
SIAM J. SCI. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 27, No. 1, pp. 43–66

A PARALLEL EIGENSOLVER FOR DENSE SYMMETRIC
MATRICES BASED ON MULTIPLE RELATIVELY

ROBUST REPRESENTATIONS∗

PAOLO BIENTINESI† , INDERJIT S. DHILLON† , AND ROBERT A. VAN DE GEIJN†

Abstract. We present a new parallel algorithm for the dense symmetric eigenvalue/eigenvector
problem that is based upon the tridiagonal eigensolver, Algorithm MR3, recently developed by Dhillon
and Parlett. Algorithm MR3 has a complexity of O(n2) operations for computing all eigenvalues and
eigenvectors of a symmetric tridiagonal problem. Moreover the algorithm requires only O(n) extra
workspace and can be adapted to compute any subset of k eigenpairs in O(nk) time. In contrast,
all earlier stable parallel algorithms for the tridiagonal eigenproblem require O(n3) operations in the
worst case, while some implementations, such as divide and conquer, have an extra O(n2) memory
requirement. The proposed parallel algorithm balances the workload equally among the processors
by traversing a matrix-dependent representation tree which captures the sequence of computations
performed by Algorithm MR3. The resulting implementation allows problems of very large size
to be solved efficiently—the largest dense eigenproblem solved in-core on a 256 processor machine
with 2 GBytes of memory per processor is for a matrix of size 128,000 × 128,000, which required
about 8 hours of CPU time. We present comparisons with other eigensolvers and results on matrices
that arise in the applications of computational quantum chemistry and finite element modeling of
automobile bodies.
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1. Introduction. The symmetric eigenvalue problem is ubiquitous in computa-
tional sciences; problems of ever-growing size arise in applications as varied as com-
putational quantum chemistry, finite element modeling, and pattern recognition. In
many of these applications, both time and space are limiting factors for solving the
problem, and hence efficient parallel algorithms and implementations are needed.
The best approach for computing all the eigenpairs (eigenvalues and eigenvectors)
of a dense symmetric matrix involves three phases: (1) reduction—reduce the given
symmetric matrix A to tridiagonal form T ; (2) solution of tridiagonal eigenproblem—
compute all the eigenpairs of T ; (3) backtransformation—map T ’s eigenvectors into
those of A. For an n×n matrix, the reduction and backtransformation phases require
O(n3) arithmetic operations each. Until recently, all algorithms for the tridiagonal
eigenproblem too had cubic complexity in the worst case; these include the remark-
able QR algorithm [26, 27, 36], inverse iteration [42], and the divide and conquer
method [10].

In fact, the tridiagonal problem can be the computational bottleneck for large
problems taking nearly 70–80% of the total time to solve the entire dense problem.
For example, on a 2.4 GHz Intel Pentium 4 processor the tridiagonal reduction and
backtransformation of a 2000 × 2000 dense matrix takes about 32 seconds, while

∗Received by the editors October 6, 2003; accepted for publication (in revised form) January
11, 2005; published electronically August 17, 2005. This research was supported in part by NSF
CAREER Award ACI-0093404 (ISD) and NSF Award ACI-0203685.

http://www.siam.org/journals/sisc/27-1/60110.html
†Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712

(pauldj@cs.utexas.edu, inderjit@cs.utexas.edu, rvdg@cs.utexas.edu).

43



44 P. BIENTINESI, I. S. DHILLON, AND R. A. VAN DE GEIJN

LAPACK’s bisection and inverse iteration software takes 106 seconds to compute all
the eigenpairs of the tridiagonal. The timings for a 4000×4000 matrix clearly show the
O(n3) behavior: 290 seconds for tridiagonal reduction and backtransformation, and
821 seconds for bisection and inverse iteration to solve the tridiagonal eigenproblem.
Timings for the tridiagonal QR algorithm are 86 seconds for n = 2000 and 1099
seconds for n = 4000. More detailed timing results are given in section 4.

Recently, Dhillon and Parlett proposed Algorithm MRRR or MR3 (multiple rela-
tively robust representations) [13, 18, 17], which gives the first stable O(nk) algorithm
to compute k eigenvalues and eigenvectors of a symmetric tridiagonal matrix. In this
paper we present a parallel algorithm based on Algorithm MR3 for computing any
subset of eigenpairs of a dense symmetric matrix; this yields the first parallel imple-
mentation of Algorithm MR3. We refer to the parallel algorithm as PMR3 (parallel
MR3). As a consequence, the time spent by the proposed algorithm on the tridiagonal
eigenproblem is negligible compared to the time spent on reduction and backtransfor-
mation. For example, to compute all the eigenpairs of a 15,000 × 15,000 matrix on
16 processors the new algorithm requires 546 seconds for reduction, 22.2 seconds for
the tridiagonal solution, and 160 seconds for backtransformation. In comparison, the
corresponding timings for existing implementations for the tridiagonal eigensolution
are 2054 seconds for the QR algorithm and 92.4 seconds for the divide and conquer
method. For a 32,000 × 32,000 matrix the timings for PMR3 on 16 processors are
4876 seconds for the reduction, 118 seconds for the tridiagonal solution, and 1388
seconds for backtransformation. These timings clearly contrast the O(n2) complexity
of Algorithm MR3 as opposed to the O(n3) reduction and backtransformation phases.

Moreover, some of the earlier algorithms have extra memory requirements: the
ScaLAPACK divide and conquer code (PDSTEVD) requires extra O(n2) storage, while
the inverse iteration code (PDSTEIN) can lead to a memory imbalance on the pro-
cessors depending upon the eigenvalue distribution. Thus neither PDSTEVD nor
PDSTEIN can be used to solve the above-mentioned 32,000 × 32,000 eigenproblem on
16 processors. In contrast, our parallel algorithm requires only workspace that is lin-
ear in n and the memory needed to store the eigenvectors of the tridiagonal problem
is evenly divided among processors, thus allowing us to efficiently solve problems of
very large size. The largest dense problem we have solved “in-core” on a 256 processor
machine with 2 GBytes of memory per processor is a matrix of size 128,000 × 128,000,
which required about 8 hours of computation time. Section 4 contains further timing
results for the parallel implementations.

The rest of the paper is organized as follows. Section 2 reviews previous work on
algorithms for the dense symmetric eigenvalue problem. In section 3, we present the
proposed parallel Algorithm PMR3, which uses multiple relatively robust representa-
tions for the tridiagonal problem. Section 4 presents detailed timing results comparing
Algorithm PMR3 with existing software. These include results on matrices that arise
in the real-life applications of computational quantum chemistry and finite element
modeling of automobile bodies.

A word on the notation used throughout the paper. T indicates a symmetric
tridiagonal matrix, n represents the size of a matrix, eigenvalues are denoted by λ,
and eigenvectors are denoted by v. Computed quantities will often be denoted by
“hatted” symbols, for example, λ̂ and v̂. The number of processors in a parallel
computation is p, while the ith processor is denoted by pi.

2. Related work. As mentioned earlier, most algorithms for the dense symmet-
ric eigenvalue problem proceed in three phases. The first and third phases, House-
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holder reduction and backtransformation, are fairly standard and described in sec-
tion 3.2. The second stage, tridiagonal eigensolution, has led to a variety of interest-
ing algorithms; we now give a quick overview of existing methods, emphasizing their
parallel versions.

The QR algorithm, independently invented by Francis [26, 27] and Kublanov-
skaya [36], is an iteration that produces a sequence of similar matrices that converges
to diagonal form. When the starting matrix is symmetric and tridiagonal, each iter-
ate produced by the QR algorithm is also symmetric and tridiagonal. Convergence
to diagonal form is rapid (ultimately cubic) with a suitable choice of shifts [38]. A
fast square-root-free version of QR developed by Pal, Walker, and Kahan (PWK) is
useful if only eigenvalues are desired [38]. Another attractive alternative, in the latter
case, is to use the differential quotient-difference algorithm (dqds) that is based on the
related LR iteration [24]. In practice 2–3 iterations, on average, are needed per eigen-
value in the QR algorithm where each iteration is composed of at most n− 1 Givens
rotations. Thus all eigenvalues can be computed at a cost of O(n2) operations, while
the accumulation of Givens rotations required for computing orthogonal eigenvectors
results in O(n3) operations (in practice, 6n3 to 9n3 operations are observed).

The inherent sequential nature of the QR algorithm makes the eigenvalue compu-
tation hard to parallelize. However, when eigenvectors are needed, an effective parallel
algorithm that yields good speedups can be obtained as follows. First, the House-
holder reflections computed during the reduction are accumulated in approximately
4
3n

3 operations to form a matrix Z, which is then evenly partitioned among the p
processors so that each processor owns approximately n/p rows of Z. The tridiagonal
matrix is duplicated on all processors and the O(n2) eigenvalue computation is re-
dundantly performed on all processors, while the Givens rotations are directly applied
on each processor to its part of Z. This accumulation achieves perfect speedup since
all processors can simultaneously update their portion of Z without requiring any
communication, thus leading to an overall parallel complexity of O(n3/p) operations.
A faster algorithm (up to a factor of 2) can be obtained by using perfect shifts and
inner deflations [16].

A major drawback of the QR algorithm is that it is hard to adapt to the case
when only a subset of eigenvalues and eigenvectors is desired at a proportionately
reduced operation count. Thus a commonly used parallel solution is to invoke the
bisection algorithm followed by inverse iteration [32]. The bisection algorithm was
first proposed by Givens in 1954 and allows the computation of k eigenvalues of a
symmetric tridiagonal T in O(kn) operations [28]. Once accurate eigenvalues are
known, the method of inverse iteration may be used to compute the corresponding
eigenvectors [42]. However, inverse iteration can guarantee only small residual norms.
It cannot ensure orthogonality of the computed vectors when eigenvalues are close.
A commonly used “remedy” is to orthogonalize each approximate eigenvector, us-
ing the modified Gram–Schmidt method, against previously computed eigenvectors
of “nearby” eigenvalues—the LAPACK and EISPACK implementations orthogonal-
ize when eigenvalues are closer than 10−3‖T‖. Unfortunately even this conservative
strategy can fail to give accurate answers in certain situations [14]. The amount of
work required by inverse iteration to compute all the eigenvectors of a symmetric
tridiagonal matrix depends strongly upon the distribution of eigenvalues (unlike the
QR algorithm, which always requires O(n3) operations). If eigenvalues are well sep-
arated (gaps greater than 10−3‖T‖), then O(n2) operations are sufficient. However,
when eigenvalues are clustered, current implementations of inverse iteration can take
up to 10n3 operations due to orthogonalization [34]. Unfortunately the latter sit-
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uation is the norm rather than the exception for large matrices since even uniform
eigenvalue spacings when n exceeds 1000 can lead to eigenvalue gaps smaller than
10−3‖T‖.

When eigenvalues are well separated, both bisection and inverse iteration can
be effectively parallelized leading to a complexity of O(n2/p) operations. However,
as remarked above, the common situation for large matrices is that inverse iteration
requires O(n3) operations; see section 4.3 for some timings. Thus, parallel inverse iter-
ation requires O(n3/p) operations in these situations. Moreover, considerable commu-
nication is required when Gram–Schmidt orthogonalization is done across processor
boundaries. Indeed, to avoid communication, the current inverse iteration implemen-
tation in ScaLAPACK (PDSTEIN) computes all the eigenvectors corresponding to
a cluster of eigenvalues on a single processor, thus leading to a parallel complexity
of O(n3) in the worst case and also an imbalance in the memory required on each
processor [8, p. 48].

The bisection algorithm to find eigenvalues has linear convergence and can be
quite slow. To speed up bisection, there have been many attempts to employ faster
zero-finders such as the Rayleigh quotient iteration [38], Laguerre’s method [37, 39],
and the zeroin scheme [11, 9]. These zero-finders can speed up the computation
of isolated eigenvalues by a considerable amount, but they seem to stumble when
eigenvalues cluster. In all these cases, the corresponding eigenvectors still need to be
computed by inverse iteration.

The divide and conquer method proposed by Cuppen in 1981 is a method specially
suited for parallel computation [10, 20]; remarkably this algorithm also yields a faster
sequential implementation than QR. The basic strategy of the divide and conquer
algorithm is to express the tridiagonal matrix as a low-rank modification of a direct
sum of two smaller tridiagonal matrices. This modification may be a rank-one update
or may be obtained by crossing out a row and column of the tridiagonal. The entire
eigenproblem can then be solved in terms of the eigenproblems of the smaller tridiag-
onal matrices, and this process can be repeated recursively. For several years after its
inception, it was not known how to guarantee numerically orthogonality of the eigen-
vector approximations obtained by this approach. However, Gu and Eisenstat found
a solution to this problem, leading to robust software based on their strategy [30].

The main reason for the unexpected success of divide and conquer methods on
serial machines is deflation, which occurs when an eigenpair of a submatrix of T is an
acceptable eigenpair of a larger submatrix. The greater the amount of deflation, which
depends on the eigenvalue distribution and on the structure of the eigenvectors, the
lesser the work required in these methods. For matrices with clustered eigenvalues,
deflation can be extensive; however, in general, O(n3) operations are needed. The
divide and conquer method is suited for parallelization since smaller subproblems can
be solved independently on various processors. However, communication costs for
combining subproblems are substantial, especially when combining the larger sub-
problems to get the solution to the full problem [43]. A major drawback of the divide
and conquer algorithm is its extra O(n2) memory requirement—as we shall see later,
this limits the largest problem that can be solved using this approach.

2.1. Other solution methods. The oldest method for solving the symmetric
eigenproblem dates back to Jacobi [33]. Jacobi’s method does not reduce the dense
symmetric matrix to tridiagonal form, as most other methods do, but works on the
dense matrix at all stages. It performs a sequence of plane rotations, each of which
annihilates an off-diagonal element (which is filled in during later steps). There are



PARALLEL EIGENSOLVER FOR DENSE SYMMETRIC MATRICES 47

a variety of Jacobi methods that differ solely in their strategies for choosing the
next element to be annihilated. All good strategies tend to diminish the off-diagonal
elements, and the resulting sequence of matrices converges to the diagonal matrix of
eigenvalues.

Jacobi’s method fell out of favor with the discovery of the QR algorithm. The
primary reason is that, in practice, the cost of even the most efficient variants of
the Jacobi iteration is an order of magnitude greater than that of the QR algorithm.
Nonetheless, it has periodically enjoyed a resurrection since it can be efficiently paral-
lelized, and theoretical results show it to be more accurate than the QR algorithm [12].

The symmetric invariant subspace decomposition algorithm (SYISDA) formulates
the problem in a dramatically different way [5]. The idea is to scale and shift the
spectrum of the given matrix so that its eigenvalues are mapped to the interval [0, 1],
with the mean eigenvalue being mapped to 1

2 . Letting B equal the transformed matrix,
a polynomial p is applied to B with the property that limi→∞ pi([0, 1]) = {0, 1}.
By applying this polynomial to B in the iteration C0 = B, Ci+1 = p(Ci) until
convergence, all eigenvalues of Ci+1 eventually become arbitrarily close to 0 or 1. The
eigenvectors of Ci+1 and A are related in such a way that allows the computation
of two subspaces that can then be used to decouple matrix A into two subproblems,
each of size roughly half that of A. The process then continues with each of the
subproblems. The benefit of the SYISDA approach is that the computation can be
cast in terms of matrix-matrix multiplication, which can attain near-peak performance
on modern microprocessors and parallelizes easily [19, 31]. Unfortunately, this benefit
is accompanied by an increase in the operation count, to the point where SYISDA is
not considered to be competitive.

2.2. Parallel libraries. A great deal of effort has been spent in building efficient
parallel symmetric eigensolvers for distributed systems. Specially designed software
for this problem has been developed as part of a number of numerical libraries. Among
these the best known are the Scalable Linear Algebra Package (ScaLAPACK) [21, 8],
Parallel Eigensolver (PeIGS) [23], the Parallel Research on Invariant Subspace Meth-
ods (PRISM) project [5], and the Parallel Linear Algebra Package (PLAPACK) [44].
All of these packages attempt to achieve portability by embracing the Message-Passing
Interface (MPI) and the Basic Linear Algebra Subprograms (BLAS) [19].

The ScaLAPACK project is an effort to parallelize the Linear Algebra Package
(LAPACK) [1] to distributed memory architectures. It supports a number of different
algorithms, as further discussed in the experimental section. PeIGS supports a large
number of chemistry applications that give rise to large dense eigenvalue problems.
It includes a parallel tridiagonal eigensolver that is based on a very early version
of Algorithm MR3; this preliminary version does limited Gram–Schmidt orthogonal-
ization; see [15]. The PRISM project implements the SYISDA approach outlined
in section 2.1. PLAPACK currently supports a parallel implementation of the QR
algorithm as well as the algorithm that is the topic of this paper.

3. The proposed algorithm. We now present the proposed parallel algorithm.
Section 3.1 describes how the tridiagonal eigenproblem can be solved using the method
of multiple relatively robust representations (MR3), while section 3.2 briefly describes
the phases of Householder reduction and backtransformation.

3.1. Tridiagonal eigensolver using multiple relatively robust represen-
tations. Algorithm MR3 was recently introduced by Dhillon and Parlett [13, 18, 17]
for the task of computing k eigenvectors of a symmetric tridiagonal matrix T , and
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has a complexity of O(nk) operations. The superior time complexity of the algorithm
is achieved by avoiding Gram–Schmidt orthogonalization, which in turn is the result
of high relative accuracy in intermediate computations.

3.1.1. The sequential algorithm. We provide the main ideas behind Algo-
rithm MR3; an in-depth technical description and justification of the algorithm can
be found in [13, 18, 17]. There are three key ingredients that form the backbone of
Algorithm MR3:

1. Relatively robust representations. A relatively robust representation (RRR)
is a representation that determines its eigenvalues and eigenvectors to high relative
accuracy; i.e., small componentwise changes to individual entries of the representation
lead to small relative changes in the eigenvalues and small changes in the eigenvectors
(modulo relative gaps between eigenvalues; see (2) below). Unfortunately, the tradi-
tional representation of a tridiagonal by its diagonal and off-diagonal elements does
not form an RRR; see [18, sect. 3] for an example. However, the bidiagonal factor-
ization T = LDLt of a positive definite tridiagonal is an RRR, and in many cases an
indefinite LDLt also forms an RRR [18]. We now make precise the conditions needed
for LDLt to be an RRR: Write li for L(i+ 1, i) and di for D(i, i). Define the relative

gap of λ̂, where λ̂ is closer to λ than to any other eigenvalue of LDLt, to be

relgap(λ̂) := gap(λ̂)/|λ̂|,

where gap(λ̂) = min{|ν − λ̂| : ν �= λ, ν ∈ spectrum(LDLt)}. We say that (λ,v)
is determined to high relative accuracy by L and D if small relative changes, li →
li(1 + ηi), di → di(1 + δi), |ηi| < ξ, |δi| < ξ, ξ � 1, cause changes δλ and δv that
satisfy

|δλ|
|λ| ≤ K1nξ, λ �= 0,(1)

| sin � (v,v + δv)| ≤ K2nξ

relgap(λ)
(2)

for modest constants K1 and K2, say, smaller than 100. We call such an LDLt

factorization an RRR for (λ,v). The advantage of an RRR is that the eigenvalues
and eigenvectors can be computed to high relative accuracy as governed by (1) and (2).
For more details see [18].

2. Computing the eigenvector of an isolated eigenvalue. Once an accurate eigen-
value λ̂ is known, its eigenvector may be computed by solving the equation (LDLt −
λ̂I)z ≈ 0. However, it is not straightforward to solve this equation: the trick is to
figure out what equation to ignore in this nearly singular system. Unable to find a so-
lution to this problem, current implementations of inverse iteration in LAPACK and
EISPACK solve (LDLt − λ̂I)zi+1 = zi and take z0 to be a random starting vector
(this difficulty was known to Wilkinson [45, p. 318]). This problem was solved recently
by using twisted factorizations that are obtained by gluing a top-down (LDLt) and
a bottom-up (UDU t) factorization. The solution is presented in Algorithm Getvec
below; see [18, 40, 25] for more details.

3. Computing orthogonal eigenvectors for clusters using multiple RRRs. By using
an RRR and Algorithm Getvec for computing eigenvectors, it can be shown that the
computed eigenvectors are numerically orthogonal when the eigenvalues have large
relative gaps [18]. However, when eigenvalues have small relative gaps, the above
approach is not adequate. For the case of small relative gaps, Algorithm MR3 uses
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Algorithm Getvec(L,D, λ̂).
Input: L is unit lower bidiagonal (li denotes L(i + 1, i), 1 ≤ i ≤ n − 1), and D

is diagonal (di denotes D(i, i), 1 ≤ i ≤ n); LDLt is the input tridiagonal

matrix assumed to be irreducible. λ̂ is an approximate eigenvalue.
Output: z is the computed eigenvector.

I. Factor LDLt − λ̂I = L+D+L
t
+ by the dstqds (differential stationary

quotient-difference with shift) transform.

II. Factor LDLt−λ̂I = U−D−U
t
− by the dqds (differential progressive quotient-

difference with shift) transform.
III. Compute γk for k = 1, . . . , n by the formula γk = sk + dk

D−(k+1)pk+1 that

involves the intermediate quantities sk and pk+1 computed in the dstqds
and dqds transforms (for details see [18, sect. 4.1]). Pick an r such that
|γr| = mink |γk|. Form the twisted factors with twist index r, Nr and Δr,

which satisfy NrΔrN
t
r = LDLt − λ̂I.

IV. Form the approximate eigenvector z by solving N t
rz = er (er is the rth

column of the identity matrix I), which is equivalent to solving (LDLt −
λ̂I)z = NrΔrN

t
rz = erγr since Nrer = er and Δrer = γrer:

z(r) = 1.

For i = r − 1, . . . , 1, z(i) =

{
−L+(i)z(i + 1), z(i + 1) �= 0,
−(di+1li+1/dili)z(i + 2), otherwise.

For j = r, . . . , n− 1, z(j + 1) =

{
−U−(j)z(j), z(j) �= 0,
−(dj−1lj−1/dj lj)z(j − 1), otherwise.

Note that dili is the (i, i + 1) element of LDLt.
V. Set z ← z/‖z‖.

Fig. 1. Algorithm Getvec for computing the eigenvector of an isolated eigenvalue.

multiple RRRs, i.e., multiple factorizations LcDcL
t
c = LDLt − τcI, where τc is close

to a cluster. The shifts τc are chosen to “break” clusters, i.e., to make relative gaps
bigger (note that relative gaps change upon shifting by τc). After forming the new
representation LcDcL

t
c, the eigenvalues in the cluster are “refined” so that they have

high relative accuracy with respect to LcDcL
t
c. Finally the eigenvectors of eigenvalues

that become relatively well separated after shifting are computed by Algorithm Getvec
using LcDcL

t
c; the process is iterated for eigenvalues that still have small relative gaps.

Details are given in Algorithm MR3 below. The tricky theoretical aspects that address
the relative robustness of intermediate representations and whether the eigenvectors
computed using different RRRs are numerically orthogonal may be found in [41]
and [17]. It is important to note that orthogonality of the computed eigenvectors is
achieved without Gram–Schmidt being used in any of the procedures.

We first present Algorithm Getvec in Figure 1. Getvec takes an LDLt factorization
and an approximate eigenvalue λ̂ as input and computes the corresponding eigenvec-
tor by forming the appropriate twisted factorization NrΔrN

t
r = LDLt − λ̂I. The

twist index r in step III of Figure 1 is chosen so that |γr| = mink |γk| and is followed

by solving (LDLt − λ̂I)z = γrer; thus r is the index of the equation that is ignored
and provides a solution to Wilkinson’s problem mentioned above [40]. The result-
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ing eigenvector is accurate since differential transformations are used to compute the
twisted factorization, and the eigenvector is computed solely by multiplications (no
additions or subtractions) in step IV of the algorithm. We assume that LDLt is an
irreducible tridiagonal, i.e., all off-diagonals are nonzero. Details on twisted factoriza-
tions, differential quotient-difference transforms, and Algorithm Getvec may be found
in [18].

Algorithm Getvec computes a single eigenvector of an RRR; it was shown in [18]
that the computed eigenvector is highly accurate and so is numerically orthogonal
to all other eigenvectors if the corresponding eigenvalue has a large relative gap.
However, if Getvec is invoked when the corresponding eigenvalue is part of a cluster,
the computed vector will, in general, not be orthogonal to other eigenvectors in the
cluster. The difficulty is that, as seen by (2), the eigenvectors of eigenvalues with
small relative gaps are highly sensitive to tiny changes in L and D.

To overcome this problem, Algorithm MR3, given in Figure 2, uses multiple LDLt

factorizations—the basic idea is that there will be an LDLt factorization for each clus-
ter of eigenvalues. A new LDLt factorization is formed per cluster in order to increase
relative gaps within the cluster. Once an eigenvalue has a large relative gap, Algo-
rithm Getvec is invoked to compute the corresponding eigenvector, as seen in step II
of Figure 2. Otherwise we are in the presence of a cluster Γc of eigenvalues and a new
representation LcDcL

t
c = LDLt− τcI needs to be computed. The shift τc is chosen in

such a way such that (a) the new representation is relatively robust for the eigenvalues
in Γc and (b) at least one of the shifted eigenvalues in Γc is relatively well separated
from the others. The process is iterated if other clusters are encountered. The inputs
to MR3 are an index set Γ0 that specifies the desired eigenpairs, the symmetric tridi-
agonal matrix T given by its traditional representation of diagonal and off-diagonal
elements, and a tolerance tol for relative gaps. Note that the computational path
taken by MR3 depends on the relative gaps between eigenvalues. We again emphasize
that MR3 does not need any Gram–Schmidt orthogonalization of the eigenvectors.

3.1.2. Representation trees. The sequence of computations in Algorithm MR3

can be pictorially expressed by a representation tree. Such a tree contains information
about how the eigenvalues are clustered (nodes of the tree) and what shifts are used
to “break” a cluster (edges of the tree). A precise description of a representation tree
can be found in [17]. Here we present a slightly simplified version of the tree, without
specifying edge labels, which will facilitate the description of the parallel algorithm.

The root node of the representation tree is denoted by (L0, D0,Γ0), where L0D0L
t
0

is the base representation obtained in step 1A of Algorithm MR3; see Figure 2. An
example representation tree is shown in Figure 3. Let Πc be an internal node of the
tree and let Πp be its parent node. If Πc is a nonleaf node, it will be denoted by
(Lc, Dc,Γc), where the index set Γc is a proper subset of Γp, the index set of the
parent node Πp = (Lp, Dp,Γp). Node Πc indicates that LcDcL

t
c is a representation

that is computed by shifting, LpDpL
t
p− τc = LcDcL

t
c, and will be used for computing

the eigenvectors indexed by Γc. If Πc is a leaf node instead, it will be denoted only by
the singleton {c}, where c ∈ Γp. The singleton node {c} signifies that the eigenvalue
λc has a large relative gap with respect to the parent representation LpDpL

t
p, and its

eigenvector will be computed by Algorithm Getvec.

Figure 3 gives an example of a representation tree for a matrix of size 11 for which
all the eigenvectors are desired: the root contains the representation L0, D0 and the
index set Γ0 = {1, 2, . . . , 11}. The algorithm begins by classifying the eigenvalues: in
this example λ1, λ4, and λ11 are well separated, so in the tree they appear as singleton
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Algorithm MR3(T ,Γ0,tol).
Input: T is the given symmetric tridiagonal;

Γ0 is the index set of desired eigenpairs;
tol is the input tolerance for relative gaps, usually set to 10−3.

Output: (λ̂j , v̂j), j ∈ Γ0, are the computed eigenpairs.
1. Split T into irreducible subblocks T1, T2, . . . , T�.

For each subblock Ti, i = 1, . . . , 	, do:
A. Choose μi, and compute L0 and D0 such that L0D0L

t
0 = Ti + μiI is a

factorization that determines the desired eigenvalues and eigenvectors,
λj and vj , j ∈ Γ0, to high relative accuracy. In general, the shift μi can
be in the interior of Ti’s spectrum, but a safe choice is to make Ti +μiI
positive or negative definite.

B. Compute the desired eigenvalues of L0D0L
t
0 to high relative accuracy

by the dqds algorithm [24] or by bisection using a differential quotient-
difference transform.

C. Form a work queue Q, and initialize Q = {(L0, D0,Γ0)}. Call
MR3 Vec(Q,tol).

end for
Subroutine MR3 Vec(Q,tol)

While queue Q is not empty:
I. Remove an element (L,D,Γ) from the queue Q. Partition the computed eigen-

values λ̂j , j ∈ Γ, into clusters Γ1, . . . ,Γh according to their relative gaps
and the input tolerance tol. The eigenvalues are thus designated as iso-
lated (cluster size equals 1) or clustered. More precisely, if rgap(λ̂j) :=

mini �=j |λ̂j − λ̂i|/|λ̂j | ≥ tol, then λ̂j is isolated. On the other hand, all

consecutive eigenvalues λ̂j−1, λ̂j in a nontrivial cluster Γc (|Γc| > 1) satisfy

|λ̂j − λ̂j−1|/|λ̂j | < tol.
II. For each cluster Γc, c = 1, . . . , h, perform the following steps.

If |Γc| = 1 with eigenvalue λ̂j , i.e., Γc = {j}, then invoke Algo-

rithm Getvec(L,D,λ̂j) to obtain the computed eigenvector v̂j .
else

a. Pick τc near the cluster and compute LDLt − τcI = LcDcL
t
c us-

ing the dstqds (differential form of stationary quotient-difference)
transform; see [18, sect. 4.1] for details.

b. “Refine” the eigenvalues λ̂ − τc in the cluster so that they have
high relative accuracy with respect to the computed LcDcL

t
c. Set

λ̂ ← (λ̂− τc)refined for all eigenvalues in the cluster.
c. Add (Lc, Dc,Γc) to the queue Q.

end if
end for

end while

Fig. 2. Algorithm MR3 for computing orthogonal eigenvectors without using Gram–Schmidt
orthogonalization.
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Fig. 3. An example representation tree for a matrix of size 11.

leaves (their eigenvectors can be directly computed by the calls Getvec(L0, D0, λ̂i), i =

1, 4, and 11). The second and third eigenvalues violate the condition |(λ̂3 − λ̂2)/λ̂3| ≥
tol, and therefore they form a cluster; a new representation L1D1L

t
1 = L0D0L

t
0 − τ1I

has to be computed and the two eigenvalues have to be refined to have high relative
accuracy with respect to L1 and D1. This is represented by the node (L1, D1, {2, 3}).
Similarly the eigenvalues {λ5, . . . , λ10} are clustered: a new representation L2D2L

t
2 =

L0D0L
t
0−τ2I is computed as shown by the node (L2, D2, {5, . . . , 10}). This illustrates

the working of Algorithm MR3 for all the nodes at depth 1 in the representation tree
of Figure 3.

The computation proceeds by classifying the eigenvalues of the two internal nodes
(L1, D1, {2, 3}) and (L2, D2, {5, . . . , 10}). From the tree it can be deduced that the
two eigenvalues λ2 and λ3 in the first internal node are now relatively well separated,
while the second node is further fragmented into a relatively well separated eigen-
value λ5 and two nodes with clusters: nodes (L3, D3, {6, 7, 8}) and (L4, D4, {9, 10}).
Finally these two clusters are further fragmented to yield singletons, and these eigen-
vectors are computed by Algorithm Getvec. Note that, as seen by the description
of Algorithm MR3 in Figure 2, the representation tree is processed in a breadth-first
fashion.

For most matrices, the depth of the representation tree is quite small; we give here
a sketch of the representation tree for two matrices that arise in the finite element
modeling of automobile bodies (see section 4.1 for more details). The tree for the
matrix auto.13786 (n = 13,786) has maximum depth 2; at depth 1 there are 12,937
singleton nodes, 403 clusters of size 2, 10 clusters of size 3, and 1 cluster of size 13. The
tree for the matrix auto.12387 (n = 12,387) also has maximum depth 2 even though it
has many more internal nodes: it has 5776 singletons and 1991 nodes corresponding
to clusters with sizes ranging from 2 to 31.

A further note about reducible matrices: the solution is computed by iterating
over the subblocks, and thus the sequence of computations can be captured by a forest
of trees (one for each subblock) rather than by a single tree.
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3.1.3. The parallel algorithm. We now describe Algorithm PMR3. The input
to the algorithm is a tridiagonal matrix T , an index set Γ0 of desired eigenpairs, a
tolerance parameter tol , and the number of processors p that execute the algorithm.
We target our algorithm to a distributed memory system, in which each processor
has its own local main memory and communication is done by message-passing. We
assume that the tridiagonal matrix is available on every processor before the algorithm
is invoked.

We first discuss the parallelization strategy before describing the algorithm in
detail. Let the size of the input index set Γ0 be k; i.e., k eigenvalues and eigenvectors
are to be computed. The total O(kn) complexity of Algorithm MR3 can be broken
down into the work required at each node of the representation tree:

1. Each leaf node requires the computation of an eigenvector by Algorithm Getvec,
which requires O(n) operations (at most 2n divisions and 10n multiplications
and additions).

2. Each internal node (Lc, Dc,Γc) requires (a) computation of the representa-
tion LcDcL

t
c = LiDiL

t
i − τcI, and (b) refinement of the eigenvalues corre-

sponding to the index set Γc so that they have high relative accuracy with
respect to LcDcL

t
c. Computing the representation by the differential sta-

tionary quotient-difference transform requires O(n) operations (n divisions,
4n multiplications and additions), while refinement of the eigenvalues can be
done in O(n|Γc|) operations using a combination of bisection and Rayleigh
quotient iteration.

We aim for a parallel complexity of O(nkp +n) operations. Due to communication

overheads, we will not attempt to parallelize O(n) procedures, such as computing a
single eigenvector or computing a new representation. Our strategy for the parallel
algorithm will be to divide the leaf nodes equally among the processors, i.e., each
processor will make approximately k/p calls to Algorithm Getvec. Thus each processor
is assigned a set of eigenvectors that are to be computed locally.

However, before the leaf nodes can be processed the computation at the internal
nodes needs to be performed. Each internal node (Lc, Dc,Γc) is associated with a
subset of q processors, q ≤ p, that are responsible for computing the eigenvectors in
Γc. Since k eigenvectors are to be computed by a total of p processors, q approxi-
mately equals �p|Γc|/k�. Note that since |Γc| is small in most practical applications
(see comments towards the end of section 3.1.2), q is mostly small; in our examples, q
is usually 1, sometimes 2, but rarely greater than 2. If q equals 1, the computation at
each internal node is just done serially. If q is greater than 1, the parallel algorithm
will process an internal node as follows: the representation LcDcL

t
c is computed (re-

dundantly) by each of the q processors. The eigenvalue refinement using bisection or
Rayleigh quotient iteration (O(n) per eigenvalue) is then parallelized over the q pro-
cessors, resulting in a parallel complexity (n|Γc|/q) = O(nk/p). Since many subsets
of processors may be handling internal nodes at the same time, the overall parallel
complexity is O(nkp + n). Note that due to communication overheads in a practical

implementation, we impose a threshold on |Γc| before the refinement is performed in
parallel; if |Γc| is below this threshold, the computation is carried out redundantly
on all the q processors. On heterogeneous parallel machines, the redundant compu-
tation on every processor will need to be replaced by computation on a designated
processor followed by a broadcast of the computed results to the other participating
processors [7].

Figure 4 gives a description of Algorithm PMR3 according to the strategy outlined
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Algorithm PMR3(T,Γ0, tol, p). {executed by processor ps}
Input: T is the given symmetric tridiagonal;

Γ0 is the index set of desired eigenpairs;
tol is the input tolerance for relative gaps, usually set to 10−3;
p is the number of processors that execute the algorithm.

Output: (λ̂j , v̂j), j ∈ Γ0 are the computed eigenpairs.
1. Split T into irreducible subblocks T1, T2, . . . , T�.

For each subblock Ti, i = 1, . . . , 	, do:
A. Choose μi such that L0D0L

t
0 = Ti+μiI is a factorization that determines

the desired eigenvalues and eigenvectors, λj and vj , j ∈ Γ0, to high
relative accuracy.

B. Compute the desired eigenvalues Λi of L0D0L
t
0 to high relative accuracy

by the dqds algorithm [24] or by parallel bisection using a differential
quotient-difference transform. Let Γi ⊆ Γ0 be the index set correspond-
ing to Λi that contains the desired eigenvalues.

end for
2. Determine the subset Γs

0 ⊆ Γ0 of eigenvectors to be computed locally. Form a
work queue Q̄, and initialize it with all the subblocks (Li, Di,Γi) containing
eigenvectors to be computed locally, i.e., the subblocks for which Γi∩Γs

0 �= ∅,
with i = 1, . . . , 	.

3. While queue Q̄ is not empty:
I. Remove an element (L,D,Γ) from the queue Q̄. Partition the computed

eigenvalues λ̂j , j ∈ Γ, into clusters Γ1, . . . ,Γh according to their relative
gaps and the input tolerance tol.

II. For each cluster Γc, c = 1, . . . , h, perform the following steps:

If Γc ⊆ Γ
ps
0 then all eigenvectors in Γc have to be computed locally.

The eigenvectors are computed by invoking MR3 Vec((L,D,
Γc), tol).

elseif Γc ∩Γs
0 = ∅ then the cluster Γc does not contain any eigenvec-

tor that needs to be computed locally. Discard the
cluster Γc.

elseif Γc ∩Γs
0 �= ∅ then the cluster Γc contains some eigenvectors to be

computed locally, and needs to be further fragmented
by the following steps.
• Pick τc near the cluster and compute LDLt −

τcI = LcDcL
t
c using the dstqds transform;

see [18, sect. 4.1] for details.

• “Refine” the eigenvalues λ̂ − τc in the cluster
so that they have high relative accuracy with
respect to the computed LcDcL

t
c. Set λ̂ ← (λ̂−

τc)refined for all eigenvalues in the cluster.
• Add (Lc, Dc,Γc) to the queue Q̄.

end if

Fig. 4. Algorithm PMR3 for parallel computation of a subset Γ0 of eigenvalues and eigenvectors.



PARALLEL EIGENSOLVER FOR DENSE SYMMETRIC MATRICES 55

above. In order to show how subblocks of T are handled by the parallel algorithm, we
do not assume that T is irreducible. Each processor will compute k/p eigenvectors,
assuming k is divisible by p. Once the eigenvalues are grouped according to the
subblocks and sorted (per subblock), work is assigned to the processors in a block
cyclic manner; i.e., processor p0 is assigned eigenvectors 1, 2, . . . , k/p, processor p1 is
assigned eigenvectors k/p+ 1, . . . , 2k/p, and so on. Thus the memory requirement to
store the eigenvectors is exactly (n · k/p) floating point numbers per processor. The
extra workspace required is linear in n, so problems of large size can be tackled. To give
an idea of the limits of the sequential implementation, the size n of the largest problem
that can be solved (with k = n) on a computer equipped with 1.5 GBytes of memory
is about 14,000 when all the eigenvectors are required, while to solve a problem of
size 30,000 a computer should be equipped with about 7 GBytes of main memory.

As seen in Figure 4, the eigenvectors are computed by invoking the sequential
algorithms Getvec or MR3 Vec (which in turn invokes Getvec). In terms of the rep-
resentation tree, each processor maintains a local work queue Q̄ of nodes (possibly
leaves) which collectively index a superset of the eigenvectors to be computed locally.
Initially all the processors have a single node in the queue corresponding to the de-
sired index set Γ0. The representation tree is traversed in a breadth-first fashion to
fragment the clusters until all the eigenvectors of a node are local. Fragmenting a
cluster is equivalent to descending one level in the representation tree. Nodes that
contain eigenvectors all of which are associated with other processors are removed
from the local queue of the processor. Once a node contains only eigenvectors to be
computed locally, the sequential algorithms Getvec or MR3 Vec are invoked depending
on the size of the cluster. Recall that there is a tree for each subblock.

A word about the initial eigenvalue computation. The dqds algorithm for com-
puting the eigenvalues is very fast but, like the QR algorithm, is inherently sequential.
Moreover, the dqds algorithm cannot be adapted to compute k eigenvalues in O(nk)
time, instead always requiring O(n2) computations. On the other hand the bisection
algorithm is easily parallelized [3]; however, bisection is rather slow. Thus in a parallel
implementation, it is often preferable to redundantly compute the eigenvalues on each
processor unless p is large or unless only a small subset of the n eigenvalues is desired.
A quick calculation reveals the decision procedure to decide whether to use bisection
or dqds. Bisection is linearly convergent, and finds one additional bit of an eigenvalue
at every iteration. Thus, computing the desired eigenvalues by parallel bisection on
p processors requires approximately 52n|Γ0|/p operations in IEEE double precision
arithmetic. On the other hand, dqds requires about 3 iterations, on average, to com-
pute each eigenvalue to full relative accuracy. But dqds cannot be parallelized, so it
requires approximately 3n2 operations irrespective of Γ0. As a result, in our implemen-
tation, we use the dqds algorithm to redundantly compute all eigenvalues on the p pro-
cessors when 3n2 ≤ 52n|Γ0|/p, i.e., p ≤ 17|Γ0|/n; otherwise we use parallel bisection.

We now illustrate the parallel execution of the algorithm on the matrix of Figure 3,
assuming we want to compute all 11 eigenvectors on 3 processors. In Figure 5 we have
annotated the representation tree of Figure 3 to show how the tree is processed by
the 3 processors. Initially the eigenvalues Λ0 = {λ1, . . . , λ11} are computed. Then
based on the relative gaps between eigenvalues each processor determines whether a
cluster is to be computed locally, has to be fragmented, or has to be discarded. The
labels p0, p1, p2 on the root node denote that each of the 3 processors is involved in
the computation.

Processor p0 classifies the eigenvalues λ1 through λ4, but discards all the clus-
ters (possibly singletons) from λ5 to the end of the spectrum as they do not contain
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Fig. 5. Representation tree annotated to describe the execution of the parallel algorithm. The
matrix size is 11; the algorithm is run on 3 processors.

eigenvectors to be computed locally. The clusters {λ1}, {λ2, λ3}, {λ4} contain eigen-
values local to p0, so the corresponding nodes in the tree are labeled p0. In classifying
the eigenvalues, both processors p1 and p2 find that the cluster {λ5, . . . , λ10} con-
tains eigenvalues whose eigenvectors are to be computed locally: λ5 through λ8 for
p1 and λ9, λ10 for p2. The new representation is computed redundantly by both
p1 and p2, and the refinement of eigenvalues λ5 through λ10 is parallelized over p1

and p2. Thus the node is labeled p1 as well as p2 in Figure 5. The singleton λ11

is recognized as local by p2 and therefore labeled p2. The eigenvalue classification
for node (L2, D2, {5, . . . , 10}) is independently performed by processors p1 and p2: p1

recognizes the clusters {λ5}, {λ6, λ7, λ8} to contain local eigenvalues and discards the
cluster {λ9, λ10}; vice versa for processor p2. Nodes {5} and (L3, D3, {6, 7, 8}) are
therefore labeled p1 while node (L4, D4, {9, 10}) is labeled p2.

It is important to realize that the parallel algorithm traverses the sequential repre-
sentation tree in parallel. Assuming identical arithmetic on all processors, this implies
that the computed eigenvectors match exactly the ones computed by the sequential
algorithm and therefore satisfy the same accuracy properties.

3.2. Householder reduction and backtransformation. To solve the dense,
symmetric eigenproblem the solution to the tridiagonal eigenproblem is preceded by
reduction to tridiagonal form and followed by a backtransformation stage to obtain
the eigenvectors of the dense matrix. We will see in the performance section that
Algorithm PMR3 discussed in the previous section reduces the cost of the tridiagonal
eigenproblem sufficiently so that it is the reduction and backtransformation stages
that dominate the computation time. In this section, we give a brief overview of the
major issues behind the parallel implementation of these stages. A more detailed
discussion can be found in [4].

Reduction to tridiagonal form is accomplished through the application of a se-
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quence of orthogonal similarity transformations; usually Householder transformations
are preferred to Givens rotations. At the ith step in the reduction, a Householder
transformation is computed that annihilates the elements in the ith column that lie
below the first subdiagonal. This transformation is then applied to the matrix from
the left and the right, after which the computation moves on to the next column of the
updated matrix. Unfortunately, this simple “unblocked” algorithm is rich in matrix-
vector operations (matrix-vector multiplications and symmetric rank-one updates, to
be exact) which do not achieve high performance on modern microprocessors. Thus, a
blocked version of the algorithm is derived from the unblocked algorithm by delaying
updates to the matrix, accumulating those updates into a so-called symmetric rank-k
update [22]. This casts the computation in terms of matrix-matrix multiplication,
which can achieve much better performance. However, it is important to note that
even for the blocked algorithm, approximately half the computation is in symmetric
matrix-vector multiplication. This means that the best one can hope for is that im-
plementations based on the blocked algorithm improve performance by a factor of 2
over implementations based on the unblocked algorithm.

The backtransformation stage applies the Householder transforms encountered
during the reduction to tridiagonal form to the eigenvectors computed for the tridi-
agonal matrix. It is well known how to accumulate such Householder transforms
into block Householder transforms so that the computation is again cast in terms
of matrix-matrix multiplication [6]. This time essentially all computation involves
matrix-matrix multiplication, allowing very high performance to be achieved.

Parallel implementation of both these stages now hinges on the fact that the
parallel implementation of the symmetric matrix-vector multiplication, the symmetric
rank-k update, and matrix-matrix multiplication is scalable, and can achieve high
performance. Since these issues are well understood, we omit presenting them here
and refer the reader to [32, 31]. Some subtle differences in the parallel implementations
of these stages as supported by ScaLAPACK and PLAPACK are given in the appendix
of [4]. Essentially, the ScaLAPACK and PLAPACK implementations are tuned for
smaller and larger matrices, respectively.

4. Experimental results. This section presents timing results for the proposed
algorithm. First we report results on the dense problem in section 4.2: it will be appar-
ent that very large problems can now be tackled and that the tridiagonal eigenproblem
is an order of magnitude faster than the reduction and backtransformation stages. In
section 4.3 we focus on the tridiagonal eigensolvers and show that Algorithm PMR3

achieves the best performance compared to previous algorithms.

4.1. Implementation details and test matrices. All experiments were con-
ducted on a cluster of Linux workstations. Each node in the cluster consisted of a dual
Intel Pentium 4 processor (2.4 GHz) with 2 GBytes of main memory. The nodes were
connected via a high-performance network (2 Gigabit/s) from Myricom. In our exper-
iments, only one processor per node was enabled. The reason for using one processor
was primarily related to the fact that during early experiments it was observed that
reliable timings were difficult to obtain when both processors were enabled. Notice
that the qualitative behavior of the different algorithms and implementations is not
affected by this decision, even if the quantitative results are.

We will often refer to our proposed parallel dense eigensolver as Dense PMR3,
and use PMR3 to denote the tridiagonal eigensolver outlined in Figure 4; however,
sometimes we just use PMR3 when it is clear whether we are referring to the dense
or tridiagonal eigensolver. Dense PMR3 has been implemented using the PLAPACK
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library for Householder reduction and backtransformation, while PMR3 has been im-
plemented in C and Fortran using the MPI library for communications and LAPACK
for numerical routines.

We compare dense PMR3 with the ScaLAPACK implementations of (a) bisec-
tion and inverse iteration (routine PDSYEVX) and (b) divide and conquer (routine
PDSYEVD), and the PLAPACK implementation of (c) the QR algorithm (routine
PLA VDVt). All the routines have been compiled with the same optimization flags
enabled and linked to the same high-performance BLAS library (the so-called GOTO
BLAS, which in our experience achieve the highest performance on this machine [29]).

All dense eigensolvers have been tested on symmetric matrices of sizes ranging
from 8000 to 128,000 with given eigenvalue distributions. We considered 4 types of
diverse eigenvalue distributions:

1. UNIFORM (ε to 1):

λi = ε + (i− 1) ∗ τ, i = 1, 2, . . . , n,

where τ = (1 − ε)/(n− 1).
2. GEOMETRIC (ε to 1):

λi = ε(n−i)/(n−1), i = 1, 2, . . . , n.

3. RANDOM (ε to 1): the eigenvalues are drawn from a uniform distribution
on the interval [0, 1].

4. CLUSTERED at ε:

λ1 ≈ λ2 ≈ · · · ≈ λn−1 ≈ ε and λn = 1.

In addition to the above “constructed” matrices, we also report timings for matri-
ces arising in applications. We considered three matrices from computational quan-
tum chemistry of sizes 966, 1687, and 2053, occurring, respectively, in modeling of
the biphenyl molecule, study of bulk properties for the SiOSi6 molecule, and solution
of a nonlinear Schrödinger problem using the self-consistent Hartree–Fock method for
the zeolite ZSM-5. More details on these matrices can be found in [2, 13].

We also considered three matrices (sizes 7923, 12387, 13786) that arise in fre-
quency response analyses of automobile bodies. These matrices come from a sym-
metric matrix pencil arising from a finite element model of order 1 million or so,
going through a process of dividing the entire structure into several thousand “sub-
structures” using nested dissection and finding the “lowest” eigenvectors for each sub-
structure. Projecting the matrix pencil onto the substructure eigenvector subspace
and then converting to standard form followed by Householder reduction yields the
test tridiagonal matrices. Details on producing these matrices can be found in [35].

Notice that the matrices for which we report results are at least one order of
magnitude larger than the results reported in [43, 32].

4.2. Results for the dense problem. We now present performance results
for computing all eigenpairs of a dense symmetric matrix highlighting the difference
between the O(n3) reduction and backtransformation stages and the O(n2) tridiagonal
computation of PMR3.

When possible we compare the proposed algorithm against the ScaLAPACK im-
plementation of divide and conquer (PDSYEVD) [43] since the latter routine is the
fastest among the tridiagonal eigensolvers currently available in ScaLAPACK. All ma-
trices considered in the following results have random distribution of eigenvalues, i.e.,
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Table 1

Timings in seconds for different stages of the dense eigensolvers, n = 8000, random eigenvalue
distribution.

Stage Method # of processors

2 4 8 16 32

Reduction PLAPACK 549 289 156 98 64

ScaLAPACK 155 85 50

Tridiagonal PMR3 13 9.4 7.4 6.3 3.9

PDSTEDC 32.3 19 11.3

Backtransformation PLAPACK 178 95 51 29 18

ScaLAPACK 113 65 34

Table 2

Timings in seconds for different stages of the dense eigensolvers, n = 15000, random eigenvalue
distribution.

Stage Method # of processors

8 16 32 64

Reduction PLAPACK 996 546 340 257

ScaLAPACK 487 263 128

Tridiagonal PMR3 26.2 22.2 13.6 6.9

PDSTEDC 92.4 52.0 32.5

Backtransformation PLAPACK 292 160 93 65.7

ScaLAPACK 226 114 64.2

matrices designated RANDOM in section 4.1. Note that neither the reduction nor the
backtransformation stage is affected by the distribution of eigenvalues in the input
matrix. Comparisons with other tridiagonal eigensolvers (QR algorithm, bisection,
and inverse iteration) on matrices with varying eigenvalue distributions are given in
section 4.3.

In Tables 1 and 2 we report timings for matrices of sizes 8000 and 15,000, re-
spectively. The stages of dense PMR3 are labeled PLAPACK (for reduction and
backtransformation) and PMR3 (for the tridiagonal solution), while the stages for the
routine PDSYEVD are similarly labeled ScaLAPACK and PDSTEDC (the tridiagonal
divide and conquer routine). As mentioned in section 2, a major drawback of the di-
vide and conquer algorithm is its extra O(n2) memory requirement. As a result, there
are several instances where PMR3 can be run on a particular matrix, but PDSTEDC
cannot be run; the symbol “ ” in the tables indicates that the experiment could not
be run because of memory constraints.

Figure 6 gives a pictorial view of the dense PMR3 timings in Table 2. It is
easy to see from the figure that the tridiagonal stage is an order of magnitude faster
than the reduction and backtransformation stages. As justified by the calculations in
section 3.1.3, Algorithm PMR3 uses dqds for the initial eigenvalue computation when
p ≤ 17|Γ0|/n; here |Γ0| = n, so dqds is used when p ≤ 17; otherwise parallel bisection
with a differential quotient-difference transform is used.

Next we present timings for an incremental test of dense PMR3, keeping the mem-
ory allocation per processor constant while increasing the matrix size and the number
of processors accordingly. To compute all eigenvectors, the memory requirement is
quadratic in n; hence for fixed memory per processor when the matrix size is dou-
bled, four times as many processors are needed. So we give results for dense PMR3
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Table 3

Timings for the dense eigensolvers. Columns 3 to 6 give timings for dense PMR3, while the
last column reports extrapolated (�) numbers for a PLAPACK implementation of the QR algorithm.
The numbers within parentheses in the fourth column (PMR3) represent the time spent to compute
eigenvalues. Entries in the last two columns are expressed in minutes.

n p Reduction PMR3 Backtransformation Total (dense PMR3) PLAPACK QR

8000 1 1081 s. 17.6 s. (5.4 s.) 348 s. 24.1 min. 100 min.�

16,000 4 2425 s. 38.8 s. (20.8 s.) 684 s. 52.4 min. 215 min.�

32,000 16 4876 s. 118 s. (97 s.) 1388 s. 106.3 min. 420 min.�

64,000 64 9638 s. 124 s. (104 s.) 2846 s. 210.1 min. 750 min.�

128,000 256 22,922 s. 128 s. (107 s.) 5827 s. 481.3 min.

on matrices of sizes 8000, 16,000, 32,000, 64,000, and 128,000 using 1, 4, 16, 64, and
256 processors, respectively. Table 3 includes these timings in addition to extrapo-
lated timings for the PLAPACK QR implementation.1 We are unable to run divide
and conquer (PDSYEVD) for this test, as it runs out of memory. The difference in
complexity between the O(n2) tridiagonal eigensolver versus the O(n3) reduction and
backtransformation is again obvious.

Indicating by Tp(n) the total time from Table 3 to solve a problem of size n with
p processors, we plot in Figure 7 the incremental speedup: the ratio Tp(n

√
p)/T1(n)

with p = 1, 4, 16, 64, 256. Since the dense eigensolver has O(n3) complexity, dou-
bling the matrix size and deploying four times as many processors, assuming constant

1The performance of the QR algorithm applied to tridiagonal matrices is very predictable; the
extrapolated timings have been obtained by running the tridiagonal problem with a larger num-
ber of processors (thereby avoiding memory problems) and adjusting the times for reduction and
backtransformation, assuming perfect parallelization.
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Fig. 7. Incremental speedup.

Table 4

Orthogonality and residual results for dense PMR3. Given the dense matrix A, the computed
eigenvalues Λ̂, and the computed eigenvectors V̂ , we display here maxi,j |V̂ T V̂ −I|ij (orthogonality)

and maxi,j |AV̂ − V̂ Λ̂|ij (residual).

Size RANDOM UNIFORM GEOMETRIC CLUSTERED

8000 Orthogonality 7.7e-11 2.0e-11 7.7e-12 2.5e-15
Residual 3.7e-11 1.1e-11 1.5e-13 8.4e-16

15,000 Orthogonality 1.2e-10 1.0e-11 1.5e-11 1.7e-15
Residual 1.9e-10 5.2e-12 6.8e-14 2.3e-16

performance per processor, the ratio T4p(2n)/Tp(n) equals

T4p(2n)

Tp(n)
=

23 Tp(n)
4

Tp(n)
=

8

4
= 2.

The log-log graph in Figure 7 testifies that the theoretical prediction is almost per-
fectly matched in practice. This demonstrates that dense PMR3 scales up well in
performance and larger problems can be tackled effectively when more processors are
available.

Finally, in Table 4 we report on the accuracy of Algorithm PMR3. Note that
the eigenvalues and eigenvectors returned by PMR3 are exactly the same as those
computed by the sequential algorithm; therefore they satisfy the properties for residual
and orthogonality described in [17].

4.3. Results for the tridiagonal problem. We now focus on the tridiago-
nal stage, comparing the performance of three different algorithms on matrices with
differing eigenvalue distributions. With earlier QR or inverse iteration–based algo-
rithms, the tridiagonal eigenproblem is often the bottleneck in the solution of the
dense eigenproblem. For example, running sequential code for a matrix of size 2000
with uniformly distributed eigenvalues, the reduction and backtransformation stages
take a total of about 32 seconds, while the tridiagonal eigenproblem takes 86 seconds
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Table 5

Timings in seconds for tridiagonal eigensolvers, n = 8000.

Distribution Method # of processors

1 2 4 8 16 32

PMR3 17.4 13 9.4 7.4 6.2 3.9

RANDOM PDSTEDC 32.3 19 11.3

PLA VDVt ∗ 2152 1117 532 273 142

PDSTE(BZ+IN) ∗ ∗ ∗ 5844 5817 5656

PMR3 15.3 12.4 9.1 7.4 6.5 3.8

UNIFORM PDSTEDC 35 20.4 12.2

PLA VDVt ∗ ∗ 1115 536 275 143

PDSTE(BZ+IN) ∗ ∗ ∗ 143 141 132

PMR3 11 9.4 6.3 4.9 4.1 3.5

GEOMETRIC PDSTEDC 16.7 9.9 6.4

PLA VDVt ∗ ∗ 945 458 247 128

PDSTE(BZ+IN) ∗ ∗ ∗ 5297 5348 5233

PMR3 .101 .06 .051 .043 .04 .037

CLUSTERED PDSTEDC 2.7 1.4 1.0

PLA VDVt ∗ ∗ 888 450 229 122

PDSTE(BZ+IN) ∗ ∗ ∗ 6293 6501 6373

for the QR algorithm, 106 seconds for bisection and inverse iteration, 4 seconds for the
divide and conquer algorithm, but only .8 seconds for MR3. The timings for a matrix
of size 4000 are 290 seconds for reduction and backtransformation, 1099 seconds for
QR, 821 for bisection and inverse iteration, 24 seconds for divide and conquer, and
3.1 seconds for MR3. Note the O(n2) behavior of MR3 as compared to the other tridi-
agonal methods. The above timings use the optimized GOTO BLAS; however, it may
not always be possible to obtain optimized BLAS, especially for newer CPUs. The
timings for n = 4000 using Fortran BLAS are 1125 seconds for QR, 830 for bisection
and inverse iteration, 176 seconds for divide and conquer, and 3.4 seconds for MR3.
Thus, divide and conquer suffers the most when using Fortran BLAS.

In the following we illustrate the parallel performance of Algorithm PMR3. Ta-
bles 5 and 7 include the timings for PMR3 when the number of processors and eigen-
value distributions are varied. We compare our results with ScaLAPACK’s divide and
conquer routine (PDSYEVD) whenever possible; again the symbol “ ” in the table in-
dicates that the experiment could not be run because of memory constraints. We also
present timings for a PLAPACK implementation of QR (PLA VDVt); we found the
ScaLAPACK QR implementation (PDSYEV) to be slower than the equivalent algo-
rithm implemented with PLAPACK, probably due to synchronization issues; for this
reason we omit PDSYEV timings. Finally for the experiment on matrices of size 8000
we also show timings for the ScaLAPACK implementation of bisection and inverse
iteration (PDSTEBZ+PDSTEIN). An asterisk indicates that the experiment has not
been run because of excessive time needed.

Table 5 shows that for matrices of order 8000 the PMR3 algorithm is faster than
all the other algorithms. In particular it is several orders of magnitude faster than
bisection and inverse iteration; notice that the performance of the latter does not
improve when increasing the number of processors. This is due to the presence of
a large cluster of eigenvalues as judged by PDSTEIN. Since PDSTEIN does not split
clusters across processors, all eigenvectors of the large cluster end up being computed
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Table 6

Time spent in the computation of the eigenvectors by PMR3, n = 8000.

Distribution Time (in seconds) to compute eigenvectors
p = 1 p = 2 p = 4 p = 8 p = 16 p = 32

RANDOM 12 7.6 4.0 2.0 1.0 .5
UNIFORM 9.5 6.6 3.4 1.7 .9 .4
GEOMETRIC 7.8 6.0 3.0 1.6 .8 .4
CLUSTERED .1 .059 .05 .042 .039 .037

Table 7

Timings in seconds for tridiagonal eigensolvers, n = 15,000.

Distribution Method # of processors

8 16 32 64

PMR3 26.2 22.2 13.6 6.9

RANDOM PDSTEDC 92.4 52.0 32.5

PLA VDVt ∗ 2054 1000 565

PMR3 26.4 22.7 13.6 6.8

UNIFORM PDSTEDC 101.5 56.8 35.3

PLA VDVt ∗ 2172 991 564

PMR3 18.4 15.0 13.2 6.7

GEOMETRIC PDSTEDC 45.3 27.2 16.9

PLA VDVt ∗ 1890 839 467

PMR3 .16 .1 .1 .09

CLUSTERED PDSTEDC 4.9 3.5 1.8

PLA VDVt ∗ 1448 827 440

on a single processor. Since PDSTE(BZ+IN) is not competitive, we do not present its
results in Table 7. Routine PLA VDVt is also several orders of magnitude slower than
PMR3, but it achieves perfect speedup and does not suffer from the memory problems
of PDSTEDC.

Algorithm PMR3 attains good performance, but for p ≤ 16 it does not exhibit
particularly good speedups due to the redundant serial eigenvalue computation. It is
interesting to analyze the timings for just the eigenvector computations; we display
these values in Table 6. Notice that the eigenvector computations attain very good
speedups (the timings given for p = 1 are for the serial code, not the parallel code
with p = 1). The exception is the case of clustered eigenvalues, for which the entire
computation is extremely fast independent of the number of processors.

Results for matrices of size 15,000 are displayed in Table 7. The proposed algo-
rithm is again the fastest in all the experiments. Finally, we consider six tridiagonal
matrices coming from applications. Timings for PMR3 are shown in Table 8; the par-
allel algorithm is again seen to be very fast; for example, it takes only 5+0.7 seconds
for a matrix of size 13,786 on 64 processors. Algorithm PMR3achieves good speedups
for the eigenvector computation in all cases, and the speedups for the eigenvalue
computation are almost perfect when p ≥ 16, i.e., when parallel bisection is used.

5. Conclusions. In this paper, we have presented a new parallel eigensolver
for computing all or a subset of the eigenvectors of a dense symmetric matrix. The
tridiagonal kernel is not only faster than previous algorithms, but also scales up well
in memory requirements (O(n) work space), allowing for very large eigenproblems to
be solved. As a result, the time now spent in the tridiagonal eigenproblem is negligible
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Table 8

Timings in seconds for PMR3 on matrices from applications. Biphenyl, SiOSi6, and ZSM-5 are
matrices from quantum chemistry, while the matrices auto.7923, auto.12387, and auto.13786 arise
in the finite element modeling of automobile bodies.

Matrix Size Time to compute eigenvalues Time to compute eigenvectors

p = 1, 2, 4, p = 32 p = 64 p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64

8, 16

Biphenyl 966 .072 .064 .035 .133 .091 .05 .027 .014 .007 .004

SiOSi6 1687 .235 .17 .09 .436 .274 .155 .085 .043 .022 .011

ZSM-5 2053 .339 .241 .12 .752 .445 .228 .122 .066 .033 .017

auto.7923 7923 4.3 3.4 1.75 11.2 7.3 3.9 2.0 1.0 .52 .26

auto.12387 12,387 15.8 8.3 4.2 31.6 20.0 10.2 5.2 2.6 1.3 .65

auto.13786 13,786 13.5 9.8 5.0 31.8 22.3 11.3 5.7 2.8 1.4 .7

compared to the stages of Householder reduction and backtransformation. Thus, the
onus is now squarely on speeding up the latter two stages if the dense symmetric
eigensolver is to be sped up further.
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