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Abstract. To cluster increasingly massive data sets that are common
today in data and text mining, we propose a parallel implementation of
the k-means clustering algorithm based on the message passing model.
The proposed algorithm exploits the inherent data-parallelism in the k-
means algorithm. We analytically show that the speedup and the scaleup
of our algorithm approach the optimal as the number of data points in-
creases. We implemented our algorithm on an IBM POWERparallel SP2
with a maximum of 16 nodes. On typical test data sets, we observe nearly
linear relative speedups, for example, 15.62 on 16 nodes, and essentially
linear scaleup in the size of the data set and in the number of clusters
desired. For a 2 gigabyte test data set, our implementation drives the 16
node SP2 at more than 1.8 gigaflops.

1 Introduction

Data sets measuring in gigabytes and even terabytes are now quite common in
data and text mining, where a few million data points are the norm. For example,
the patent database (www.ibm.com/patents/), the Lexis-Nexis document collec-
tion containing more than 1.5 billion documents (www.lexisnexis.com), and the
Internet archive (www.alexa.com) are in multi-terabyte range. When a sequen-
tial data mining algorithm cannot be further optimized or when even the fastest
available serial machine cannot deliver results in a reasonable time, it is natural
to look to parallel computing. Furthermore, given the monstrous sizes of the
data sets, it often happens that they cannot be processed in-core, that is, in
the main memory of a single processor machine. In such a situation, instead of
implementing a disk based algorithm which is likely to be considerably slower,
it is appealing to employ parallel computing and to exploit the main memory of
all the processors.

Parallel data mining algorithms have been recently considered for tasks such
as association rules and classification, see, for example, Agrawal and Shafer [1],
Chattratichat et al. [2], Cheung and Xiao [3], Han, Karypis, and Kumar [4],
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Joshi, Karypis, and Kumar [5], Kargupta, Hamzaoglu, and Stafford [6], Shafer,
Agrawal, and Mehta [7], Srivastava, et al. [8], Zaki, Ho, and Agrawal [9], and
Zaki et al. [10]. Also, see Stolorz and Musick [11] and Freitas and Lavington [12]
for recent books on scalable and parallel data mining.

In this paper, we consider parallel clustering. Clustering or grouping of sim-

ilar objects [13] is one of the most widely used procedures in data mining [14].
Practical applications of clustering include unsupervised classification and tax-
onomy generation [13], nearest neighbor searching [15], scientific discovery [16,
17], vector quantization [18], time series analysis [19], and multidimensional vi-
sualization [20, 21].

Our interest in clustering stems from the need to mine and analyze heaps
of unstructured text documents. Clustering has been used to discover “latent
concepts” in sets of unstructured text documents, and to summarize and label
such collections. Clustering is inherently useful in organizing and searching large
text collections, for example, in automatically building an ontology like Yahoo!
(www.yahoo.com). Furthermore, clustering is useful for compactly summarizing,
disambiguating, and navigating the results retrieved by a search engine such as
AltaVista (www.altavista.com). Conceptual structure generated by clustering is
akin to the “Table-of-Contents” in front of books. Finally, clustering is useful
for personalized information delivery by providing a setup for routing new in-
formation such as that arriving from newsfeeds and new scientific publications.
For experiments describing a certain syntactic clustering of the whole web and
its applications, see [22]. For detailed review of various classical text clustering
algorithms such as the k-means algorithm and its variants, hierarchical agglom-
erative clustering, and graph-theoretic methods, see [23, 24]. Recently, there has
been a flurry of activity in this area, see [25–29]. For our recent work on matrix
approximations using a variant of the k-means algorithm applied to text data, see
[30]. Our results have been extremely promising; their applicability to extremely
large collections of text documents requires a highly scalable implementation,
and, hence, the motivation for this work.

In this paper, as our main contribution, we propose a parallel clustering al-
gorithm on distributed memory multiprocessors, that is, on a shared-nothing
parallel machine, and analytically and empirically validate our parallelization
strategy. Specifically, we propose a parallel version of the popular k-means clus-
tering algorithm [31, 13] based on the message-passing model of parallel com-
puting [32, 33]. To the best of our knowledge, a parallel implementation of the
k-means clustering algorithm has not been reported in the literature. In this
paper, our focus in on parallelizing the classical direct k-means algorithm.

We now briefly outline the paper, and summarize our results. In Section 2,
we present the k-means algorithm. In Section 3, we carefully analyze the compu-
tational complexity of the k-means algorithm. Based on this analysis, we observe
that the k-means algorithm is inherently data-parallel. By exploiting this par-
allelism, we design a parallel k-means algorithm. We analytically show that the
speedup and the scaleup of our algorithm approach the optimal as the number of
data points increases. In other words, we show that as the number of data points
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increases the communication costs incurred by our parallelization strategy are
relatively insignificant compared to the overall computational complexity. Our
parallel algorithm is based on the message-passing model of parallel computing;
this model is also briefly reviewed in Section 3. In Section 4, we empirically study
the performance of our parallel k-means algorithm (that is, speedup and scaleup)
on an IBM POWERparallel SP2 with a maximum of 16 nodes. We empirically
establish that our parallel k-means algorithm has nearly linear speedup, for ex-
ample, 15.62 on 16 nodes, and has nearly linear scaleup behavior. To capture the
effectiveness of our algorithm in a nutshell, note that we are able to to drive the
16 node SP2 at nearly 1.8 gigaflops (floating point operations) on a 2 gigabyte
test data set. In Section 5, we include a brief discussion on future work.

Our parallelization strategy is simple but very effective; in fact, the simplicity
of our algorithm makes it ideal for rapid deployment in applications.

2 The k-means Algorithm

Suppose that we are given a set of n data points X1,X2, · · · ,Xn such that each
data point is in Rd. The problem of finding the minimum variance clustering of
this data set into k clusters is that of finding k points {mj}

k
j=1 in Rd such that

1

n

n
∑

i=1

(

min
j

d2(Xi,mj)

)

, (1)

is minimized, where d(Xi,mj) denotes the Euclidean distance between Xi and
mj . The points {mj}

k
j=1 are known as cluster centroids or as cluster means.

Informally, the problem in (1) is that of finding k cluster centroids such that
the average squared Euclidean distance (also known as the mean squared error
or MSE, for short) between a data point and its nearest cluster centroid is
minimized. Unfortunately, this problem is known to be NP-complete [34].

The classical k-means algorithm [31, 13] provides an easy-to-implement ap-
proximate solution to (1). Reasons for popularity of k-means are ease of interpre-
tation, simplicity of implementation, scalability, speed of convergence, adaptabil-
ity to sparse data, and ease of out-of-core implementation [30, 35, 36]. We present
this algorithm in Figure 1, and intuitively explain it below:

1. (Initialization) Select a set of k starting points {mj}
k
j=1 in Rd (line 5 in

Figure 1). The selection may be done in a random manner or according to
some heuristic.

2. (Distance Calculation) For each data point Xi, 1 ≤ i ≤ n, compute its
Euclidean distance to each cluster centroid mj , 1 ≤ j ≤ k, and then find the
closest cluster centroid (lines 14-21 in Figure 1).

3. (Centroid Recalculation) For each 1 ≤ j ≤ k, recompute cluster centroid
mj as the average of data points assigned to it (lines 22-26 in Figure 1).

4. (Convergence Condition) Repeat steps 2 and 3, until convergence (line 28
in Figure 1).
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The above algorithm can be thought of as a gradient-descent procedure which
begins at the starting cluster centroids and iteratively updates these centroids to
decrease the objective function in (1). Furthermore, it is known that k-means will
always converge to a local minimum [37]. The particular local minimum found
depends on the starting cluster centroids. As mentioned above, the problem of
finding the global minimum is NP-complete.

Before the above algorithm converges, steps 2 and 3 are executed a number of
times, say I. The positive integer I is known as the number of k-means iterations.
The precise value of I can vary depending on the initial starting cluster centroids
even on the same data set.

In Section 3.2, we analyze, in detail, the computational complexity of the
above algorithm, and propose a parallel implementation.

3 Parallel k-means

Our parallel algorithm design is based on the Single Program Multiple Data
(SPMD) model using message-passing which is currently the most prevalent
model for computing on distributed memory multiprocessors; we now briefly
review this model.

3.1 Message-Passing Model of Parallel Computing

We assume that we have P processors each with a local memory. We also assume
that these processors are connected using a communication network. We do
not assume a specific interconnection topology for the communication network,
but only assume that it is generally cheaper for a processor to access its own
local memory than to communicate with another processor. Such machines are
commercially available from vendors such as Cray and IBM.

Potential parallelism represented by the distributed-memory multiproces-
sor architecture described above can be exploited in software using “message-
passing.” As explained by Gropp, Lusk, and Skjellum [32, p. 5]:

The message-passing model posits a set of processes that have only local
memory but are able to communicate with other processes by sending
and receiving messages. It is a defining feature of the message-passing
model that data transfers from the local memory of one process to the
local memory of another process require operations to be performed by
both processes.

MPI, the Message Passing Interface, is a standardized, portable, and widely avail-
able message-passing system designed by a group of researchers from academia
and industry [32, 33]. MPI is robust, efficient, and simple-to-use from FORTRAN
77 and C/C++.

From a programmer’s perspective, parallel computing using MPI appears as
follows. The programmer writes a single program in C (or C++ or FORTRAN
77), compiles it, and links it using the MPI library. The resulting object code is
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1:
2:
3: MSE = LargeNumber;
4:

5: Select initial cluster centroids {mj}
k
j=1;

6:
7:
8: do {
9: OldMSE = MSE;
10: MSE′ = 0;
11: for j = 1 to k
12: m′

j = 0; n′

j = 0;
13: endfor;
14: for i = 1 to n
15: for j = 1 to k
16: compute squared Euclidean

distance d2(Xi, mj);
17: endfor;
18: find the closest centroid mℓ to Xi;
19: m′

ℓ = m′

ℓ + Xi; n′

ℓ = n′

ℓ + 1;
20: MSE′ = MSE′ + d2(Xi, mℓ);
21: endfor;
22: for j = 1 to k
23:
24:
25: nj = max(n′

j , 1); mj = m′

j/nj ;
26: endfor;
27: MSE = MSE′;
28:} while (MSE < OldMSE)

Fig. 1. Sequential k-means Algorithm.

1: P = MPI Comm size ();
2: µ = MPI Comm rank ();
3: MSE = LargeNumber;
4: if (µ = 0)

5: Select initial cluster centroids {mj}
k
j=1;

6: endif;

7: MPI Bcast ({mj}
k
j=1, 0);

8: do {
9: OldMSE = MSE;
10: MSE′ = 0;
11: for j = 1 to k
12: m′

j = 0; n′

j = 0;
13: endfor;
14: for i = µ ∗ (n/P ) + 1 to (µ + 1) ∗ (n/P )
15: for j = 1 to k
16: compute squared Euclidean

distance d2(Xi, mj);
17: endfor;
18: find the closest centroid mℓ to Xi;
19: m′

ℓ = m′

ℓ + Xi; n′

ℓ = n′

ℓ + 1;
20: MSE′ = MSE′ + d2(Xi, mℓ);
21: endfor;
22: for j = 1 to k
23: MPI Allreduce (n′

j , nj , MPI SUM);
24: MPI Allreduce (m′

j , mj , MPI SUM);
25: nj = max(nj , 1); mj = mj/nj ;
26: endfor;
27: MPI Allreduce (MSE′, MSE, MPI SUM);
28:} while (MSE < OldMSE)

Fig. 2. Parallel k-means Algorithm. See
Table 1 for a glossary of various MPI
routines used above.

loaded in the local memory of every processor taking part in the computation;
thus creating P “parallel” processes. Each process is assigned a unique identifier
between 0 and P − 1. Depending on its processor identifier, each process may
follow a distinct execution path through the same code. These processes may
communicate with each other by calling appropriate routines in the MPI library
which encapsulates the details of communications between various processors.

Table 1 gives a glossary of various MPI routines which we use in our parallel
version of k-means in Figure 2. Next, we discuss the design of the proposed
parallel algorithm.
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MPI Comm size() returns the number of processes

MPI Comm rank() returns the process identifier for the calling process

MPI Bcast(message, root) broadcasts “message” from a process with identifier
“root” to all of the processes

MPI Allreduce(A, B, MPI SUM) sums all the local copies of “A” in all the processes
(reduction operation) and places the result in “B” on
all of the processes (broadcast operation)

MPI Wtime() returns the number of seconds since
some fixed, arbitrary point of time in the past

Table 1. Conceptual syntax and functionality of MPI routines which are used in Fig-
ure 2. For the exact syntax and usage, see [32, 33].

3.2 Parallel Algorithm Design

We begin by analyzing, in detail, the computational complexity of the sequential
implementation of the k-means algorithm in Figure 1.

We count each addition, multiplication, or comparison as one floating point
operation (flop). It follows from Figure 1 that the amount of computation within
each k-means iteration is constant, where each iteration consists of “distance
calculations” in lines 14-21 and a “centroid recalculations” in lines 22-26. A
careful examination reveals that the “distance calculations” require roughly
(3nkd + nk + nd) flops per iteration, where 3nkd, nk, and nd correspond to
lines 15-17, line 18, and line 19 in Figure 1, respectively. Also, “centroid recal-
culations” require approximately kd flops per iteration. Putting these together,
we can estimate the computation complexity of the sequential implementation
of the k-means algorithm as

(3nkd + nk + nd + kd) · I · T flop, (2)

where I denotes the number of k-means iterations and T flop denotes the time
(in seconds) for a floating point operation. In this paper, we are interested in
the case when the number of data points n is quite large in an absolute sense,
and also large relative to d and k. Under this condition the serial complexity of
the k-means algorithm is dominated by

T1 ∼ (3nkd) · I · T flop. (3)

By implementing a version of k-means on a distributed memory machine with
P processors, we hope to reduce the total computation time by nearly a factor of
P . Observe that the “distance calculations” in lines 14-21 of Figure 1 are inher-
ently data parallel, that is, in principle, they can be executed asynchronously and
in parallel for each data point. Furthermore, observe that these lines dominate
the computational complexity in (2) and (3), when the number of data points
n is large. In this context, a simple, but effective, parallelization strategy is to
divide the n data points into P blocks (each of size roughly n/P ) and compute
lines 14-21 for each of these blocks in parallel on a different processor. This is
the approach adopted in Figure 2.
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For simplicity, assume that P divides n. In Figure 2, for µ = 0, 1, · · · , P − 1,
we assume that the process identified by “µ” has access to the data subset
{Xi, i = (µ) ∗ (n/P ) + 1, · · · , (µ + 1) ∗ (n/P )}. Observe that each of the P
processes can carry out the “distance calculations” in parallel or asynchronously,
if the centroids {mj}

k
j=1 are available to each process. To enable this potential

parallelism, in Figure 1, a local copy of the centroids {mj}
k
j=1 is maintained for

each process, see, line 7 and lines 22-26 in Figure 2 (see Table 1 for a glossary
of the MPI calls used). Under this parallelization strategy, each process needs to
handle only n/P data points, and hence we expect the total computation time
for the parallel k-means to decrease to

T comp
P =

T1

P
∼

(3nkd) · I · T flop

P
. (4)

In other words, as a benefit of parallelization, we expect the computational
burden to be shared equally by all the P processors. However, there is also a
price attached to this benefit, namely, the associated communication cost, which
we now examine.

Before each new iteration of k-means can begin, all the P processes must
communicate to recompute the centroids {mj}

k
j=1. This global communication

(and hence synchronization) is represented by lines 22-26 of Figure 2. Since, in
each iteration, we must “MPI Allreduce” roughly d ·k floating point numbers, we
can estimate the communication time for the parallel k-means to be

T comm
P ∼ d · k · I · T reduce

P , (5)

where T reduce
P denotes the time (in seconds) required to “MPI Allreduce” a float-

ing point number on P processors. On most architectures, one may assume that
T reduce

P = O(log P ) [38].
Line 27 in Figure 2 ensures that each of the P processes has a local copy

of the total mean-squared-error “MSE”, hence each process can independently
decide on the convergence condition, that is, when to exit the “do{ · · · }while”
loop.

In conclusion, each iteration of our parallel k-means algorithm consists of
an asynchronous computation phase followed by a synchronous communication
phase. The reader may compare Figures 1 and 2 line-by-line to see the precise
correspondence of the proposed parallel algorithm with the serial algorithm. We
stress that Figure 2 is optimized for understanding, and not for speed! In particu-
lar, in our actual implementation, we do not use (2k+1) different “MPI Allreduce”
operations as suggested by lines 23, 24, and 27, but rather use a single block
“MPI Allreduce” by assigning a single, contiguous block of memory for the vari-
ables {mj}

k
j=1, {nj}

k
j=1, and MSE and a single, contiguous block of memory for

the variables {m′

j}
k
j=1, {n

′

j}
k
j=1, and MSE′.

We can now combine (4) and (5) to estimate the computational complexity
of the parallel k-means algorithm as

TP = T comp
P + T comm

P ∼
(3nkd) · I · T flop

P
+ d · k · I · T reduce

P . (6)
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It can be seen from (4) and (5) that the relative cost for the communication
phase T comm

P is insignificant compared to that for the computation phase T comp
P ,

if

P · T reduce
P

3 · T flop
≪ n . (7)

Since the left-hand side of the above condition is a machine constant, as the num-
ber of data points n increases, we expect the relative cost for the communication
phase compared to the computation phase to progressively decrease.

In the next section, we empirically study the performance of the proposed
parallel k-means algorithm.

4 Performance and Scalability Analysis

Sequential algorithms are tested for correctness by seeing whether they give the
right answer. For parallel programs, the right answer is not enough: we would
like to decrease the execution time by adding more processors or we would like to
handle larger data sets by using more processors. These desirable characteristics
of a parallel algorithm are measured using “speedup” and “scaleup,” respectively;
we now empirically study these characteristics for the proposed parallel k-means
algorithm.

4.1 Experimental Setup

We ran all of our experiments on an IBM SP2 with a maximum of 16 nodes.
Each node in the multiprocessor is a Thin Node 2 consisting of a IBM POWER2
processor running at 160 MHz with 256 megabytes of main memory. The pro-
cessors all run AIX level 4.2.1 and communicate with each other through the
High-Performance Switch with HPS-2 adapters. The entire system runs PSSP
2.3 (Parallel System Support Program). See [39] for further information about
the SP2 architecture.

Our implementation is in C and MPI. All the timing measurements are done
using the routine “MPI Wtime()” described in Table 1. Our timing measurements
ignore the I/O times (specifically, we ignore the time required to read in the data
set from disk), since, in this paper, we are only interested in studying the efficacy
of our parallel k-means algorithm. All the timing measurements were taken on
an otherwise idle system. To smooth out any fluctuations, each measurement
was repeated five times and each reported data point is to be interpreted as an
average over five measurements.

For a given number of data points n and number of dimensions d, we gener-
ated a test data set with 8 clusters using the algorithm in [40]. A public domain
implementation of this algorithm is available from Dave Dubin [41]. The advan-
tage of such data generation is that we can generate as many data sets as desired
with precisely specifiable characteristics.
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As mentioned in Section 2, each run of the k-means algorithm depends on the
choice of the starting cluster centroids. Specifically, the initial choice determines
the specific local minimum of (1) that will be found by the algorithm, and it
determines the number of k-means iterations. To eliminate the impact of the
initial choice on our timing measurements, for a fixed data set, identical starting
cluster centroids are used–irrespective of the number of processors used.

We are now ready to describe our experimental results.

4.2 Speedup

Relative speedup is defined as the ratio of the execution time for clustering a data
set into k clusters on 1 processor to the execution time for identically clustering
the same data set on P processors. Speedup is a summary of the efficiency of
the parallel algorithm.

Using (3) and (6), we may write relative speedup of the parallel k-means
roughly as

Speedup =
(3nkd) · I · T flop

(3nkd) · I · T flop/P + d · k · I · T reduce
P

, (8)

which approaches the linear speedup of P when condition (7) is satisfied, that
is, the number of data points n is large. We report three sets of experiments,
where we vary n, d, and k, respectively.

Varying n: First, we study the speedup behavior when the number of data
points n is varied. Specifically, we consider five data sets with n = 213, 215, 217, 219,
and 221. We fixed the number of dimensions d = 8 and the number of desired
clusters k = 8. We clustered each data set on P = 1, 2, 4, 8, and 16 processors.
The measured execution times are reported in Figure 3, and the correspond-
ing relative speedup results are reported in Figure 4. We can observe the
following facts from Figure 4:
– For the largest data set, that is, n = 221, we observe a relative speedup

of 15.62 on 16 processors. Thus, for large number of data points n our
parallel k-means algorithm has nearly linear relative speedup.
But, in contrast, for the smallest data set, that is, n = 211, we observe
that relative speedup flattens at 6.22 on 16 processors.

– For a fixed number of processors, say, P = 16, as the number of data
points increase from n = 211 to n = 221 the observed relative speedup
generally increases from 6.22 to 15.62, respectively. In other words, our
parallel k-means has an excellent sizeup behavior in the number of data
points.

All these empirical facts are consistent with the theoretical analysis presented
in the previous section; in particular, see condition (7).

Varying d: Second, we study the speedup behavior when the number of dimen-
sions d is varied. Specifically, we consider three data sets with d = 2, 4, and
8. We fixed the number of data points n = 221 and the number of desired
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Fig. 3. Speedup curves. We plot execution time in log10-seconds versus the number of

processors. Five data sets are used with number of data points n = 213, 215, 217, 219, and

221. The number of dimensions d = 8 and the number of clusters k = 8 are fixed for all

the five data sets. For each data set, the k-means algorithm required I = 3, 10, 8, 164

and 50 number of iterations, respectively. For each data set, a dotted line connects

the observed execution times, while a solid line represents the “ideal” execution times

obtained by dividing the observed execution time for 1 processor by the number of

processors.

clusters k = 8. We clustered each data set on P = 1, 2, 4, 8, and 16 pro-
cessors. For the sake of brevity, we omit the measured execution times, and
report the corresponding relative speedup results in Figure 5.

Varying k: Finally, we study the speedup behavior when the number of desired
clusters k is varied. Specifically, we clustered a fixed data set into k = 2, 4, 8,
and 16 clusters. We fixed the number of data points n = 221 and the number
of dimensions d = 8. We clustered the data set on P = 1, 2, 4, 8, and 16
processors. The corresponding relative speedup results are given in Figure 6.

In Figure 5, we observe nearly linear speedups between 15.42 to 15.53 on
16 processors. Similarly, in Figure 6, we observe nearly linear speedups be-
tween 15.08 to 15.65 on 16 processors. The excellent speedup numbers can
be attributed to the fact that for n = 221 the condition (7) is satisfied. Also,
observe that all the relative speedup numbers in Figures 5 and 6 are essen-
tially independent of d and k, respectively. This is consistent with the fact
that neither d nor k appears in the condition (7).
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Fig. 4. Relative Speedup curves corresponding to Figure 3. The solid line represents

“ideal” linear relative speedup. For each data set, a dotted line connects observed

relative speedups.

4.3 Scaleup

For a fixed data set (or a problem size), speedup captures the decrease in execu-
tion speed that can be obtained by increasing the number of processors. Another
figure of merit of a parallel algorithm is scaleup which captures how well the par-
allel algorithm handles larger data sets when more processors are available. Our
scaleup study measures execution times by keeping the problem size per proces-
sor fixed while increasing the number of processors. Since, we can increase the
problem size in either the number of data points n, the number of dimensions d,
or the number of desired clusters k, we can study scaleup with respect to each
of these parameters at a time.

Relative scaleup of the parallel k-means algorithm with respect to n is de-
fined as the ratio of the execution time (per iteration) for clustering a data set
with n data points on 1 processor to the the execution time (per iteration) for
clustering a data set with n · P data points on P processors–where the number
of dimensions d and the number of desired clusters k are held constant. Observe
that we measure execution time per iteration, and not raw execution time. This
is necessary since the k-means algorithm may require a different number of it-
erations I for a different data set. Using (3) and (6), we can analytically write
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relative scaleup with respect to n as

Scaleup =
(3nkd) · T flop

(3nPkd) · T flop/P + d · k · T reduce
P

. (9)

It follows from (9) that if

T reduce
P

3 · T flop
≪ n , (10)

then we expect relative scaleup to approach the constant 1. Observe that condi-
tion (10) is weaker than (7), and will be more easily satisfied for large number
of data points n which is the case we are interested in. Relative scaleup with re-
spect to either k or d can be defined analogously; we omit the precise definitions
for brevity. The following experimental study shows that our implementation
of parallel k-means has linear scaleup in n and k, and surprisingly better than
linear scaleup in d.

Scaling n: To empirically study scaleup with respect to n, we clustered data
sets with n = 221 ·P on P = 1, 2, 4, 8, 16 processors, respectively. We fixed the
number of dimensions d = 8 and the number of desired clusters k = 8. The
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Fig. 6. Relative speedup curves for four data sets with k = 2, 4, 8, and 16. The number

of data points n = 221 and the number of dimensions d = 8 are fixed for all the four

data sets. The solid line represents “ideal” linear relative speedup. For each data set, a

dotted line connects observed relative speedups. It can be seen that relative speedups

for different data sets are virtually indistinguishable from each other.

execution times per iteration are reported in Figure 7, from where it can be
seen that the parallel k-means delivers virtually constant execution times in
number of processors, and hence has excellent scaleup with respect to n. The
largest data set with n = 221 · 16 = 225 is roughly 2 gigabytes. For this data
set, our algorithm drives the SP2 at nearly 1.2 gigaflops. Observe that the
main memory available on each of the 16 nodes is 256 megabytes, and hence
this data set will not fit in the main memory of any single node, but easily
fits in the combined main memory of 16 nodes. This is yet another benefit
of parallelism–the ability to cluster significantly large data sets in-core, that
is, in main memory.

Scaling k: To empirically study scaleup with respect to k, we clustered a data
set into k = 8 · P clusters on P = 1, 2, 4, 8, 16 processors, respectively. We
fixed the number of data points n = 221, and the number of dimensions
d = 8. The execution times per iteration are reported in Figure 7, from
where it can be seen that our parallel k-means delivers virtually constant
execution times in number of processors, and hence has excellent scaleup
with respect to k.

Scaling d: To empirically study scaleup with respect to d, we clustered data
sets with the number of dimensions d = 8 ·P on P = 1, 2, 4, 8, 16 processors,
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Fig. 7. Scaleup curves. We plot execution time per iteration in seconds versus the

number of processors. The same data set with n = 221, d = 8, and k = 8 is used for

all the three curves–when the number of processors is equal to 1. For the “n” curve,

the number of data points is scaled by the number of processors, while d and k are

held constant. For the “k” curve, the number of clusters is scaled by the number of

processors, while n and d are held constant. For the “d” curve, the number of dimensions

is scaled by the number of processors, while n and k are held constant.

respectively. We fixed the number of data points n = 221, and the number
of desired clusters k = 8. The execution times per iteration are reported in
Figure 7, from where it can be seen that our parallel k-means delivers better
than constant execution times in number of processors, and hence has sur-
prisingly nice scaleup with respect to d. We conjecture that this phenomenon
occurs due to the reduced loop overhead in the “distance calculations” as d
increases (see Figure 2). The largest data set with d = 8 ·16 = 128 is roughly
2 gigabytes. For this data set, our algorithm drives the SP2 at nearly 1.8
gigaflops.

5 Future Work

In this paper, we proposed a parallel k-means algorithm for distributed memory
multiprocessors. Our algorithm is also easily adapted to shared memory multi-
processors where all processors have access to the same memory space. Many
such machines are now currently available from a number of vendors. The basic
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strategy in adapting our algorithm to shared memory machine with P processors
would be the same as that in this paper, namely, divide the set of data points n
into P blocks (each of size roughly n/P ) and compute distance calculations in
lines 14-21 of Figure 1 for each of these blocks in parallel on a different processor
while ensuring that each processor has access to a separate copy of the centroids
{mj}

k
j=1. Such an algorithm can be implemented on a shared memory machine

using threads [42].
It is well known that the k-means algorithm is a hard thresholded version

of the expectation-maximization (EM) algorithm [43]. We believe that the EM
algorithm can be effectively parallelized using essentially the same strategy as
that used in this paper.
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