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Abstract
The multi-label classification problem has gen-
erated significant interest in recent years. How-
ever, existing approaches do not adequately ad-
dress two key challenges: (a) scaling up to prob-
lems with a large number (say millions) of labels,
and (b) handling data with missing labels. In this
paper, we directly address both these problems
by studying the multi-label problem in a generic
empirical risk minimization (ERM) framework.
Our framework, despite being simple, is sur-
prisingly able to encompass several recent label-
compression based methods which can be de-
rived as special cases of our method. To optimize
the ERM problem, we develop techniques that
exploit the structure of specific loss functions -
such as the squared loss function - to obtain effi-
cient algorithms. We further show that our learn-
ing framework admits excess risk bounds even
in the presence of missing labels. Our bounds
are tight and demonstrate better generalization
performance for low-rank promoting trace-norm
regularization when compared to (rank insensi-
tive) Frobenius norm regularization. Finally, we
present extensive empirical results on a variety
of benchmark datasets and show that our meth-
ods perform significantly better than existing la-
bel compression based methods and can scale up
to very large datasets such as a Wikipedia dataset
that has more than 200,000 labels.

1. Introduction
Large scale multi-label classification is an important learn-
ing problem with several applications to real-world prob-
lems such as image/video annotation (Carneiro et al.,
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2007; Wang et al., 2009) and query/keyword suggestions
(Agrawal et al., 2013). The goal in multi-label classifica-
tion is to predict a label vector y ∈ {0, 1}L for a given data
point x ∈ Rd. This problem has been studied extensively
in the domain of structured output learning, where the num-
ber of labels is assumed to be small and the main focus is
thus, on modeling inter-label correlations and using them
to predict the label vector (Hariharan et al., 2010).

Due to several motivating real-life applications, recent re-
search on multi-label classification has largely shifted its
focus to the other end of the spectrum where the number
of labels is assumed to be extremely large, with the key
challenge being the design of scalable algorithms that offer
real-time predictions and have a small memory footprint.
In such situations, simple methods such as 1-vs-all or Bi-
nary Relevance (BR), that treat each label as a separate bi-
nary classification problem fail miserably. For a problem
with (say) 104 labels and 106 features, which is common
in several applications, these methods have a memory foot-
print of around 100 Gigabytes and offer slow predictions.

A common technique that has been used to handle the la-
bel proliferation problem in several recent works is “la-
bel space reduction”. The key idea in this technique is to
reduce the dimensionality of the label-space by using ei-
ther random projections or canonical correlation analysis
(CCA) based projections (Chen & Lin, 2012; Hsu et al.,
2009; Tai & Lin, 2012; Kapoor et al., 2012). Subsequently,
these methods perform prediction on the smaller dimen-
sional label-space and then recover the original labels by
projecting back onto the high dimensional label-space. In
particular, (Chen & Lin, 2012) recently proposed an ef-
ficient algorithm with both label-space and feature-space
compression via a CCA type method with some orthog-
onality constraints. However, this method is relatively
rigid and cannot handle several important issues inherent
to multi-label problems; see Section 2.1 for more details.

In this paper we take a more direct approach by formulat-
ing the problem as that of learning a low-rank linear model
Z ∈ Rd×L s.t. ypred = ZTx. We cast this learning prob-
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lem in the standard ERM framework that allows us to use
a variety of loss functions and regularizations for Z. This
framework unifies several existing dimension reduction ap-
proaches. In particular, we show that if the loss function is
chosen to be the squared-L2 loss, then our proposed for-
mulation has a closed form solution, and surprisingly, the
conditional principal label space transformation (CPLST)
method of (Chen & Lin, 2012) can be derived as a special
case. However, the flexibility of the framework allows us
to use other loss functions and regularizers that are useful
for preventing overfitting and increasing scalability.

Moreover, we can extend our formulation to handle missing
labels; in contrast, most dimension reduction formulations
(including CPLST) cannot accommodate missing labels.
The ability to learn in the presence of missing labels is cru-
cial as for most real-world applications, one cannot expect
to accurately obtain (either through manual or automated
labeling) all the labels for a given data point. For example,
in image annotation, human labelers tag only prominent la-
bels and typically miss out on several objects present in the
image. Similarly, in online collections such as Wikipedia,
where articles get tagged with categories, human labelers
usually tag only with categories they know about. More-
over, there might be considerable noise in the labeling.

In order to solve for the low-rank linear model that re-
sults from our formulation, we use the popular alternating
minimization algorithm that works well despite the non-
convexity of the rank constraint. For general loss functions
and trace-norm regularization, we exploit subtle structures
present in the problem to design a fast conjugate gradient
based method. For the special case of squared-L2 loss and
trace-norm regularization, we further exploit the structure
of the loss function to provide a more efficient and scal-
able algorithm. As compared to direct computation, our
algorithm is O(d̄) faster, where d̄ is the average number of
nonzero features in an instance.

On the theoretical side, we perform an excess risk analy-
sis for the trace-norm regularized ERM formulation with
missing labels, assuming labels are observed uniformly at
random. Our proofs do not follow from existing results
due to missing labels and require a careful analysis involv-
ing results from random matrix theory. Our results show
that while in general the low-rank promoting trace-norm
regularization does not provide better bounds than learning
a full-rank matrix (e.g. using Frobenius norm regulariza-
tion), for several interesting data distributions, trace-norm
regularization does indeed give significantly better bounds.
More specifically, for isotropic data distributions, we show
that trace-norm based methods have excess risk ofO( 1√

nL
)

while full-rank learning can only guarantee O( 1√
n

) excess
risk, where n is the number of training points.

Finally, we provide an extensive empirical evaluation of
our method on a variety of benchmark datasets. In par-
ticular, we compare our method against three recent label

compression based methods: CPLST (Chen & Lin, 2012),
Bayesian-CS (Kapoor et al., 2012), and WSABIE (Weston
et al., 2010). On almost all datasets, our method signif-
icantly outperforms these methods, both in the presence
and absence of missing labels. Finally, we show the scal-
ability of our method by applying it to a recently curated
Wikipedia dataset (Agrawal et al., 2013), that has 881,805
training samples and 213,707 labels. The results show that
our method not only provides reasonably accurate solutions
for such large-scale problems, but that the training time is
orders of magnitude lesser than several existing methods.

Related Work. Typically, Binary Relevance (BR), which
treats each label as an independent binary classification
task, is quite accurate for multi-label learning. However,
for a large number of labels, this method becomes infeasi-
ble due to increased model size and prediction time. Re-
cently, techniques have been developed that either reduce
the dimension of the labels, such as the Compressed Sens-
ing Approach (Hsu et al., 2009), PLST (Tai & Lin, 2012),
CPLST (Chen & Lin, 2012), and Bayesian CS (Kapoor
et al., 2012), or reduce the feature dimension, such as (Sun
et al., 2011), or both, such as WSABIE (Weston et al.,
2010). Most of these techniques are tied to a specific loss
function (e.g., CPLST and BCS cater only to the squared-
L2 loss, and WSABIE works with the weighted approxi-
mate ranking loss) and/or cannot handle missing labels.

Our framework models multi-label classification as a gen-
eral ERM problem with a low-rank constraint, which not
only generalizes both label and feature dimensionality re-
duction but also brings in the ability to support various
loss functions and allows for rigorous generalization error
analysis. We show that our formulation not only retrieves
CPLST, which has been shown to be fairly accurate, as a
special case, but substantially enhances it by use of regu-
larization, other loss functions, allowing missing labels etc.

Paper Organization. We begin by studying a generic low-
rank ERM framework for multi-label learning in Section 2.
Next, we propose efficient algorithms for the framework in
Section 3 and analyze their generalization performance for
trace-norm regularization in Section 4. We present empiri-
cal results in Section 5, and conclude in Section 6.

2. Problem Formulation
In this section we present a generic ERM-style framework
for multi-label classification. For each training point, we
shall receive a feature vector xi ∈ Rd and a corresponding
label vector yi ∈ {0, 1}L with L labels. For any j ∈ [L],
yji = 1 will denote that the lth label is “present” or “on”
whereas yji = 0 will denote that the label is “absent” or
“off”. Note that although we focus mostly on the binary
classification setting in this paper, our methods easily ex-
tend to the multi-class setting where yji ∈ {1, 2, . . . , C}.

Our predictions for the label vector shall be parametrized
as f(x;Z) = ZTx, where Z ∈ Rd×L. Although we
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have adopted a linear parametrization here, our results can
easily be extended for non-linear kernels as well. Let
`(y, f(x;Z)) ∈ R be the loss function that computes the
discrepancy between the “true” label vector and the predic-
tion. We assume that the loss function is decomposable,
i.e., `(y, f(x;Z)) =

∑L
j=1 `(y

j , f j(x;Z)).

The motivation for our framework comes from the obser-
vation that although the number of labels in a multi-label
classification problem might be large, there typically ex-
ist significant label correlations, thus reducing the effective
number of parameters required to model them to much less
than d × L. We capture this intuition by restricting the
matrix Z to learn only a small number of “latent” factors.
This constrains Z to be a low rank matrix which not only
controls overfitting but also gives computational benefits.

Given n training points our training set will be (X,Y )
where X = [x1, . . . ,xn]T and Y = [y1 y2 . . . yn]T . Us-
ing the loss function `, we propose to learn the parameters
Z by using the canonical ERM method, i.e.,

Ẑ = arg min
Z
J(Z) =

n∑
i=1

L∑
j=1

`(Yij , f j(xi;Z)) + λ · r(Z),

s.t. rank(Z) ≤ k, (1)

where r(Z) : Rd×L → R is a regularizer. If there are
missing labels, we compute the loss over the known labels:

Ẑ = arg min
Z
JΩ(Z) =

∑
(i,j)∈Ω

`(Yij , f j(xi;Z)) + λ · r(Z),

s.t. rank(Z) ≤ k, (2)

where Ω ⊆ [n] × [L] is the index set that represents
“known” labels. Note that in this work, we assume the
standard missing value setting, where each label can be
either on, off (i.e., Yij = 1 or 0), or missing (Yij =?);
several other works have considered another setting where
only positive labels are known and are given as 1 in the la-
bel matrix, while negative or missing values are all denoted
by 0 (Agrawal et al., 2013; Bucak et al., 2011).

Note that although the above formulation is NP-hard in
general due to the non-convex rank constraint, for convex
loss functions, one can still utilize the standard alternating
minimization method. Moreover, for the special case of L2

loss, we can derive closed form solutions for the full-label
case (1) and show connections to several existing methods.

We would like to note that while the ERM framework is
well known and standard, most existing multi-label meth-
ods for large number of labels motivate their work in a rel-
atively ad-hoc manner. Using our approach, we can show
that existing methods like CPLST (Chen & Lin, 2012) are
in fact a special case of our generic ERM framework (see
next section). Furthermore, having this framework also
helps us in studying generalization error bounds for our
methods and identifying situations where the methods can
be expected to succeed (see Section 4).

2.1. Special Case: Squared-L2 loss

In this section, we study (1) and (2) for the special case
of squared L2 loss function, i.e., `(y, f(x;Z)) = ‖y −
f(x;Z)‖22. We show that in the absence of missing la-
bels, the formulation in (1) can be solved optimally for the
squared L2 loss using SVD. Furthermore, by selecting an
appropriate regularizer r(Z) and λ, our solution for L2 loss
is exactly the same as that of CPLST (Chen & Lin, 2012).

We first show that the unregularized form of (1) with
`(y, f(x;Z)) = ‖y − ZTx‖22 has a closed form solution.

Claim 1. If `(y, f(x;Z)) = ‖y−ZTx‖22 and λ = 0, then

VXΣ−1
X Mk = arg min

Z:rank(Z)≤k
‖Y −XZ‖2F , (3)

where X = UXΣXV TX is the thin SVD decomposition of
X , and Mk is the rank-k truncated SVD of M ≡ UTXY .

See Appendix A for a proof of Claim 1. We now show that
this is exactly the solution obtained by (Chen & Lin, 2012)
for their CPLST formulation.

Claim 2. The solution to (3) is equivalent to ZCPLST =
WCPLSTH

T
CPLST which is the closed form solution for

the CPLST scheme.

See Appendix A for a proof. Note that (Chen & Lin, 2012)
derive their method by relaxing a Hamming loss problem
and dropping constraints in the canonical correlation anal-
ysis in a relatively ad-hoc manner. The above results, on
the other hand, show that the same model can be derived in
a more principled manner. This helps us in extending the
method for several other problem settings in a principled
manner and also helps in providing excess risk bounds:

• As shown empirically, CPLST tends to overfit signif-
icantly whenever d is large. However, we can handle
this issue by setting λ appropriately.
• The closed form solution in (Chen & Lin, 2012) can-

not directly handle missing labels as it requires SVD
on fully observed Y . In contrast, our framework can
itself handle missing labels without any modifications.
• The formulation in (Chen & Lin, 2012) is tied to the
L2 loss function. In contrast, we can easily handle
other loss functions; although, the optimization prob-
lem might become more difficult to solve.

We note that such links between low rank solutions to
multi-variate regression problems and PCA/SVD are well
known in literature (Izenman, 1975; Breiman & Friedman,
1997). However, these results are mostly derived in the
stochastic setting under various noise models whereas ours
apply to the empirical setting. Moreover, these classical
results put little emphasis on large scale implementation.

3. Algorithms
In this section, we apply the alternating minimization tech-
nique for optimizing (1) and (2). For a matrix Z with a
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known low rank k, it is inefficient to represent it using d×L
entries, especially when d and L are large. Hence we con-
sider a low-rank decomposition of the form Z = WHT ,
where W ∈ Rd×k and H ∈ RL×k. We further assume that
r(Z) can be decomposed into r1(W ) + r2(H). In the fol-
lowing sections, we present results with the trace norm reg-
ularization, i.e., r(Z) = ‖Z‖tr, which can be decomposed
as ‖Z‖tr = 1

2

(
‖W‖2F + ‖H‖2F

)
. Thus, minZ JΩ(Z) with

the rank constraint is equivalent to minimizing over W,H:

JΩ(W,H) =
∑

(i,j)∈Ω

`(Yij ,xTi Whj)+
λ

2
(
‖W‖2F + ‖H‖2F

)
(4)

where hTj is the j-th row of H . Note that when either of
W or H is fixed, JΩ(W,H) becomes a convex function.
This allows us to apply alternating minimization, a standard
technique for optimizing functions with such a property, to
(4). For a general loss function, after proper initialization,
a sequence {

(
W (t), H(t)

)
} is generated by

H(t) ← arg min
H

JΩ(W (t−1), H),

W (t) ← arg min
W

JΩ(W,H(t)).

For a convex loss function, (W (t), H(t)) is guaranteed
to converge to a stationary point when the minimum for
both minH JΩ

(
W (t−1), H

)
and minW JΩ

(
W,H(t)

)
are

uniquely defined (see Bertsekas, 1999, Proposition 2.7.1).
In fact, when the squared loss is used and Y is fully ob-
served, the case considered in Section 3.2, we can prove
that (W (t), H(t)) converges to the global minimum of (4)
when either λ = 0 or X is orthogonal.

Once W is fixed, updating H is easy as each row hj of H
can be independently updated as follows:

hj ← arg min
h∈Rk

∑
i:(i,j)∈Ω

`(Yij ,xTi Wh) +
1
2
λ · ‖h‖22, (5)

which is easy to solve as k is small in general. Based on
the choice of the loss function, (5) is essentially a linear
classification or regression problem over k variables with
|{i : (i, j) ∈ Ω}| instances. If H is fixed, updating W is
more involved as all variables are mixed up due to the pre-
multiplication withX . Let x̃ij = hj⊗xi (where⊗ denotes
the outer product). It can be shown that updating W is
equivalent to a regularized linear classification/regression
problem with |Ω| data points {(Yij , x̃ij) : (i, j) ∈ Ω}.
Thus ifW ∗ = arg minW JΩ(W,H) and we denotew∗ :=
vec (W ∗), then w∗ = arg minw∈Rdk g(w),

g(w) ≡
∑

(i,j)∈Ω

`
(
Yij ,w

T x̃ij
)

+
1
2
λ · ‖w‖22. (6)

Taking the squared loss as an example, the above is equiv-
alent to a regularized least squares problem with dk vari-
ables. When d is large, say 1M, the closed form solution,

which requires inverting a dk×dk matrix, can hardly be re-
garded as feasible. As a result, updatingW efficiently turns
out to be the main challenge for alternating minimization.

In large-scale settings where both dk and |Ω| are large, it-
erative methods such as Conjugate Gradient (CG), which
perform cheap updates and offer a good approximate solu-
tion within a few iterations, are more appropriate to solve
(6). Several linear classification/regression packages such
as LIBLINEAR (Fan et al., 2008) can handle such prob-
lems if {x̃ij : (i, j) ∈ Ω} are available. The main op-
eration in such iterative methods is a gradient calculation
(∇g(w)) or a multiplication of the Hessian matrix and
a vector (∇2g(w)s). Let X̃ = [· · · x̃ij · · · ]T(i,j)∈Ω and
d̄ =

∑n
i=1 ‖x‖0/n. Then these operations require at least

nnz(X̃) = O(|Ω|d̄k) time to compute in general.

However, as we show below, we can exploit the struc-
ture in X̃ to develop efficient techniques such that
both the operations mentioned above can be done in
O ((|Ω|+ nnz(X) + d+ L)× k) time. As a result, iter-
ative methods, such as CG, can achieve O(d̄) speedup. See
Appendix B for a detailed CG procedure for (6) with the
squared loss. Our techniques make the alternating mini-
mization efficient enough to handle large-scale problems.

3.1. Fast Operations for General Loss Functions

We assume that the loss function is a general twice-
differentiable function `(a, b), where a and b are scalars.
Let `′(a, b) = ∂

∂b`(a, b), and `′′(a, b) = ∂2

∂b2 `(a, b). The
gradient and the Hessian matrix for g(w) are:

∇g(w) =
∑

(i,j)∈Ω

`′(Yij ,wT x̃ij)x̃ij + λw, (7)

∇2g(w) =
∑

(i,j)∈Ω

`′′(Yij ,wT x̃ij)x̃ijx̃Tij + λI. (8)

A direct computation of ∇g(w) and ∇2g(w)s using (7)
and (8) requires at least O(|Ω|d̄k) time. Below we give
faster procedures to perform both operations.

Gradient Calculation. Recall that x̃ij =
hj ⊗ xi = vec

(
xih

T
j

)
. Therefore, we have∑

(i,j)∈Ω `
′(Yij ,wT x̃ij)xihTj = XTDH, where D

is sparse with Dij = `′(Yij ,wT x̃ij), ∀(i, j) ∈ Ω. Thus,

∇g(w) = vec
(
XTDH

)
+ λw. (9)

Assuming that `′(a, b) can be computed in constant time,
which holds for most loss functions (e.g. squared-L2 loss,
logistic loss), the gradient computation can be done in
O ((nnz(X) + |Ω|+ d)× k) time. Algorithm 1 gives the
details of computing ∇g(w) using (9).

Hessian-vector Multiplication. After substituting x̃ij =
hj ⊗ xi, we have

∇2g(w)s =
∑

(i,j)∈Ω

`′′ij ·
(
(hjhTj )⊗ (xixTi )

)
s+ λs,
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Algorithm 1 General Loss with Missing Labels
To compute∇g(w):

1. A← XW , where vec (W ) = w.
2. Dij ← `′(Yij ,aTi hj), ∀(i, j) ∈ Ω.
3. Return: vec

(
XT (DH)

)
+ λw

To compute: ∇2g(w)s
1. A← XW , where vec (W ) = w.
2. B ← XS, where vec (S) = s.
3. Uij ← `′′(Yij ,aTi hj)b

T
i hj , ∀(i, j) ∈ Ω.

4. Return: vec
(
XT (UH)

)
+ λs.

Algorithm 2 Squared Loss with Full Labels
To compute∇g(w):

1. A← XW , where vec (W ) = w.
2. B ← Y H .
3. M ← HTH .
4. Return: vec

(
XT (AM −B)

)
+ λw

To compute: ∇2g(w)s
1. A← XS, where vec (S) = s.
2. M ← HTH .
3. Return: vec

(
XT (AM)

)
+ λs

where `′′ij = `′′(Yij ,wT x̃ij). Let S be the d ×
k matrix such that s = vec (S). Using the iden-
tity (BT ⊗ A)vec (X) = vec (AXB), we have(
(hjhTj )⊗ (xixTi )

)
s = vec

(
xix

T
i Shjh

T
j

)
. Thus,

∑
ij

`′′ijxix
T
i Shjh

T
j =

n∑
i=1

xi(
∑

j:(i,j)∈Ω

`′′ij · (STxi)ThjhTj )

=
n∑
i=1

xi(
∑

j:(i,j)∈Ω

Uijh
T
j ) = XTUH,

where U is sparse, and Uij = `′′ij · (STxi)Thj , ∀(i, j) ∈
Ω. Thus, we have

∇2g(w)s = vec
(
XTUH

)
+ λs. (10)

In Algorithm 1, we describe a detailed procedure
for computing the Hessian-vector multiplication in
O ((nnz(X) + |Ω|+ d)× k) time using (10).

Loss Functions. See Appendix B.1 for expressions of
`′(a, b) and `′′(a, b) for three common loss functions:
squared loss, logistic loss, and squared hinge loss. Thus, to
solve (6), we can apply CG for squared loss and TRON (Lin
et al., 2008) for the other two loss functions.

3.2. Fast Operations for Squared Loss with Full Labels
For the situation where labels are fully observed, solving
(1) efficiently in the large-scale setting remains a chal-
lenge. The closed form solution from (3) is not ideal for
two reasons: firstly since it involves the SVD of both X
and UTXY , the solution becomes infeasible when rank of
X is large. Secondly, since it is an unregularized solution,
it might overfit. Indeed CPLST has similar scalability and
overfitting issues due to absence of regularization and re-
quirement of pseudo inverse calculations for X . When Y
is fully observed, Algorithm 1, which aims to handle miss-
ing labels with a general loss function, is also not scalable
as |Ω| = nL imposing a O (nLk + nnz(X)k) cost per op-
eration which is prohibitive when n and L are large.

Although, for a general loss, an O(nLk) cost seems to be
inevitable, for the L2 loss, we propose fast procedures such
that the cost of each operation only depends on nnz(Y )
instead of |Ω|. In most real-world multi-label problems,

nnz(Y )� nL = |Ω|. As a result, for the squared loss, our
technique allows alternating minimization to be performed
efficiently even when |Ω| = nL.

If the squared loss is used, the matrix D in Eq. (9) is D =
XWHT − Y when Y is fully observed, where W is the
d× k matrix such that vec (W ) = w. Then, we have

∇g(w) = vec
(
XTXWHTH −XTY H

)
+ λw. (11)

Similarly, U in Eq. (10) is U = XSHT which gives us

∇2g(w)s = vec
(
XTXSHTH

)
+ λs. (12)

With a careful choice of the sequence of the matrix
multiplications, we show detailed procedures in Algo-
rithm 2, which use only O(nk + k2) extra space and
O
(
(nnz(Y ) + nnz(X)) k + (n+ L)k2

)
time to compute

both∇g(w) and ∇2g(w)s efficiently.

Remark on parallelization. As we can see, matrix multi-
plication acts as a crucial subroutine in both Algorithms 1
and 2. Thus, with a highly-optimized parallel BLAS library
(such as ATLAS or Intel MKL), our algorithms can eas-
ily enjoy speedup brought by the parallel matrix operations
provided in the library without any extra efforts. Figure 3
in Appendix E shows that both algorithms do indeed enjoy
impressive speedups as the number of cores increases.

Remark on kernel extension. Given a kernel function
K(·, ·), let f j ∈ HK be the minimizer of the empirical
loss defined in Eq. (2). Then by the Representer Theorem
(for example, Schölkopf et al., 2001), f j admits a represen-
tation of the form: f j(·; zj) =

∑n
t=1 zjtK(·,xt), where

zj ∈ Rn. Let the vector function k(x) : Rd → Rn for K
be defined as k(x) = [· · · ,K(x,xt), · · · ]T . Then f(x;Z)
can be written as f(x;Z) = ZTk(x), where Z is an n×L
matrix with zj as the j-th column. Once again, we can im-
pose the same trace norm regularization r(Z) and the low
rank constraint in Eq. (4). As a result, Z = WHT and
f j(xi, zj) = kT (xi)Whj . IfK is the kernel Gram matrix
for the training set {xi} and Ki is its ith column, then the
loss in (4) can be replaced by `(Yij ,KT

i Whj). Thus, the
proposed alternating minimization can be applied to solve
Equations (1) and (2) with the kernel extension as well.
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4. Generalization Error Bounds
In this section we analyze excess risk bounds for our
learning model with trace norm regularization. Our
analysis demonstrates the superiority of our trace norm
regularization-based technique over BR and Frobenius
norm regularization. We require a more careful analysis
for our setting since standard results do not apply because
of the presence of missing labels.

Our multi-label learning model is characterized by a dis-
tribution D on the space of data points and labels X ×
{0, 1}L where X ⊆ Rd and a distribution that decides
the pattern of missing labels. We receive n training points
(x1,y1), . . . , (xn,yn) sampled i.i.d from the distribution
D, where yi ∈ {0, 1}L are the ground truth label vectors.
However we shall only be able to observe the ground truth
label vectors yi at s random locations. More specifically,
for each i we only observe yi at locations l1i , . . . , l

s
i ∈ [L]

where the locations are chosen uniformly from the set [L]
and the choices are independent of (xi,yi).

Given this training data, we learn a predictor Ẑ by perform-
ing ERM over a constrained set of predictors as follows:

Ẑ = arg inf
r(Z)≤λ

L̂(Z) =
1
n

n∑
i=1

s∑
j=1

`(yl
j
i
i , f

lji (xi;Z)),

where L̂(Z) is the empirical risk of a predictor Z. Note
that although the method in Equation 2 uses a regularized
formulation that is rank-constrained, we analyze just the
regularized version without the rank constraints for sim-
plicity. As the class of rank-constrained matrices is smaller
than the class of trace-norm constrained matrices, we can
in fact expect better generalization performance than that
indicated here, if the ERM problem can be solved exactly.

Our goal would be to show that Ẑ has good generalization
properties i.e. L(Ẑ) ≤ inf

r(Z)≤λ
L(Z) + ε, where L(Z) :=

E
x,y,l

q
`(yl, f l(x;Z))

y
is the population risk of a predictor.

Theorem 3. Suppose we learn a predictor using the formu-
lation Ẑ = arg inf

‖Z‖tr≤λ
L̂(Z) over a set of n training points.

Then with probability at least 1− δ, we have

L(Ẑ) ≤ inf
‖Z‖tr≤λ

L(Z)+O

(
sλ

√
1
n

)
+O

s
√

log 1
δ

n

 ,

where we assume (w.l.o.g.) that E
r
‖x‖22

z
≤ 1.

We refer to Appendix C for the proof. Interestingly, we can
show that our analysis, obtained via uniform convergence
bounds, is tight and cannot be improved in general. We re-
fer the reader to Appendix D.1 for the tightness argument.
However, it turns out that Frobenius norm regularization is

also able to offer the same excess risk bounds and thus, this
result does not reveal any advantage for trace norm regu-
larization. Nevertheless, we can still get improved bounds
for a general class of distributions over (x,y):

Theorem 4. Let the data distribution satisfy the following
conditions: 1) The top singular value of the covariance ma-
trixX = E

x∼D

q
xx>

y
is ‖X‖2 = σ1, 2) tr (X) = Σ and 3)

the distribution on X is sub-Gaussian i.e. for some η > 0,
for all v ∈ Rd, E

q
exp

(
x>v

)y
≤ exp

(
‖v‖22 η2/2

)
, then

with probability at least 1− δ, we have

L(Ẑ) ≤ inf
‖Z‖tr≤λ

L(Z)+O

sλ√d(η2 + σ1)
nLΣ

+ s

√
log 1

δ

n

 .

In particular, if the data points are generated from a unit
normal distribution, then we have

L(Ẑ) ≤ inf
‖Z‖tr≤λ

L(Z)+O

(
sλ

√
1
nL

)
+O

s
√

log 1
δ

n

 .

The proof of Theorem 4 can be found in Appendix C. Our
proofs do not follow either from existing techniques for
learning with matrix predictors (for instance (Kakade et al.,
2012)) or from results on matrix completion with trace
norm regularization (Shamir & Shalev-Shwartz, 2011) due
to the complex interplay of feature vectors and missing
labels that we encounter in our learning model. Instead,
our results utilize a novel form of Rademacher averages,
bounding which requires tools from random matrix theory.
We note that our results can even handle non-uniform sam-
pling of labels (see Theorem 6 in Appendix C for details).

We note that the assumptions on the data distribution are
trivially satisfied with finite σ1 and η by any distribution
with support over a compact set. However, for certain dis-
tributions, this allows us to give superior bounds for trace
norm regularization. We note that Frobenius norm regular-
ization can give no better than a

(
λ√
n

)
style excess error

bound even for such distributions (see Appendix D.2 for a
proof), whereas trace norm regularization allows us to get
superior

(
λ√
nL

)
style bounds. This is especially contrast-

ing when, for instance, λ = O(
√
L), in which case trace

norm regularization gives O
(

1√
n

)
excess error whereas

the excess error for Frobenius regularization deteriorates to

O
(√

L
n

)
. Thus, trace norm seems better suited to exploit

situations where the data distribution is isotropic.

Intuitively, we expect such results due to the following rea-
son: when labels are very sparsely observed, such as when
s = O (1), we observe the value of each label on O (n/L)
training points. In such a situation, Frobenius norm regular-
ization with say λ =

√
L essentially allows an independent
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Table 1. Data statistics. d and L are the number of features and la-
bels, respectively, and d̄ and L̄ are the average number of nonzero
features and positive labels in an instance, respectively.

Training set Test set
Dataset d L n d̄ L̄ n d̄ L̄
bibtex 1,836 159 4,880 68.74 2.40 2,515 68.50 2.40
autofood 9,382 162 155 143.92 15.80 38 143.71 13.71
compphys 33,284 208 161 792.78 9.80 40 899.02 11.83
delicious 500 983 12,920 18.17 19.03 3,185 18.80 19.00
eurlex 5,000 3,993 17,413 236.69 5.30 1,935 240.96 5.32
nus-wide 1,134 1,000161,789 862.70 5.78107,859 862.94 5.79
wiki 366,932 213,707881,805 146.78 7.06 10,000 147.78 7.08

Table 2. Comparison of LEML with various loss functions and
WSABIE on smaller datasets. SQ denotes squared loss, LR de-
notes logistic regression loss, and SH denotes squared hinge loss

Top-3 Accuracy Average AUC
LEML

WSABIE
LEML

WSABIE
k/L SQ LR SH SQ LR SH

bibtex
20% 34.16 25.65 27.37 28.77 0.8910 0.8677 0.8541 0.9055
40% 36.53 28.20 24.81 30.05 0.9015 0.8809 0.8467 0.9092
60% 38.00 28.68 23.26 31.11 0.9040 0.8861 0.8505 0.9089

autofood
20% 81.58 80.70 81.58 66.67 0.9565 0.9598 0.9424 0.8779
40% 76.32 80.70 78.95 70.18 0.9277 0.9590 0.9485 0.8806
60% 70.18 80.70 81.58 60.53 0.8815 0.9582 0.9513 0.8518

compphys
20% 80.00 80.00 80.00 49.17 0.9163 0.9223 0.9274 0.8212
40% 80.00 78.33 79.17 39.17 0.9199 0.9157 0.9191 0.8066
60% 80.00 80.00 80.00 49.17 0.9179 0.9143 0.9098 0.8040

delicious
20% 61.20 53.68 57.27 42.87 0.8854 0.8588 0.8894 0.8561
40% 61.23 49.13 52.95 42.05 0.8827 0.8534 0.8868 0.8553
60% 61.15 46.76 49.58 42.22 0.8814 0.8517 0.8852 0.8523

predictor zl ∈ Rd to be learned for each label l ∈ [L]. Since
all these predictors are being trained on onlyO (n/L) train-
ing points, the performance accordingly suffers.

On the other hand, if we were to train a single predictor for
all the labels i.e. Z = z1> for some z ∈ Rd, such a predic-
tor would be able to observe O(n) points and consequently
have much better generalization properties. Note that this
predictor also satisfies ‖z1>‖tr ≤

√
L. This seems to indi-

cate that trace norm regularization can capture cross label
dependencies, especially in the presence of missing labels,
much better than Frobenius norm regularization.

Having said that, it is important to note that trace norm
and Frobenius norm regularization induce different biases
in the learning framework. It would be interesting to study
the bias-variance trade-offs offered by these two regulariza-
tion techniques. However, in presence of label correlations
we expect both formulations to suffer similar biases.

5. Experimental Results
We now evaluate our proposed algorithms in terms of ac-
curacy and stability. This discussion shall demonstrate the
superiority of our method over other approaches.

Datasets. We considered a variety of benchmark datasets
including four standard datasets (bibtex, delicious, eurlex,
and nus-wide), two datasets with d � L (autofood and
compphys), and a very large scale Wikipedia based dataset,
which contains about 1M wikipages and 200K labels. See
Table 1 for more information about the datasets. We con-
ducted all experiments on an Intel machine with 32 cores.

Competing Methods. A list containing details of the com-
peting methods (including ours) is given below. Note that
CS (Hsu et al., 2009) and PLST (Tai & Lin, 2012) are not
included as they are shown to be suboptimal to CPLST and
BCS in (Chen & Lin, 2012; Kapoor et al., 2012).

1. LEML (Low rank Empirical risk minimization for
Multi-Label Learning): our proposed method. We im-
plemented CG with Algorithms 1 and 2 for squared loss,
and TRON (Lin et al., 2008) with Algorithm 1 for logistic
and squared hinge loss.

2. CPLST: the method proposed in (Chen & Lin, 2012).
We used code provided by the authors.

3. BCS: the method proposed in (Kapoor et al., 2012). We
used code provided by the authors.

4. BR: Binary Relevance with various loss functions.
5. WSABIE: Due to lack of publicly available code, we

implemented this method and hand-tuned learning rates
and the margins for each dataset as suggested by the au-
thors of WSABIE (Weston, 2013).

Evaluation Criteria. We used three criteria to compare
the methods: top-K accuracy (performance on a few top
predictions), Hamming loss (overall classification perfor-
mance), and average AUC (ranking performance). See Ap-
pendix E.1 for details.

5.1. Results with full labels

We divide datasets into two groups: small datasets (bibtex,
autofood, compphys, and delicious) to which all methods
are able to scale and large datasets (eurlex, nus-wide, and
wiki) to which only LEML and WSABIE are able to scale.

Small datasets. We first compare dimension reduction
based approaches to assess their performance with vary-
ing dimensionality reduction ratios. Figure 1 presents these
results for LEML, CPLST and BCS on the squared L2

loss with BR included for reference. Clearly LEML con-
sistently outperforms other methods for all ratios. Next
we compare LEML to WSABIE with three surrogates
(squared, logistic, and L2-hinge), which approximately op-
timize a weighted approximate ranking loss. Table 2 shows
that although the best loss function for each dataset varies,
LEML is always superior to or competitive with WSABIE.
Based on Figure 1, Table 2, and further results in Appendix
E.3, we make the following observations. 1) LEML can
deliver accuracies competitive with BR even with a severe
reduction in dimensionality, 2) On bibtex and compphys,
LEML is even shown to outperform BR. This is a bene-
fit brought forward by the design of LEML, wherein the
relation between labels can be captured by a low rank Z.
This enables LEML to better utilize label information than
BR and yield better accuracies. 3) On autofood and comp-
phys, CPLST seems to suffer from overfitting and demon-
strates a significant dip in performance. In contrast, LEML,
which brings regularization into the formulation performs
well consistently on all datasets.
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Table 3. Comparison of LEML and WSABIE on large datasets
LEML WSABIE

dataset k time (s) top-1 top-3 AUC time (s) top-1 top-3 AUC

eurlex 250 175 51.99 39.79 0.9425 373 33.13 25.01 0.8648
500 487 56.90 44.20 0.9456 777 31.58 24.00 0.8651

nus-wide 50 574 20.71 15.96 0.7741 4,705 14.58 11.37 0.7658
100 1,097 20.76 16.00 0.7718 6,880 12.46 10.21 0.7597

wiki 250 9,932 19.56 14.43 0.9086 79,086 18.91 14.65 0.9020
500 18,072 22.83 17.30 0.9374 139,290 19.20 15.66 0.9058

Table 4. Comparison between various dimensionality reduction
approaches on Y with 20% observed entries, and k = 0.4L.

Top-3 Accuracy Hamming loss Average AUC
LEML BCS BR LEML BCS BR LEML BCS BR

bibtex 28.50 23.84 25.78 0.0136 0.2496 0.0193 0.8332 0.7871 0.8087
autofood 67.54 35.09 62.28 0.0671 0.2445 0.0760 0.8634 0.6322 0.8178
compphys 65.00 35.83 31.67 0.0518 0.2569 0.0566 0.7964 0.6442 0.7459

Larger data. Table 3 shows results for LEML and WSA-
BIE on the three larger datasets. We implemented LEML
with the squared L2 loss using Algorithm 2 for comparison
in the full labels case. Note that Hamming loss is not used
here as it is not clear how to convert the label ranking given
by WSABIE to a 0/1 encoding. For LEML, we report the
time and the accuracies obtained after five alternating iter-
ations. For WSABIE, we ran the method on each dataset
with the hand-tuned parameters for about two days, and re-
ported the time and results for the epoch with the highest
average AUC. On eurlex and nus-wide, LEML is clearly
superior than WSABIE on all evaluation criteria. On wiki,
although both methods share a similar performance for
k = 250, on increasing k to 500, LEML again outper-
forms WSABIE. Also clearly noticeable is the stark dif-
ference in the running times of the two methods. Whereas
LEML takes less than 6 hours to deliver 0.9374 AUC on
wiki, WSABIE requires about 1.6 days to achieve 0.9058
AUC. More specifically, WSABIE takes about 7,000s for
the first epoch, 16,000s for the second and 36,000s for the
third epoch which result in it spending almost two days on
just 5 epochs. Although this phenomenon is expected due
to the sampling scheme in WSABIE (Weston et al., 2010),
it becomes more serious as L increases. We leave the issue
of designing a better sampling scheme with large L for fu-
ture work. Figure 2a further illustrates this gap in training
times for the nus-wide dataset. All in all, the results clearly
demonstrate the scalability and efficiency of LEML.

5.2. Results with missing labels

For experiments with missing labels, we compare LEML,
BCS, and BR. We implemented BR with missing labels by
learning an L2-regularized binary classifier/regressor for
each label on observed instances. Thus, the model de-
rived from BR corresponds to the minimizer of (2) with
Frobenius norm regularization. Table 4 shows the results
when 20% entries were revealed (i.e. 80% missing rate)
and squared loss function was used for training. We used
k = 0.4L for both LEML and BCS. The results clearly
show that LEML outperforms BCS and LEML with re-
spect to all three evaluation criteria. On bibtex, we further
present results for various rates of observed labels in Fig-

(a) bibtex (b) compphys (c) delicious

Figure 1. Comparison between different dimension reduction
methods with fully observed Y by varying the reduction ratio.

(a) (b) (c)
Figure 2. Results for (a): running time on nus-wide. (b): various
observed ratios on bibtex. (c): various reduction ratios on bibtex.

ure 2b and results for various dimension reduction ratios in
Figure 2c. LEML clearly shows superior performance over
other approaches, which corroborates the theoretical results
of Section 4 that indicate better generalization performance
for low-rank promoting regularizations. More empirical re-
sults for other loss functions, various observed ratios and
dimension reduction ratios can be found in Appendix E.4.

6. Conclusion
In this paper we studied the multi-label learning problem
with missing labels in the standard ERM framework. We
modeled our framework with rank constraints and regular-
izers to increase scalability and efficiency. To solve the
obtained non-convex problem, we proposed an alternating
minimization based method that critically exploits struc-
ture in the loss function to make our method scalable. We
showed that our learning framework admits excess risk
bounds that indicate better generalization performance for
our methods than the existing methods like BR, something
which our experiments also confirmed. Our experiments
additionally demonstrated that our techniques are much
more efficient than other large scale multi-label classifiers
and give superior performance than the existing label com-
pression based approaches. For future work, we would like
to extend LEML to other (non decomposable) loss func-
tions such as ranking losses and study conditions under
which alternating minimization for our problem is guar-
anteed to converge to the global optimum. Another open
question is if our risk bounds can be improved by avoiding
the uniform convergence route that we use in the paper.
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A. Unregularized LEML with Squared L2 Loss Recovers CPLST
Claim 1. If `(y, f(x;Z)) = ‖y − ZTx‖22 and λ = 0, then

VXΣ−1
X Mk = arg min

Z:rank(Z)≤k
‖Y −XZ‖2F ,

where X = UXΣXV TX is the thin SVD decomposition of X , and Mk is the rank-k truncated SVD of M ≡ UTXY .

Proof of Claim 1. Let X = UXΣXV TX be the thin SVD decomposition of X , and Mk be the rank-k truncated SVD
approximation of UTXY . We have

arg min
Z:rank(Z)≤k

‖Y −XZ‖F = arg min
Z:rank(Z)≤k

‖(UXU>X )(Y −XZ) + (I − UXU>X )(Y −XZ)‖F

= arg min
Z:rank(Z)≤k

‖(UXU>X )(Y −XZ) + (I − UXU>X )(Y −XZ)‖2F

= arg min
Z:rank(Z)≤k

‖UXU>X (Y −XZ)‖2F + ‖(I − UXU>X )(Y −XZ)‖2F

= arg min
Z:rank(Z)≤k

‖U>X (Y −XZ)‖2F

= arg min
Z:rank(Z)≤k

‖U>X (Y −XZ)‖F

= arg min
Z:rank(Z)≤k

‖U>XY − ΣXV >X Z‖F

= VXΣ−1
X Mk.

The second and the fifth inequalities follow from the fact that the (·)2 is an increasing function. The third equality follows
from the Pythagorean theorem since UXU>X constitutes an orthonormal projection. Since UXU>XX = X as U>XUX = Ir,
where r is the rank of X , we have (I − UXU>X )(Y − XZ) = (I − UXU>X )Y . Since the last term does not depend on
the variable Z, it can be removed from consideration and the fourth equality follows. The sixth equality follows due to the
same reason as U>XX = IrΣXV >X = ΣXV >X .

For the last equality, first of all note that Z = VXΣ−1
X Mk is a feasible solution to the problem since rank(VXΣ−1

X Mk) ≤
rank(Mk) ≤ k by definition of Mk. Next, notice that for any feasible Z ′, since rank(ΣXV >X Z

′) ≤ rank(Z ′) ≤ k, we
have ‖U>XY − ΣXV >X Z

′‖F ≥ ‖U>XY −Mk‖F , again by the definition of Mk. The result follows since by V >X VX = Ir,
we have ΣXV >X (VXΣ−1

X Mk) = Mk.

Claim 2. The solution to (3) is equivalent to ZCPLST = WCPLSTH
T
CPLST which is the closed form solution for the CPLST

scheme, i.e.,

(WCPLST , HCPLST ) = arg min
W∈Rd×k
H∈RL×k

‖XW − Y H‖2F + ‖Y − Y HHT ‖2F ,

s.t. HTH = Ik. (13)

Proof of Claim 2. Let Uk[A]Σk[A]Vk[A] be the rank-k truncated SVD approximation of a matrix A. In (Chen & Lin,
2012), the authors show that the closed form solution to (13) is

HC = Vk[Y TXX†Y ],

WC = X†Y HC ,

where X† is the pseudo inverse of X . It follows from X† = VXΣ−1
X UTX that Y TXX†Y = Y TUXU

T
XY = MTM and

Vk[Y TXX†Y ] = Vk[M ]. Thus, we have

ZCPLST = WCH
T
C

= X†Y HCH
T
C

= V TXΣ−1
X UTXY Vk[M ]Vk[M ]T

= V TXΣ−1
X MVk[M ]Vk[M ]T

= V TXΣ−1
X Mk
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B. Algorithm Details
B.1. Derivative Computations for Various Losses

Note that for the logistic and L2-hinge loss in Table 5, Yij is assumed to be −1,+1 instead of {0, 1}. Note that although
L2-hinge loss is not twice-differentiable, the sub-differential of ∂

∂b`(a, b) still can be used for TRON to solve (6).

Table 5. Computation of `′(a, b) and `′′(a, b) for different loss functions.
`(a, b) ∂

∂b`(a, b)
∂2

∂b2 `(a, b)
Squared loss 1

2 (a− b)2 b− a 1
Logistic loss log

(
1 + e−ab

) −a
1+e−ab

−a2e−ab

(1+e−ab)2

L2-hinge loss (max(0, 1− ab))2 −2amax(0, 1− ab) 2 · I[ab < 1]

B.2. Conjugate Gradient for Squared Loss

In Algorithm 3, we show the detailed conjugate gradient procedure used to solve (6) when the squared loss is used. Note
that ∇2g(w) is invariant to w as (6) is a quadratic problem due to the squared loss function.

Algorithm 3 Conjugate gradient for solving (6) with the squared loss
• Set initial w0, r0 = −∇g(w0), d0 = r0.
• For t = 0, 1, 2, . . .

– If ‖rt‖ is small enough, then stop the procedure and return wt.

– αt =
rTt rt

dTt ∇2g(w0)dt
– wt+1 = wt + αtdt
– rt+1 = rt − αt∇2g(w0)dt

– βt =
rTt+1rt+1

rTt rt
– dt+1 = rt+1 + βtdt
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C. Analyzing Trace Norm-bounded Predictors
In this section, we shall provide a proof of Theorems 3 and 4. Our proof shall proceed by demonstrating a uniform
convergence style bound for the empirical losses. More precisely, we shall show, for both trace norm as well as Frobenius
regularizations, that with high probability, we have

L(Ẑ) ≤ L̂(Ẑ) + ε.

Suppose Z∗ ∈ arg min
r(Z)≤λ

L(Z), then a similar analysis will allow us to show, again with high probability,

L̂(Z∗) ≤ L(Z∗) + ε.

Combining the two along with the fact that Ẑ is the empirical risk minimizer i.e. L̂(Ẑ) ≤ L̂(Z∗) will yield the announced
claim in the following form:

L(Ẑ) ≤ L(Z∗) + 2ε.

Thus, in the sequel, we shall only concentrate on proving the aforementioned uniform convergence bound. We shall denote
the regularized class of predictors as Z =

{
Z ∈ Rd×L, r(Z) ≤ λ

}
, where r(Z) = ‖Z‖tr or r(Z) = ‖Z‖F . We shall also

use the following shorthand for the loss incurred by the predictor on a specific label l ∈ [L]: `(yli, Zl,x) := `(yli, f
l(x;Z)),

where Zl denotes the lth column of the matrix Z.

We shall perform our analysis in several steps outlined below:

1. Step 1: In this step we shall show, by an application of McDiarmid’s inequality, that with high probability, the excess
risk of the learned predictor can be bounded by bounding the expected suprēmus deviation of empirical risks from
population risks over the set of predictors in the class Z .

2. Step 2: In this step we shall show that the expected suprēmus deviation can be bounded by a Rademacher average
term.

3. Step 3: In this step we shall reduce the estimation of the Rademacher average term to the estimation of the spectral
norm of a random matrix that we shall describe.

4. Step 4: Finally, we shall use tools from random matrix theory to bound the spectral norm of the random matrix.

We now give details of each of the steps in the following subsections:

C.1. Step 1: Bounding Excess Risk by Expected Suprēmus Deviation

We will first analyze the case s = 1 and will later show how to extend the analysis to s > 1. In this case, we receive n
training points (xi,yi) and for each training point xi, we get to see the value of a random label li ∈ [L] i.e. we get to see
the true value of ylii . Thus, for any predictor Z ∈ Z , the observed training loss is given by

L̂(Z) =
1
n

n∑
i=1

`(ylii , Zli ,xi).

The population risk functional is given by

L(Z) = E
(x,y,l)

q
`l(yl, f l(x;Z))

y
= E

(x,y,l)

q
`l(yl, Zl,x)

y

We note here that our subsequent analysis shall hold even for non uniform distributions for sampling the labels. The
definition of the population risk functional incorporates this. In case we have a uniform distribution over the labels, the
above definition reduces to

L(Z) = E
(x,y,l)

q
`l(yl, Zl,x)

y
= E

(x̃i,ỹi,l̃i)

t
1
n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|
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Given the above, we now analyze the excess risk i.e. the difference between the observed training loss L̂(Ẑ) and the
population risk L(Ẑ).

L(Ẑ)− L̂(Ẑ) ≤ sup
Z∈Z

{
L(Z)− L̂(Z)

}
= sup

Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1
n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1
n

n∑
i=1

`(ylii , Zli ,xi)

}
︸ ︷︷ ︸

g((x1,y1,l1),...,(xn,yn,ln))

Since all the label-wise loss functions are bounded, an arbitrary change in any (xi,yi) or any li should not perturb the
expression g((x1,y1, l1), . . . , (xn,yn, ln)) by more than O

(
1
n

)
. Thus, by an application of McDiarmid’s inequality, we

have, with probability at least 1− δ,

L(Ẑ)− L̂(Ẑ) ≤ E
(xi,yi),li

Jg((x1,y1, l1), . . . , (xn,yn, ln))K +O

√ log 1
δ

n


Thus, we conclude that the excess risk of the learned predictor can be bounded by calculating the expected suprēmus
deviation of empirical risks from population risks.

C.2. Step 2: Bounding Expected Suprēmus Deviation by a Rademacher Average

We now analyze the expected suprēmus deviation. We have

E
(xi,yi),li

Jg((x1,y1, l1), . . . , (xn,yn, ln))K

= E
(xi,yi),li

t

sup
Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1
n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1
n

n∑
i=1

`(ylii , Zli ,xi)

}|

≤ E
(xi,yi),li

t

sup
Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1
n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1
n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ E
(xi,yi),li

t

sup
Z∈Z

{
1
n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z
− 1
n

n∑
i=1

`(ylii , Zli ,xi)

}|

= E
li

t

sup
Z∈Z

{
E

(x̃i,ỹi,l̃i)

t
1
n

n∑
i=1

`(ỹl̃ii , Zl̃i , x̃i)

|

− 1
n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ E
(xi,yi),li

t

sup
Z∈Z

{
1
n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z
− 1
n

n∑
i=1

`(ylii , Zli ,xi)

}|

≤ E
(li,l̃i)

t

sup
Z∈Z

{
1
n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹl̃ii , Zl̃i , x̃i)

z
− 1
n

n∑
i=1

E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ E
(xi,yi),li,(x̃i,ỹi)

t

sup
Z∈Z

{
1
n

n∑
i=1

`(ỹlii , Zli , x̃i)−
1
n

n∑
i=1

`(ylii , Zli ,xi)

}|

= E
(li,l̃i),εi

t

sup
Z∈Z

{
1
n

n∑
i=1

εi

(
E

(x̃i,ỹi)

r
`(ỹl̃ii , Zl̃i , x̃i)

z
− E

(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z)}|

+ E
(xi,yi),li,(x̃i,ỹi),εi

t

sup
Z∈Z

{
1
n

n∑
i=1

εi

(
`(ỹlii , Zli , x̃i)− `(y

li
i , Zli ,xi)

)}|

≤ 2 E
li,εi

t

sup
Z∈Z

{
1
n

n∑
i=1

εi E
(x̃i,ỹi)

r
`(ỹlii , Zli , x̃i)

z}|

+ 2 E
(xi,yi),li,εi

t

sup
Z∈Z

{
1
n

n∑
i=1

εi`(ylii , Zli ,xi)

}|
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≤ 2 E
(x̃i,ỹi),li,εi

t

sup
Z∈Z

{
1
n

n∑
i=1

εi`(ỹlii , Zli , x̃i)

}|

+ 2 E
(xi,yi),li,εi

t

sup
Z∈Z

{
1
n

n∑
i=1

εi`(ylii , Zli ,xi)

}|

≤ 4 E
(xi,yi),li,εi

t

sup
Z∈Z

{
1
n

n∑
i=1

εi`(ylii , Zli ,xi)

}|

≤ 4C
n

E
(xi,yi),li,εi

t

sup
Z∈Z

{
n∑
i=1

εi〈Zli ,xi〉

}|

=
4C
n

E
X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{
,

where for any x1, . . . ,xn ∈ X , l ∈ [L]n and ε ∈ {−1,+1}n, we define the matrix X l
ε as follows:

X l
ε :=

[∑
i∈I1

εixi
∑
i∈I2

εixi . . .
∑
i∈IL

εixi

]

where for any l ∈ [L], we define Il := {i : li = l}. Note that in the last second inequality we have used the contraction
inequality for Rademacher averages (see Ledoux & Talagrand, 2002, proof of Theorem 4.12) We also note that the above
analysis also allows for separate label-wise loss functions, so long as they are all bounded and C-Lipschitz. For any matrix
predictor class Z , we define its Rademacher complexity as follows:

Rn (Z) :=
1
n

E
X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

We have thus established that with high probability,

L(Ẑ)− L̂(Ẑ) ≤ 4CRn (Z) +O

√ log 1
δ

n

 .

We now establish that the same analysis also extends to situations wherein, for each training point we observe values of s
labels instead. Thus, for each xi, we observe values for labels l1i , . . . , l

s
i . In this case the empirical loss is given by

L̂(Z) =
1
n

n∑
i=1

s∑
j=1

`(yl
j
i
i , Zlji

,xi)

The change in any xi leads to a perturbation of at most O
(
s
n

)
whereas the change in any lji leads to a perturbation of

O
(

1
n

)
. Thus the sum of squared perturbations is bounded by 2s2

n . Thus on application of the McDiarmid’s inequality, we
will be able to bound the excess risk by the following expected suprēmus deviation term

E
(xi,yi,l

j
i )

u

v sup
Z∈Z

s E
(x,y,l)

q
`l(yl, Zl,x)

y
− 1
n

n∑
i=1

s∑
j=1

`(yl
j
i
i , Zlji

,xi)


}

~

plus a quantity that behaves like O
(
s

√
log 1

δ

n

)
. We analyze the expected suprēmus deviation term below:

E
(xi,yi,l

j
i )

u

v sup
Z∈Z

s E
(x,y,l)

q
`l(yl, Zl,x)

y
− 1
n

n∑
i=1

s∑
j=1

`(yl
j
i
i , Zlji

,xi)


}

~

= E
(xi,yi,l

j
i )

u

v sup
Z∈Z


s∑
j=1

(
E

(x,y,l)

q
`l(yl, Zl,x)

y
− 1
n

n∑
i=1

`(yl
j
i
i , Zlji

,xi)

)
}

~

≤
s∑
j=1

E
(xi,yi,l

j
i )

t

sup
Z∈Z

{
E

(x,y,l)

q
`l(yl, Zl,x)

y
− 1
n

n∑
i=1

`(yl
j
i
i , Zlji

,xi)

}|

≤
s∑
j=1

4C
n

E
X,lj ,ε

s
sup
Z∈Z
〈Z,X lj

ε 〉
{

=
4Cs
n

E
X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

= 4CsRn (Z)
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and thus, it just suffices to prove bounds for the case where a single label is observed per point. As an aside, we note
that the case s = 1 resembles that of multi-task learning. However, multi-task learning is typically studied in a different
learning model and mostly uses group regularization that is distinct from ours.

C.3. Step 3: Estimating the Rademacher Average

We will now bound the following quantity:

Rn(Z) =
1
n

E
X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

where X l
ε is as defined above. Approaches to bounding such Rademacher average terms usually resort to Martingale

techniques (Kakade et al., 2008) or use of tools from convex analysis (Kakade et al., 2012) and decompose the Rademacher
average term. However, such decompositions shall yield suboptimal results in our case. Our proposed approach will,
instead involve an application of Hölder’s inequality followed by an application from results from random matrix theory to
bound the spectral norm of a random matrix.

For simplicity of notation, for any l ∈ [L], we denote Vl =
∑
i∈Il εixi and V := X l

ε = [V1 V2 . . . VL]. Also, for any l ∈ [L],
let nl = |Il| denote the number of training points for which values of the lth label was observed i.e. nl =

∑n
i=1 1li=l.

C.3.1. DISTRIBUTION INDEPENDENT BOUND

We apply Hölder’s inequality to get the following result:

1
n

E
X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{
≤ 1
n

E
X,l,ε

s
sup
Z∈Z
‖Z‖tr

∥∥X l
ε

∥∥
F

{
≤ 1
n

E
X,l,ε

q
λ
∥∥X l

ε

∥∥
2

y
≤ λ

n

√
E

X,l,ε

r
‖X l

ε‖
2
2

z

Then the following bound can be derived in a straightforward manner:

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
≤ E

X,l,ε

r∥∥X l
ε

∥∥2

F

z
= E
X,l,ε

t
L∑
l=1

‖Vl‖22

|

= E
X,l,ε

u

v
L∑
l=1

∥∥∥∥∥∑
i∈Il

εixi

∥∥∥∥∥
2

2

}

~

= E
X,l,ε

u

v
L∑
l=1

∑
i∈Il

‖xi‖22 +
∑
i 6=j∈Il

εiεj〈xi,xj〉

}

~

≤ E
l

t
L∑
l=1

nlE
r
‖x‖22

z|

≤ E
l

t
L∑
l=1

nl

|

= n

where we have assumed, without loss of generality that E
x∼D

r
‖x‖22

z
≤ 1. This proves

Rn(Z) ≤ λ√
n
,

which establishes Theorem 3. Note that the same analysis holds if Z is Frobenius norm regularized since we can apply the
Hölder’s inequality for Frobenius norm instead and still get the same Rademacher average bound.

C.3.2. TIGHTER BOUNDS FOR TRACE NORM REGULARIZATION

Notice that in the above analysis, we did not exploit the fact that the top singular value of the matrix X l
ε could be much

smaller than its Frobenius norm. However, there exist distributions where trace norm regularization enjoys better perfor-
mance guarantees over Frobenius norm regularization. In order to better present our bounds, we model the data distribution
D on X (or rather its marginal) more carefully. Let X := E

q
xx>

y
and suppose the distribution D satisfies the following

conditions:

1. The top singular value of X is ‖X‖2 = σ1

2. The matrix X has trace tr (X) = Σ
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3. The distribution on X is sub-Gaussian i.e. for some η > 0, we have, for all v ∈ Rd,

E
q
exp

(
x>v

)y
≤ exp

(
‖v‖22 η

2/2
)

In order to be consistent with previous results, we shall normalize the vectors x so that they are unit-norm on expectation.
Since E

r
‖x‖22

z
= tr (X) = Σ, we wish to bound the Rademacher average as

Rn (Z) ≤ 1
n
√

Σ
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{

In this case, it is possible to apply the Hölder’s inequality as

1
n
√

Σ
E

X,l,ε

s
sup
Z∈Z
〈Z,X l

ε〉
{
≤ 1
n
√

Σ
E

X,l,ε

s
sup
Z∈Z
‖Z‖tr

∥∥X l
ε

∥∥
2

{
≤ 1
n
√

Σ
E

X,l,ε

q
λ
∥∥X l

ε

∥∥
2

y
≤ λ

n
√

Σ

√
E

X,l,ε

r
‖X l

ε‖
2
2

z

Thus, in order to boundRn(Z), it suffices to bound E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
. In this case, since our object of interest is the spectral

norm of the matrix X l
ε, we expect to get much better guarantees, for instance, in case the training points x ∈ X are

being sampled from some (near) isotropic distribution. We note that Frobenius norm regularization will not be able to gain
any advantage in these situations since it would involve the Frobenius norm of the matrix X l

ε (as shown in the previous
subsubsection) and thus, cannot exploit the fact that the spectral norm of this matrix is much smaller than its Frobenius
norm.

C.4. Step 4: Calculating the Spectral norm of a Random Matrix

To bound E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
, we first make some simplifications (we will take care of the normalizations later). For any

l ∈ [L], let the probability of the value for label l being observed be pl ∈ (0, 1] such that
∑
l pl = 1. Also let P = max

l∈[L]
pl

and p = min
l∈[L]

pt. Call the event Emax as the event when nl ≤ 2P · n for all l ∈ [L] i.e. every label will have at most 2P · n

training points for which its value is seen. The following result shows that this is a high probability event:

Lemma 1. For any δ > 0, if n ≥ 1
2p2 log L

δ , then with probability 1− δ, we have

P [Emax] ≥ 1− δ

Proof. For any l ∈ [L], an application of Chernoff’s bound for Boolean random variables tells us that with probability at
least 1− exp

(
−2np2

l

)
, we have nl ≤ 2pl · n ≤ 2P · n. Taking a union bound and using pl ≥ p finishes the proof.

Conditioning on the event Emax shall allow us to get a control over the spectral norm of the matrix X l
ε by getting a

bound on the sub-Gaussian norm of the individual columns of X l
ε. We show below, that conditioning on this event does

not affect the Rademacher average calculations. A simple calculation shows that E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ lz ≤ nΣ. If we have

n > 1
2p2 log LΣ

Pd(η2+σ1) , we have P [¬Emax] < Pd(η2+σ1)
Σ . This gives us the following bound:

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
= E

X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
P [Emin] + E

X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣¬Emin

z
(1− P [Emax])

= E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
(1− δ) + E

X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣¬Emax

z
δ

≤ E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
+ nΣ

(
Pd(η2 + σ1)

Σ

)
≤ O

(
E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z)
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where the last step follows since our subsequent calculations will show that E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
= O

(
nPd(η2 + σ1)

)
.

Thus, it suffices to bound E
X,ε

r∥∥X l
ε

∥∥2

2

∣∣∣ Emax

z
= E

X,ε

r
‖V ‖22

∣∣∣ Emax

z
. For sake of brevity we will omit the conditioning

term from now on.

For simplicity let Al = Vl
c where c = η ·

√
2P · n and A = [A1A2 . . . AL]. Thus

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
= c2 · E

X,l,ε

r
‖A‖22

z

We first bound the sub-Gaussian norm of the column vectors Al. For any vector v ∈ Rd, we have:

E
q
exp

(
A>l v

)y
= E

t

exp

(
1
c

∑
i∈Il

εi〈xi,v〉

)|

=
(

E
s

exp
(
〈x, 1

c
εv〉
){)nl

≤

(
exp

(∥∥∥∥1
c
εv

∥∥∥∥2

2

η2/2

))nl
= exp

(
nl

2η2P · n
‖v‖22 η

2/2
)

≤ exp
(
‖v‖22 /2

)
where, in the second step, we have used the fact that xi,xj and εi, εj are independent for i 6= j, in the third step we have
used the sub-Gaussian properties of x and in the fourth step, we have use the fact that the event Emax holds. This shows us
that the sub-Gaussian norm of the column vector Al is bounded i.e. ‖Al‖ψ2

≤ 1.

We now proceed to bound E
X,ε

r
‖A‖22

z
= E

X,ε

r∥∥A>∥∥2

2

z
. Our proof proceeds by an application of a Bernstein-type in-

equality followed by a covering number argument and finishing off by bounding the expectation in terms of the cumulative
distribution function. The first two parts of the proof proceed on the lines of the proof of Theorem 5.39 in (Vershynin,
2012) For any fixed vector v ∈ Sd−1, the set of unit norm vectors in d dimensions, we have:

‖Av‖22 =
L∑
l=1

〈Al,v〉2 =:
L∑
l=1

Z2
l

Now observe that conditioned on l, It ∩ It′ = ϕ if t 6= t′ and thus, conditioned on l, the variables Zt, Zt′ are independent
for t 6= t′. This will allow us to apply the following Bernstein-type inequality

Theorem 5 ((Vershynin, 2012), Corollary 5.17). Let X1, . . . , XN be independent centered sub-exponential variables with
bounded sub-exponential norm i.e. for all i, we have ‖Xi‖ψ1

≤ B for some B > 0. Then for some absolute constant
c1 > 0, we have for any ε > 0,

P

[
N∑
i=1

Xi ≥ εN

]
≤ exp

(
−c1 min

{
ε2

B2
,
ε

B

}
N

)
.

To apply the above result, we will first bound expectation of the random variables Z2
l .

E
q
Z2
l

y
= E

q
〈Al,v〉2

y
= E

u

v
(

1
c

∑
i∈Il

εi〈xi,v〉

)2
}

~ =
nl
c2

E
q
〈x,v〉2

y
≤ nlσ1

c2
≤ σ1

η2

where the fourth inequality follows from definition of the top singular norm σ1 of X := E
q
xx>

y
and the last inequality

follows from the event Emax. The above calculation gives us a bound on the expectation of Z2
l which will be used to center

it. Since we have already established ‖Al‖ψ2
≤ 1, we automatically get ‖Zl‖ψ2

≤ 1. Using standard inequalities between
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the sub-exponential norm ‖·‖ψ1
and the sub-Gaussian norm ‖·‖ψ2

of random variables (for instance, see Vershynin, 2012,
Lemma 5.14) we also have ∥∥Z2

l − E
q
Z2
l

y∥∥
ψ1
≤ 2

∥∥Z2
l

∥∥
ψ1
≤ 4 ‖Zl‖2ψ2

≤ 4.

Applying Theorem 5 to the variables Xl = Z2
l − E

q
Z2
l

y
, we get

P

[
L∑
l=1

Z2
l − L

σ1

η2
≥ εL

]
≤ exp

(
−c1Lmin

{
ε2, ε

})
where c1 > 0 is an absolute constant. Thus with probability at least 1 − exp

(
−c1Lmin

{
ε2, ε

})
, for a fixed vector

v ∈ Sd−1, we have the inequality

‖Av‖22 ≤
(
σ1

η2
+ ε

)
L

Applying a union bound over a 1
4 -net N1/4 over Sd−1 (which can be of size at most 9d), we get that with probability at

most 1 − 9d exp
(
−c1Lmin

{
ε2, ε

})
, we have the above inequality for every vector v ∈ N1/4 as well. We note that this

implies a bound on the spectral norm of the matrix A (see Vershynin, 2012, Lemma 5.4) and get the following bound

‖A‖22 ≤ 2
(
σ1

η2
+ ε

)
L

Put ε = c2 · dL + ε′

L where c2 = max
{

1, ln 9
c1

}
and suppose d ≥ L. Since c2 ≥ 1, we have ε ≥ 1 which gives

min
{
ε, ε2

}
= ε. This gives us with probability at least 1− exp (−c1ε′),

‖A‖22 ≤ 2
(
L
σ1

η2
+ c2d+ ε′

)
Consider the random variable Y = ‖A‖22

2 − Lσ1
η2 − c2d. Then we have P [Y > ε] ≤ exp (−c1ε). Thus we have

E JY K =
∫ ∞

0

P [Y > ε] dε ≤
∫ ∞

0

exp (−c1ε) dε =
1
c1

This gives us

E
r
‖A‖22

z
≤ 2

(
L
σ1

η2
+ c2d+

1
c1

)
and consequently,

E
X,l,ε

r∥∥X l
ε

∥∥2

2

z
= c2 · E

X,l,ε

r
‖A‖22

z
≤ 4η2P · n

(
L
σ1

η2
+ c2d+

1
c1

)
≤ O

(
nη2P

(
d+ L

σ1

η2

))
≤ O

(
nPd(η2 + σ1)

)
where the last step holds when d ≥ L. Thus, we are able to bound the Rademacher averages, for some absolute constant
c3 as

Rn (Z) ≤ λ

n
√

Σ

√∥∥∥∥ E
X,l,ε

r
‖X l

ε‖
2
2

z∥∥∥∥ ≤ c3λ
√
Pd(η2 + σ1)

nΣ
,

which allows us to make the following claim:

Theorem 6. Suppose we learn a predictor using the trace norm regularized formulation Ẑ = arg inf
‖Z‖tr≤λ

L̂(Z) over a set of

n training points. Further suppose that, for any l ∈ [L], the probability of observing the value of label l is given by pl and
let P = max

l∈[L]
pl. Then with probability at least 1− δ, we have

L(Ẑ) ≤ arg inf
‖Z‖tr≤λ

L(Z) +O

(
sλ

√
dP (η2 + σ1)

nΣ

)
+O

s
√

log 1
δ

n

 ,

where the terms η, σ1,Σ are defined by the data distribution as before.
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Essentially, the above result indicates that if some label is observed too often, as would be the case when P = Ω (1), we
get no benefit from trace norm regularization since this is akin to a situation with fully observed labels. However, if the
distribution on the labels is close to uniform i.e. P = O

(
1
L

)
, the above calculation lets us bound the Rademacher average,

and consequently, the excess risk as

Rn (Z) ≤ c3λ
√
d(η2 + σ1)
nLΣ

,

thus proving the first part of Theorem 4.

We now notice that However, in case our data distribution is near isotropic, i.e. Σ � σ1, then this result gives us superior
bounds. For instance, if the data points are generated from a standard normal distribution, then we have σ1 = 1, Σ = d
and η = 1 using which we can bound the Rademacher average term as

Rn (Z) ≤ c3λ
√

2
nL

,

which gives us the second part of Theorem 4.

D. Lower Bounds for Uniform Convergence-based Proofs
In this section, we show that our analysis for Theorems 3 and 4 are essentially tight. In particular, we show for each case,
a data distribution such that the deviation of the empirical losses from the population risks is, up to a constant factor, the
same as predicted by the results. We state these lower bounds in two separate subsections below:

D.1. Lower Bound for Trace Norm Regularization

In this section we shall show that for general distribution, Theorem 3 is tight. Recall that Theorem 3 predicts that for a
predictor Ẑ learned using a trace norm regularized formulation satisfies, with constant probability (i.e. δ = Ω (1)),

L(Ẑ) ≤ L̂(Ẑ) +O

(
λ

√
1
n

)
,

where, for simplicity as well as w.l.o.g., we have assumed s = 1. We shall show that this result is tight by demonstrating
the following lower bound:

Claim 7. There exists a data-label distribution and a loss function such that the empirical risk minimizer learned as
Ẑ = arg inf

‖Z‖tr≤λ
L̂(Z) has, with constant probability, its population risk lower bounded by

L(Ẑ) ≥ L̂(Ẑ) + Ω

(
λ

√
1
n

)
,

thus establishing the tightness claim. Our proof will essentially demonstrate this by considering a non-isotropic data
distribution (since, for isotropic distributions, Theorem 4 shows that a tighter upper bound is actually possible). For
simplicity, and w.l.o.g., we will prove the result for λ = 1. Let µ ∈ Rd be a fixed unit vector and consider the following
data distribution

xi = ζiµ,

where ζi are independent Rademacher variables and a trivial label distribution

yi = 1,

where 1 ∈ RL is the all-ones vector. Note that the data distribution satisfies E
r
‖x‖22

z
= 1 and thus, satisfies the

assumptions of Theorem 3. Let ωli = 1 iff the label l is observed for the ith training point. Note that for any i, we have∑L
l=1 ω

l
i = 1 and that for any l ∈ [L], ωli = 1 with probability 1/L. Also consider the following loss function

`(yl, f l(x;Z)) = 〈Zl,ylx〉
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Let
Ẑ = arg inf

‖Z‖tr≤1

L̂(Z) = arg inf
‖Z‖tr≤1

1
n
〈Z,µv>〉

where v is the vector

v =

[
n∑
i=1

ζiω
1
i

n∑
i=1

ζiω
2
i . . .

n∑
i=1

ζiω
L
i

]
Clearly, since x is a centered distribution and ` is a linear loss function, L(Ẑ) = 0. However, by Hölder’s inequality, we
also have

Ẑ = −µv>

‖v‖2
,

and thus, L̂(Ẑ) = − 1
n ‖v‖2 since ‖µ‖2 = 1. The following lemma shows that with constant probability, ‖v‖2 ≥

√
n/2

which shows that L(Ẑ) ≥ L̂(Ẑ) + Ω
(√

1
n

)
, thus proving the lower bound.

Lemma 2. With probability at least 3/4, we have ‖v‖22 ≥ n/2.

Proof. We have

‖v‖22 =
L∑
l=1

(
n∑
i=1

ζiω
l
i

)2

=
L∑
l=1

n∑
i=1

ωli +
L∑
l=1

∑
i 6=j

ζiω
l
iζjω

l
j

= n+
∑
i 6=j

ζiζj〈ωi,ωj〉 = n+W,

where ωi = [ω1
i , ω

2
i , . . . , ω

L
i ]. Now clearly E JW K = 0 and as the following calculation shows, E

q
W 2

y
≤ 2n2/L

which, by an application of Tchebysheff’s inequality, gives us, for L > 32, with probability at least 3/4, |W | ≤ n/2 and
consequently ‖v‖22 ≥ n/2. We give an estimation of the variance of Z below.

E
q
W 2

y
= E

u

v
∑

i1 6=j1,i2 6=j2

ζi1ζj1〈ωi1 ,ωj1〉ζi2ζj2〈ωi2 ,ωj2〉

}

~

= 2E

u

v
∑
i 6=j

〈ωi,ωj〉2
}

~ = 2n(n− 1)E J〈ω1,ω2〉K ≤
2n2

L
,

where we have used the fact that 〈ωi,ωj〉2 = 〈ωi,ωj〉 since 〈ωi,ωj〉 = 0 or 1, and that E J〈ω1,ω2〉K = 1
L since that is

the probability of the same label getting observed for x1 and x2.

D.2. Lower Bound for Frobenius Norm Regularization

In this section, we shall prove that even for isotropic distributions, Frobenius norm regularization cannot offer O
(

1√
nL

)
-

style bounds as offered by trace norm regularization.
Claim 8. There exists an isotropic, sub-Gaussian data distribution and a loss function such that the empirical risk mini-
mizer learned as Ẑ = arg inf

‖Z‖F≤λ
L̂(Z) has, with constant probability, its population risk lower bounded by

L(Ẑ) ≥ L̂(Ẑ) + Ω

(
λ

√
1
n

)
,

whereas an empirical risk minimizer learned as Ẑ = arg inf
‖Z‖tr≤λ

L̂(Z) over the same distribution has, with probability at

least 1− δ, its population risk bounded by

L(Ẑ) ≤ L̂(Ẑ) +O

(
λ

√
1
nL

)
+O

√ log 1
δ

n

 .
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We shall again prove this result for λ = 1. We shall retain the distribution over labels as well as the loss function from our
previous discussion in Appendix D.1. We shall also reuse ωli to denote the label observation pattern. We shall however use
Rademacher vectors to define the data distribution i.e. each of the d coordinates of the vector x obeys the law

r ∼ 1
2

(1{r=1} + 1{r=−1}).

Thus we sample xi as

xi =
1√
d

[
r1
i , r

2
i , . . . , r

d
i

]
,

where each coordinate is independently sampled. We now show that this distribution satisfies the assumptions of Theo-
rem 4. We have E

q
xx>

y
= 1

d · I where I is the d × d identity matrix. Thus σ1 = 1
d and Σ = 1. We also have, for any

v ∈ Rd,

E
q
exp

(
x>v

)y
= E

u

vexp

 d∑
j=1

xjvj

}

~ =
d∏
j=1

E
q
exp

(
xjvj

)y
=

d∏
j=1

1
2

(
exp

(
1√
d
vj
)

+ exp
(
− 1√

d
vj
))

=
d∏
j=1

cosh
(

1√
d
vj
)
≤

d∏
j=1

exp
(

1
d

(vj)2

)

= exp

 d∑
j=1

1
d

(vj)2

 = exp
(

1
d
‖v‖22

)
,

where the second equality uses the independence of the coordinates of x. Thus we have η2 = 2
d . Thus, this distribution ful-

fills all the preconditions of Theorem 4. Note that had trace norm regularization been applied, then by applying Theorem 4,
we would have gotten an excess error of

O

(√
d(η2 + σ1)
nLΣ

)
= O

(√
d(2/d+ 1/d)

nL · 1

)
= O

(√
1
nL

)

whereas, as the calculation given below shows, Frobenius norm regularization cannot guarantee an excess risk better than

O
(√

1
n

)
. Suppose we do perform Frobenius norm regularization in this case. Then we have

Ẑ = arg inf
‖Z‖F≤1

L̂(Z) = arg inf
‖Z‖F≤1

1
n
〈Z,X〉,

where X is the matrix

X =

[
L∑
i=1

ω1
i xi

L∑
i=1

ω2
i xi . . .

L∑
i=1

ωLi xi

]
.

As before, L(Ẑ) = 0 since the data distribution is centered and the loss function is linear. By a similar application of
Hölder’s inequality, we can also get

Ẑ = − X

‖X‖F
,

and thus, L̂(Ẑ) = − 1
n ‖X‖F . The following lemma shows that with constant probability, ‖X‖F ≥

√
n/2 which shows

that L(Ẑ) ≥ L̂(Ẑ)+Ω
(√

1
n

)
, thus proving the claimed inability of Frobenius norm regularization to giveO

(
1√
nL

)
-style

bounds even for isotropic distributions.

Lemma 3. With probability at least 3/4, we have ‖X‖2F ≥ n/2.
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Proof. We have

‖X‖2F =
L∑
l=1

∥∥∥∥∥
n∑
i=1

ωlixi

∥∥∥∥∥
2

2

=
L∑
l=1

n∑
i=1

ωli ‖xi‖
2
2 +

L∑
l=1

∑
i6=j

ωliω
l
j〈xi,xj〉

=
n∑
i=1

‖xi‖22 +
∑
i 6=j

〈xi,xj〉〈ωi,ωj〉 = n+W

where as before, ωi = [ω1
i , ω

2
i , . . . , ω

L
i ]. We will, in the sequel prove that |W | ≤ n/2, thus establishing the claim.

Clearly E JW K = 0 and as the following calculation shows, E
q
W 2

y
≤ 2n2/Ld which, by an application of Tchebysheff’s

inequality, gives us, for Ld > 32, with probability at least 3/4, |W | ≤ n/2 and consequently ‖X‖2F ≥ n/2. We give an
estimation of the variance of W below.

E
q
W 2

y
= E

u

v
∑

i1 6=j1,i2 6=j2

〈xi1 ,xj1〉〈ωi1 ,ωj1〉〈xi2 ,xj2〉〈ωi2 ,ωj2〉

}

~

= 2E

u

v
∑
i 6=j

〈xi,xj〉2〈ωi,ωj〉2
}

~ = 2n(n− 1)E
q
〈x1,x2〉2〈ω1,ω2〉

y

= 2n(n− 1)E
q
〈x1,x2〉2

y
E J〈ω1,ω2〉K ≤

2n2

Ld
,

where we have used the fact that data points and label patterns are sampled independently.

E. More Experimental Results
E.1. Evaluation Criteria

Given a test set {xi,yi : i = 1, . . . , n}, three criteria are used to evaluate the performance for an real-valued predictor
f(x) : Rd → R:

• Top-K accuracy: for each instance, we select theK labels with the largest decision values for prediction. The average
accuracy among all instances are reported as the top-K accuracy.

• Hamming-loss: for each pair of instance x and label index j, we round the decision value f j(x) to 0 or 1.

Hamming Loss =
1
nL

n∑
i=1

L∑
j=1

I[round
(
f j(x)

)
6= yj ]

• Average AUC: we follow (Bucak et al., 2009) to calculate area under ROC curve for each instance and report the
average AUC among all test instances.
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E.2. Speedup Results Due to Multi-core Computation

(a)∇g(w) (b)∇2g(w)s

Figure 3. Speedup results for our proposed fast gradient calculation and Hessian-vector multiplication.

E.3. Detailed Results with Full Labels

• Table 6 shows the top-1 accuracy results for the case with fully observed labels.

• Table 7 shows the top-3 accuracy results for the case with fully observed labels.

• Table 8 shows the top-5 accuracy results for the case with fully observed labels.

• Table 9 shows the Hamming loss results for the case with fully observed labels.

• Table 10 shows the average AUC results for the case with fully observed labels.

E.4. Detailed Results with Missing Labels

• Table 11 shows the top-1 accuracy results for the case with various missing ratios and dimension reduction rates.

• Table 12 shows the top-3 accuracy results for the case with various missing ratios and dimension reduction rates.

• Table 13 shows the top-5 accuracy results for the case with various missing ratios and dimension reduction rates.

• Table 14 shows the Hamming loss results for the case with various missing ratios and dimension reduction rates.

• Table 15 shows the average AUC results for the case with various missing ratios and dimension reduction rates.
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Table 6. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-1 Accuracy
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 58.33 46.20 46.52 41.43 55.55 48.51
40% 60.99 50.78 40.68 54.63 58.73 52.37
60% 61.99 51.37 39.24 57.53 60.36 51.45
80% 63.38 52.64 39.96 59.76 62.31 53.04

100% 63.94 53.76 38.41 60.24 63.02 53.24

autofood

20% 86.84 84.21 89.47 68.42 52.63 47.37
40% 92.11 89.47 92.11 28.95 55.26 86.84
60% 73.68 89.47 86.84 71.05 52.63 65.79
80% 94.74 89.47 89.47 81.58 57.89 78.95

100% 81.58 89.47 86.84 84.21 57.89 60.53

compphys

20% 92.50 87.50 97.50 70.00 52.50 65.00
40% 95.00 92.50 95.00 65.00 50.00 47.50
60% 95.00 92.50 95.00 72.50 47.50 70.00
80% 95.00 87.50 97.50 75.00 50.00 45.00

100% 95.00 97.50 97.50 67.50 50.00 52.50

delicious

20% 67.16 57.39 61.07 59.50 66.53 48.35
40% 66.66 51.62 56.20 61.16 66.25 47.25
60% 66.28 50.96 51.59 63.08 66.22 47.38
80% 66.25 51.55 49.11 62.10 66.22 45.59

100% 66.28 50.83 46.53 63.45 66.22 46.25

Table 7. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-3 Accuracy
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 34.16 25.65 27.37 21.74 31.99 28.77
40% 36.53 28.20 24.81 28.95 34.53 30.05
60% 38.00 28.68 23.26 32.25 36.01 31.11
80% 38.58 29.42 23.04 34.09 36.75 31.21

100% 38.41 30.25 22.36 34.87 36.91 31.24

autofood

20% 81.58 80.70 81.58 53.51 42.98 66.67
40% 76.32 80.70 78.95 50.88 42.11 70.18
60% 70.18 80.70 81.58 64.91 41.23 60.53
80% 80.70 80.70 85.09 73.68 42.98 72.81

100% 75.44 80.70 82.46 65.79 42.98 64.04

compphys

20% 80.00 80.00 80.00 42.50 40.83 49.17
40% 80.00 78.33 79.17 60.00 37.50 39.17
60% 80.00 80.00 80.00 51.67 39.17 49.17
80% 80.00 78.33 80.83 53.33 39.17 52.50

100% 80.00 79.17 81.67 62.50 39.17 56.67

delicious

20% 61.20 53.68 57.27 53.01 61.13 42.87
40% 61.23 49.13 52.95 56.20 61.08 42.05
60% 61.15 46.76 49.58 57.07 61.09 42.22
80% 61.13 48.06 47.34 57.09 61.09 42.01

100% 61.12 46.11 45.92 57.91 61.09 41.34
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Table 8. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Top-5 Accuracy
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 24.49 19.24 20.33 15.39 23.11 21.92
40% 26.84 20.61 18.54 19.95 24.96 22.47
60% 27.66 20.99 17.61 22.43 26.07 23.33
80% 28.20 21.48 17.46 24.07 26.47 23.44

100% 28.01 22.03 16.83 24.48 26.47 23.44

autofood

20% 81.05 80.00 75.79 44.21 36.84 66.32
40% 73.68 78.42 76.84 51.05 36.32 66.84
60% 69.47 78.95 78.42 57.37 36.32 60.53
80% 74.74 78.95 80.53 68.95 36.84 66.84

100% 72.63 78.42 83.16 62.11 36.84 61.58

compphys

20% 72.00 73.50 72.50 32.50 37.50 46.00
40% 73.00 74.00 74.50 54.50 35.50 41.00
60% 73.00 74.00 74.00 43.50 34.50 44.00
80% 73.00 73.00 74.00 47.50 36.00 46.50

100% 72.50 72.50 73.00 54.50 36.00 49.50

delicious

20% 56.46 49.46 52.94 47.91 56.30 39.79
40% 56.39 45.66 49.54 51.61 56.28 39.27
60% 56.28 43.22 46.93 52.85 56.23 38.97
80% 56.27 44.03 45.43 52.92 56.23 39.27

100% 56.27 42.11 44.24 53.28 56.23 38.41

Table 9. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for logistic
loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Hamming Loss
LEML BCS CPLST

k/L SQ LR SH SQ SQ

bibtex

20% 0.0126 0.0211 0.0231 0.0150 0.0127
40% 0.0124 0.0240 0.0285 0.0140 0.0126
60% 0.0123 0.0233 0.0320 0.0132 0.0126
80% 0.0123 0.0242 0.0343 0.0130 0.0125

100% 0.0122 0.0236 0.0375 0.0129 0.0125

autofood

20% 0.0547 0.0621 0.0588 0.0846 0.0996
40% 0.0590 0.0608 0.0578 0.0846 0.0975
60% 0.0593 0.0611 0.0586 0.0838 0.0945
80% 0.0572 0.0611 0.0569 1.0000 0.0944

100% 0.0603 0.0617 0.0586 1.0000 0.0944

compphys

20% 0.0457 0.0470 0.0456 0.0569 0.0530
40% 0.0454 0.0466 0.0456 0.0569 0.0526
60% 0.0454 0.0469 0.0460 0.0569 0.0530
80% 0.0464 0.0484 0.0456 0.0569 0.0755

100% 0.0453 0.0469 0.0450 0.0569 0.0755

delicious

20% 0.0181 0.0196 0.0187 0.0189 0.0182
40% 0.0181 0.0221 0.0198 0.0186 0.0182
60% 0.0182 0.0239 0.0207 0.0187 0.0182
80% 0.0182 0.0253 0.0212 0.0186 0.0182

100% 0.0182 0.0260 0.0216 0.0186 0.0182
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Table 10. Comparison for dimensionality reductions approach on fully observed Y with various rank. SQ for squared loss, LR for
logistic loss, SH for squared hinge loss, and WAR for weighted approximated-rank loss

Average AUC
LEML BCS CPLST WSABIE

k/L SQ LR SH SQ SQ WAR

bibtex

20% 0.8910 0.8677 0.8541 0.7875 0.8657 0.9055
40% 0.9015 0.8809 0.8467 0.8263 0.8802 0.9092
60% 0.9040 0.8861 0.8505 0.8468 0.8854 0.9089
80% 0.9035 0.8875 0.8491 0.8560 0.8882 0.9164

100% 0.9024 0.8915 0.8419 0.8614 0.8878 0.9182

autofood

20% 0.9565 0.9598 0.9424 0.7599 0.7599 0.8779
40% 0.9277 0.9590 0.9485 0.7994 0.7501 0.8806
60% 0.8815 0.9582 0.9513 0.8282 0.7552 0.8518
80% 0.9280 0.9588 0.9573 0.8611 0.7538 0.8520

100% 0.9361 0.9581 0.9561 0.8718 0.7539 0.8471

compphys

20% 0.9163 0.9223 0.9274 0.6972 0.7692 0.8212
40% 0.9199 0.9157 0.9191 0.7881 0.7742 0.8066
60% 0.9179 0.9143 0.9098 0.7705 0.7705 0.8040
80% 0.9187 0.9003 0.9220 0.7820 0.7806 0.7742

100% 0.9205 0.9040 0.8977 0.7884 0.7804 0.7951

delicious

20% 0.8854 0.8588 0.8894 0.7308 0.8833 0.8561
40% 0.8827 0.8534 0.8868 0.7635 0.8814 0.8553
60% 0.8814 0.8517 0.8852 0.7842 0.8834 0.8523
80% 0.8814 0.8468 0.8845 0.7941 0.8834 0.8558

100% 0.8814 0.8404 0.8836 0.8000 0.8834 0.8557

Table 11. Comparison for Y with missing labels
Top-1 Accuracy

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 30.30 30.22 42.90 41.51 46.68 30.42 44.97
10% 39.84 33.56 44.53 41.99 51.09 33.44 48.55
20% 48.35 40.12 46.08 43.06 55.94 37.22 52.84
40% 52.37 41.79 43.82 42.27 58.57 40.24 55.39

40%

5% 34.35 39.17 42.90 43.42 46.68 31.13 44.97
10% 42.11 39.96 44.53 46.00 51.09 29.03 48.55
20% 51.97 45.49 46.08 47.40 55.94 32.05 52.84
40% 56.38 50.10 43.82 49.70 58.57 38.17 55.39

60%

5% 36.58 41.87 42.90 43.54 46.68 42.54 44.97
10% 45.53 45.13 44.53 39.36 51.09 31.37 48.55
20% 53.52 49.54 46.08 46.12 55.94 33.28 52.84
40% 57.18 54.19 43.82 48.83 58.57 32.13 55.39

autofood

20%

5% 7.89 0.00 7.89 7.89 7.89 7.89 7.89
10% 44.74 2.63 50.00 55.26 44.74 50.00 50.00
20% 63.16 0.00 57.89 73.68 47.37 68.42 57.89
40% 60.53 15.79 78.95 81.58 68.42 86.84 78.95

40%

5% 10.53 10.53 7.89 7.89 7.89 13.16 7.89
10% 57.89 7.89 50.00 60.53 44.74 55.26 50.00
20% 76.32 31.58 57.89 78.95 47.37 76.32 57.89
40% 60.53 5.26 78.95 84.21 68.42 84.21 78.95

60%

5% 7.89 10.53 7.89 7.89 7.89 7.89 7.89
10% 57.89 23.68 50.00 57.89 44.74 55.26 50.00
20% 73.68 57.89 57.89 78.95 47.37 76.32 57.89
40% 63.16 36.84 78.95 81.58 68.42 89.47 78.95

compphys

20%

5% 62.50 35.00 42.50 45.00 45.00 67.50 42.50
10% 75.00 10.00 52.50 67.50 52.50 55.00 52.50
20% 72.50 7.50 52.50 72.50 52.50 70.00 52.50
40% 87.50 5.00 52.50 77.50 52.50 80.00 52.50

40%

5% 65.00 60.00 42.50 45.00 45.00 65.00 42.50
10% 70.00 17.50 52.50 65.00 52.50 72.50 52.50
20% 72.50 52.50 52.50 70.00 52.50 75.00 52.50
40% 80.00 42.50 52.50 80.00 52.50 80.00 52.50

60%

5% 67.50 52.50 42.50 45.00 45.00 65.00 42.50
10% 70.00 52.50 52.50 67.50 52.50 67.50 52.50
20% 77.50 52.50 52.50 80.00 52.50 80.00 52.50
40% 82.50 52.50 52.50 80.00 52.50 80.00 52.50



Large-scale Multi-label Learning with Missing Labels

Table 12. Comparison for Y with missing labels
Top-3 Accuracy

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 16.06 14.29 22.19 21.74 24.47 16.10 23.29
10% 20.95 16.29 24.10 22.88 28.43 17.64 26.69
20% 26.34 18.78 25.78 23.21 31.92 21.06 29.56
40% 30.17 21.55 26.26 23.61 34.50 23.05 31.99

40%

5% 18.73 18.99 22.19 22.84 24.47 17.03 23.29
10% 22.49 20.16 24.10 25.18 28.43 16.62 26.69
20% 28.50 23.84 25.78 25.79 31.92 18.97 29.56
40% 32.74 27.58 26.26 27.18 34.50 21.18 31.99

60%

5% 18.81 21.09 22.19 22.62 24.47 22.48 23.29
10% 23.96 24.06 24.10 19.84 28.43 17.28 26.69
20% 29.07 27.05 25.78 25.13 31.92 19.14 29.56
40% 33.55 31.13 26.26 27.66 34.50 19.46 31.99

autofood

20%

5% 30.70 11.40 19.30 29.82 17.54 38.60 19.30
10% 52.63 5.26 33.33 50.88 23.68 57.02 33.33
20% 59.65 10.53 62.28 70.18 53.51 66.67 61.40
40% 57.89 20.18 71.93 76.32 63.16 75.44 71.93

40%

5% 26.32 15.79 19.30 29.82 17.54 31.58 19.30
10% 59.65 12.28 33.33 51.75 23.68 53.51 33.33
20% 67.54 35.09 62.28 71.05 53.51 64.04 61.40
40% 55.26 33.33 71.93 78.07 63.16 77.19 71.93

60%

5% 25.44 8.77 19.30 28.95 17.54 22.81 19.30
10% 52.63 35.09 33.33 50.00 23.68 61.40 33.33
20% 68.42 35.09 62.28 73.68 53.51 71.05 61.40
40% 57.02 23.68 71.93 75.44 63.16 74.56 71.93

compphys

20%

5% 46.67 32.50 28.33 40.00 28.33 40.00 28.33
10% 53.33 9.17 37.50 59.17 29.17 40.83 37.50
20% 62.50 10.83 31.67 60.83 28.33 61.67 31.67
40% 69.17 26.67 43.33 73.33 33.33 70.83 43.33

40%

5% 45.83 27.50 28.33 37.50 28.33 41.67 28.33
10% 57.50 20.83 37.50 60.00 29.17 55.83 37.50
20% 65.00 35.83 31.67 60.00 28.33 61.67 31.67
40% 68.33 32.50 43.33 70.83 33.33 73.33 43.33

60%

5% 45.00 30.83 28.33 35.83 28.33 45.00 28.33
10% 59.17 26.67 37.50 61.67 29.17 56.67 37.50
20% 65.00 29.17 31.67 60.83 28.33 64.17 31.67
40% 71.67 30.00 43.33 65.83 33.33 70.83 43.33

Table 13. Comparison for Y with missing labels
Top-5 Accuracy

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 11.71 10.32 16.14 16.34 17.74 12.07 17.32
10% 15.42 11.55 17.77 16.91 20.80 13.11 19.65
20% 19.51 13.26 18.81 17.07 23.95 15.52 22.12
40% 22.05 15.32 19.13 17.55 25.57 17.57 23.30

40%

5% 13.53 13.25 16.14 17.02 17.74 12.70 17.32
10% 16.25 14.30 17.77 18.78 20.80 12.24 19.65
20% 20.56 17.36 18.81 19.05 23.95 14.46 22.12
40% 23.75 19.73 19.13 19.67 25.57 15.86 23.30

60%

5% 13.61 14.78 16.14 16.62 17.74 16.56 17.32
10% 16.99 17.31 17.77 14.41 20.80 12.91 19.65
20% 21.10 19.51 18.81 18.23 23.95 14.17 22.12
40% 24.50 22.31 19.13 20.38 25.57 14.95 23.30

autofood

20%

5% 35.26 8.42 25.26 34.21 21.58 36.84 25.26
10% 46.84 6.84 35.79 51.05 32.11 48.95 35.79
20% 50.53 10.53 57.89 66.84 52.11 60.53 57.89
40% 52.11 16.84 68.42 73.16 56.32 72.11 68.42

40%

5% 32.11 17.89 25.26 31.58 21.58 30.00 25.26
10% 49.47 10.00 35.79 50.53 32.11 45.26 35.79
20% 64.74 32.11 57.89 66.32 52.11 60.53 57.89
40% 50.53 28.95 68.42 73.16 56.32 74.74 68.42

60%

5% 31.58 17.37 25.26 31.05 21.58 30.00 25.26
10% 50.53 31.58 35.79 52.63 32.11 53.68 35.79
20% 64.74 28.95 57.89 68.42 52.11 67.89 57.89
40% 58.95 20.00 68.42 71.58 56.32 69.47 68.42

compphys

20%

5% 34.50 23.00 25.00 28.50 26.00 34.50 25.00
10% 50.50 13.50 28.50 51.50 24.00 41.50 29.00
20% 52.00 11.50 36.50 55.00 30.00 53.00 36.50
40% 60.50 24.00 38.00 64.50 31.00 64.00 38.50

40%

5% 34.50 22.00 25.00 29.50 26.00 33.50 25.00
10% 53.50 29.00 28.50 51.50 24.00 46.00 29.00
20% 56.50 31.00 36.50 55.50 30.00 52.50 36.50
40% 59.50 26.00 38.00 61.50 31.00 62.50 38.50

60%

5% 36.00 22.00 25.00 27.50 26.00 33.50 25.00
10% 53.00 24.50 28.50 50.50 24.00 50.50 29.00
20% 56.50 29.00 36.50 54.00 30.00 55.50 36.50
40% 61.00 32.00 38.00 61.50 31.00 63.50 38.50



Large-scale Multi-label Learning with Missing Labels

Table 14. Comparison for Y with missing labels
Hamming Loss

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 0.0158 0.1480 0.0144 0.0143 0.0138 0.0180 0.0137
10% 0.0146 0.1360 0.0156 0.0144 0.0134 0.0187 0.0135
20% 0.0136 0.1179 0.0193 0.0156 0.0132 0.0210 0.0136
40% 0.0131 0.0994 0.0251 0.0174 0.0128 0.0242 0.0141

40%

5% 0.0152 0.2837 0.0144 0.0141 0.0138 0.0175 0.0137
10% 0.0149 0.2716 0.0156 0.0141 0.0134 0.0211 0.0135
20% 0.0136 0.2496 0.0193 0.0150 0.0132 0.0226 0.0136
40% 0.0128 0.2271 0.0251 0.0160 0.0128 0.0269 0.0141

60%

5% 0.0154 0.4082 0.0144 0.0145 0.0138 0.0154 0.0137
10% 0.0147 0.3978 0.0156 0.0163 0.0134 0.0215 0.0135
20% 0.0138 0.3726 0.0193 0.0157 0.0132 0.0252 0.0136
40% 0.0129 0.3638 0.0251 0.0172 0.0128 0.0312 0.0141

autofood

20%

5% 0.0924 0.1727 0.0942 0.0918 0.0991 0.0884 0.0942
10% 0.0807 0.1449 0.0837 0.0832 0.0854 0.0811 0.0837
20% 0.0750 0.1436 0.0760 0.0686 0.0843 0.0697 0.0760
40% 0.0780 0.1399 0.0752 0.0655 0.0838 0.0629 0.0750

40%

5% 0.0919 0.2887 0.0942 0.0919 0.0991 0.0941 0.0942
10% 0.0801 0.2264 0.0837 0.0812 0.0854 0.0814 0.0837
20% 0.0671 0.2445 0.0760 0.0681 0.0843 0.0697 0.0760
40% 0.0903 0.2042 0.0752 0.0647 0.0838 0.0648 0.0750

60%

5% 0.0932 0.4189 0.0942 0.0921 0.0991 0.0937 0.0942
10% 0.0840 0.4144 0.0837 0.0817 0.0854 0.0817 0.0837
20% 0.0689 0.3596 0.0760 0.0676 0.0843 0.0692 0.0760
40% 0.0724 0.3384 0.0752 0.0650 0.0838 0.0645 0.0750

compphys

20%

5% 0.0555 0.1391 0.0556 0.0554 0.0555 0.0567 0.0556
10% 0.0536 0.1446 0.0565 0.0542 0.0569 0.0554 0.0565
20% 0.0524 0.1431 0.0566 0.0518 0.0566 0.0518 0.0566
40% 0.0484 0.1048 0.0543 0.0489 0.0561 0.0488 0.0543

40%

5% 0.0567 0.2924 0.0556 0.0555 0.0555 0.0566 0.0556
10% 0.0532 0.2532 0.0565 0.0535 0.0569 0.0532 0.0565
20% 0.0518 0.2569 0.0566 0.0513 0.0566 0.0518 0.0566
40% 0.0505 0.1766 0.0543 0.0495 0.0561 0.0484 0.0543

60%

5% 0.0558 0.4394 0.0556 0.0556 0.0555 0.0555 0.0556
10% 0.0532 0.4148 0.0565 0.0532 0.0569 0.0544 0.0565
20% 0.0516 0.3797 0.0566 0.0519 0.0566 0.0517 0.0566
40% 0.0486 0.3563 0.0543 0.0495 0.0561 0.0480 0.0543

Table 15. Comparison for Y with missing labels
Average AUC

dataset k
L

|Ω|
nL

Squared Logsitic Squared Hinge
LEML BCS BR LEML BR LEML BR

bibtex

20%

5% 0.7115 0.6529 0.7789 0.8066 0.8123 0.7363 0.7998
10% 0.7665 0.6756 0.7954 0.8208 0.8561 0.7371 0.8210
20% 0.8269 0.7111 0.8087 0.8205 0.8941 0.7859 0.8378
40% 0.8674 0.7375 0.8104 0.8347 0.9153 0.8167 0.8530

40%

5% 0.7379 0.7182 0.7789 0.8164 0.8123 0.7396 0.7998
10% 0.7730 0.7353 0.7954 0.8370 0.8561 0.7351 0.8210
20% 0.8332 0.7817 0.8087 0.8392 0.8941 0.7813 0.8378
40% 0.8724 0.8097 0.8104 0.8639 0.9153 0.8038 0.8530

60%

5% 0.7376 0.7445 0.7789 0.8132 0.8123 0.8051 0.7998
10% 0.7778 0.7831 0.7954 0.7639 0.8561 0.7444 0.8210
20% 0.8367 0.8264 0.8087 0.8251 0.8941 0.7755 0.8378
40% 0.8753 0.8504 0.8104 0.8716 0.9153 0.7899 0.8530

autofood

20%

5% 0.7170 0.5198 0.6451 0.7070 0.6356 0.7235 0.6450
10% 0.8083 0.5578 0.7576 0.8194 0.7259 0.8131 0.7576
20% 0.8043 0.5804 0.8178 0.8797 0.7712 0.8665 0.8178
40% 0.8007 0.5807 0.8860 0.9317 0.8087 0.9237 0.8857

40%

5% 0.7129 0.6299 0.6451 0.7029 0.6356 0.7157 0.6450
10% 0.8218 0.6517 0.7576 0.8198 0.7259 0.8175 0.7576
20% 0.8634 0.6322 0.8178 0.8796 0.7712 0.8644 0.8178
40% 0.8131 0.6848 0.8860 0.9319 0.8087 0.9260 0.8857

60%

5% 0.7175 0.6013 0.6451 0.7045 0.6356 0.7128 0.6450
10% 0.8206 0.6316 0.7576 0.8196 0.7259 0.8213 0.7576
20% 0.8725 0.6758 0.8178 0.8800 0.7712 0.8781 0.8178
40% 0.8141 0.6351 0.8860 0.9315 0.8087 0.9255 0.8857

compphys

20%

5% 0.6486 0.5727 0.6457 0.6479 0.6424 0.6488 0.6457
10% 0.7478 0.5691 0.7235 0.7473 0.7147 0.7556 0.7235
20% 0.7908 0.5729 0.7459 0.7921 0.7297 0.8101 0.7459
40% 0.8172 0.6788 0.7728 0.8416 0.7413 0.8718 0.7730

40%

5% 0.6474 0.6049 0.6457 0.6478 0.6424 0.6480 0.6457
10% 0.7509 0.6295 0.7235 0.7481 0.7147 0.7437 0.7235
20% 0.7964 0.6442 0.7459 0.7913 0.7297 0.7849 0.7459
40% 0.8192 0.6651 0.7728 0.8371 0.7413 0.8561 0.7730

60%

5% 0.6443 0.6089 0.6457 0.6468 0.6424 0.6601 0.6457
10% 0.7504 0.6505 0.7235 0.7489 0.7147 0.7421 0.7235
20% 0.7991 0.6687 0.7459 0.7854 0.7297 0.8064 0.7459
40% 0.8269 0.7240 0.7728 0.8378 0.7413 0.8659 0.7730


