems.

5 Discussion

In this paper, we have introduced the Metric Nearness pnojéded we have developed al-
gorithms for solving it for,, nearness measures. The algorithms proceed by fixing viblate



triangles in turn, while introducing correction terms tadguthe algorithm to the global op-
timum. Our experiments suggest that the algorithms redq{rg>/2) time, whereN is the
total number of distances, so it is linear in the number ofstaints. An open problem is
to obtain an algorithm with better computational comphexit

Metric Nearness is a rich problem. It can be shown that a apease (allowing only
decreases in the dissimilarities)idkentical with the All Pairs Shortest Path problem [10].
Thus one may check whether thédistances satisfy metric propertiesi{APSP) time.
However, we are not aware if this is a lower bound.

Itis also possible to incorporate other types of linear amex constraints into the Metric
Nearness Problem. Some other possibilities include mutiinx constraints on the distances
(I < m < u), allowing A triangle inequalitiesit;; < A1mg, + Aamy;), or enforcing order
constraintsd;; < dy; impliesm;; < my;).

We plan to further investigate the application of MN to otlpeoblems in data mining,
machine learning, and database query retrieval.
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