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Abstract

In this paper, we consider the matrix completion
problem when the observations are one-bit mea-
surements of some underlying matrix M , and in
particular the observed samples consist only of
ones and no zeros. This problem is motivated by
modern applications such as recommender sys-
tems and social networks where only “likes” or
“friendships” are observed. The problem is an
instance of PU (positive-unlabeled) learning, i.e.
learning from only positive and unlabeled exam-
ples that has been studied in the context of bi-
nary classification. Under the assumption thatM
has bounded nuclear norm, we provide recovery
guarantees for two different observation models:
1) M parameterizes a distribution that generates
a binary matrix, 2) M is thresholded to obtain a
binary matrix. For the first case, we propose a
“shifted matrix completion” method that recov-
ers M using only a subset of indices correspond-
ing to ones; for the second case, we propose a
“biased matrix completion” method that recov-
ers the (thresholded) binary matrix. Both meth-
ods yield strong error bounds — if M ∈ Rn×n,
the error is bounded as O

(
1

(1−ρ)n
)
, where 1 − ρ

denotes the fraction of ones observed. This im-
plies a sample complexity of O(n log n) ones to
achieve a small error, when M is dense and n
is large. We extend our analysis to the induc-
tive matrix completion problem, where rows and
columns of M have associated features. We de-
velop efficient and scalable optimization proce-
dures for both the proposed methods and demon-
strate their effectiveness for link prediction (on
real-world networks consisting of over 2 million
nodes and 90 million links) and semi-supervised
clustering tasks.
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1. Introduction
The problem of recovering a matrix from a given subset of
its entries arises in many practical problems of interest. The
famous Netflix problem of predicting user-movie ratings is
one example that motivates the traditional matrix comple-
tion problem, where we would want to recover the under-
lying (ratings) matrix given partial observations. Strong
theoretical guarantees have been developed in the recent
past for the low-rank matrix completion problem (Candès
& Recht, 2009). An important variant of the matrix com-
pletion problem is to recover an underlying matrix from
one-bit quantization of its entries. Modern applications of
the matrix completion problem reveal a conspicuous gap
between existing matrix completion theory and practice.
For example, consider the problem of link prediction in
social networks. Here, the goal is to recover the under-
lying friendship network from a given snapshot of the so-
cial graph consisting of observed friendships. We can pose
the problem as recovering the adjacency matrix of the net-
work A such that Aij = 1 if users i and j are related and
Aij = 0 otherwise. In practice, we only observe posi-
tive relationships between users corresponding to 1’s in A.
Thus, there is not only one-bit quantization in the observa-
tions, but also a one-sided nature to the sampling process
here — no “negative” entries are sampled. In the context of
classification, methods for learning in the presence of posi-
tive and unlabeled examples only, called positive-unlabeled
(PU in short) learning, have been studied in the past (Elkan
& Noto, 2008; Liu et al., 2003). For matrix completion,
can one guarantee recovery when only a subset of positive
entries is observed? In this paper, we formulate the PU
matrix completion problem and answer the question in the
affirmative under different settings.

Minimizing squared loss on the observed entries corre-
sponding to 1’s, subject to the low-rank constraints, yields
a degenerate solution — the rank-1 matrix with all its en-
tries equal to 1 achieves zero loss. In practice, a popular
heuristic used is to try and complete the matrix by treating
some or all of the missing observations as true 0’s, which
seems to be a good strategy when the underlying matrix has
a small number of positive examples, i.e., small number of
1’s. This motivates viewing the problem of learning from



PU Learning for Matrix Completion

only positive samples as a certain noisy matrix completion
problem. Existing theory for noise-tolerant matrix comple-
tion (Candès & Plan, 2009; Davenport et al., 2012) does
not sufficiently address recoverability under PU learning
(see Section 2).

In our work, we assume that the true matrix M ∈ Rm×n
has a bounded nuclear norm ‖M‖∗. The PU learning model
for matrix completion is specified by a certain one-bit quan-
tization process that generates a binary matrix Y from M
and a one-sided sampling process that reveals a subset of
positive entries of Y . In particular, we consider two re-
covery settings for PU matrix completion: The first setting
is non-deterministic — M parameterizes a probability dis-
tribution which is used to generate the entries of Y . We
show that it is possible to recover M using only a sub-
set of positive entries of Y . The idea is to minimize an
unbiased estimator of the squared loss between the esti-
mated and the observed “noisy” entries, motivated by the
approach in (Natarajan et al., 2013). We recast the objec-
tive as a “shifted matrix completion” problem that facili-
tates in obtaining a scalable optimization algorithm. The
second setting is deterministic — Y is obtained by thresh-
olding the entries of M , and then a subset of positive en-
tries of Y is revealed. While recovery of M is not possi-
ble (see Section 2), we show that we can recover Y with
low error. To this end, we propose a scalable biased matrix
completion method where the observed and the unobserved
entries of Y are penalized differently. Recently, an induc-
tive approach to matrix completion was proposed (Jain &
Dhillon, 2013) where the matrix entries are modeled as a
bilinear function of real-valued features associated with the
rows and the columns. We extend our methods under the
two aforementioned settings to the inductive matrix com-
pletion problem and establish similar recovery guarantees.
Our contributions are summarized below:

1. To the best of our knowledge, this is the first paper to
formulate and study PU learning for matrix comple-
tion, necessitated by the applications of matrix com-
pletion. Furthermore, we extend our results to the re-
cently proposed inductive matrix completion problem.

2. We provide strong guarantees for recovery; for exam-
ple, in the non-deterministic setting, the error in recov-
ering an n × n matrix is O( 1

(1−ρ)n ) for our method
compared to O( 1

(1−ρ)
√
n

) implied by the method in
(Davenport et al., 2012), where (1− ρ) is the fraction
of observed 1’s.

3. Our results provide a theoretical insight for the heuris-
tic approach used in practice, namely, biased matrix
completion.

4. We give efficient, scalable optimization algorithms for
our methods; experiments on real-world data (social
networks consisting of over 2 million users and 90
million links) demonstrate the superiority of the pro-
posed methods for the link prediction problem.

Outline of the paper. We begin by establishing some
hardness results and describing our PU learning settings in
Section 2. In Section 3, we propose methods and give re-
covery guarantees for the matrix completion problem under
the different settings. We extend the results to PU learning
for inductive matrix completion problem in Section 4. We
describe efficient optimization procedures for the proposed
methods in Section 5. Experimental results on synthetic
and real-world data are presented in Section 6.

Related Work. In the last few years, there has been a
tremendous amount of work on the theory of matrix com-
pletion since the remarkable result concerning recovery of
low-rank matrices by (Candès & Recht, 2009). Strong re-
sults on recovery from noisy observations have also been
established (Candès & Plan, 2009; Keshavan et al., 2010).
Recently, (Davenport et al., 2012) studied the problem of
recovering matrices from 1-bit observations, motivated by
the nature of observations in domains such as recommender
systems where matrix completion is heavily applied. Our
work draws motivation from recommender systems as well,
but differs from (Davenport et al., 2012) in that we seek to
understand the case when only 1’s in the matrix are ob-
served. One of the algorithms we propose for PU ma-
trix completion is based on using different costs in the
objective for observed and unobserved entries. The ap-
proach has been used before, albeit heuristically, in the
context of matrix completion in recommender system ap-
plications (Hu et al., 2008; Rendle et al., 2009; Sindhwani
et al., 2010). Compressed sensing is a field that is closely
related to matrix completion. Recently, compressed sens-
ing theory has been extended to the case of single-bit quan-
tization (Boufounos & Baraniuk, 2008). Here, the goal is to
recover an s-sparse signal when the observations consist of
only the signs of the measurements, and remarkable recov-
ery guarantees have been proved for the single-bit quanti-
zation case (Boufounos & Baraniuk, 2008).

2. Problem Settings
We assume that the underlying matrix M ∈ Rm×n has a
bounded nuclear norm, i.e., ‖M‖∗ ≤ t, where t is a con-
stant independent of m and n. If Mij ∈ {0, 1} for all
(i, j), stating the PU matrix completion problem is straight-
forward: we only observe a subset Ω1 randomly sampled
from {(i, j) |Mij = 1} and the goal is to recoverM based
on this “one-sided” sampling. We call this the “basic set-
ting”. However, in real world applications it is unlikely that
the underlying matrix is binary. In the following, we con-
sider two general settings, which include the basic setting
as a special case.

2.1. Non-deterministic setting

In the non-deterministic setting, we assume Mij has
bounded values and without loss of generality we can as-
sume Mij ∈ [0, 1] for all (i, j) by normalizing it. We then
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consider each entry as a probability distribution which gen-
erates a clean 0-1 observation Y ∈ Rm×n:

P (Yij = 1) = Mij , P (Yij = 0) = 1−Mij ,

In the classical matrix completion setting, we will observe
partial entries sampled randomly from Y ; In our PU learn-
ing model, we assume only a subset of positive entries of Y
is observed. More precisely, we observe a subset Ω1 from
Y where Ω1 is sampled uniformly from {(i, j) | Yij = 1}.
We assume |Ω1| = s̄ and denote the number of 1’s in Y by
s. With only Ω1 given, the goal of PU matrix completion is
to recover the underlying matrix M . Equivalently, letting
A ∈ {0, 1}m×n to denote the observations, whereAΩ1 = 1
and Aij = 0 for all (i, j) /∈ Ω1, the non-deterministic set-
ting can be specified as observing A by the process:

P (Aij=1)=Mij(1−ρ), P (Aij=0)=1−Mij(1−ρ), (1)

where ρ=1−s̄/s is the noise rate of flipping a 1 to 0 (or
equivalently, 1−ρ is the sampling rate to obtain Ω1 from Y ).

Hardness of recovering M : The 1-bit matrix comple-
tion approach of (Davenport et al., 2012) can be applied
to this setting — Given a matrix M , a subset Ω is sam-
pled uniformly at random fromM , and the observed values
are “quantized” by a known probability distribution. We
can transform our problem to the 1-bit matrix completion
problem by assuming all the unobserved entries are zeros.
When M ∈ Rn×n, the following maximum likelihood es-
timator can be used to recover the groundtruth:

M̂ = argmax
X:‖X‖∗≤t

( ∑
(i,j)∈Ω s.t. Yij=1

log(f(Xij))

+
∑

(i,j)∈Ω s.t. Yij=0

log(1− f(Xij))
)
. (2)

and the following error bound for the estimator can be ob-
tained from the result in (Davenport et al., 2012):

1
n2
‖M̂ −M‖2F = O

( √
r

(1− ρ)
√
n

)
, (3)

where rank(M) ≤ r (See Appendix B for details). The
main drawback of using this approach for PU matrix com-
pletion is computation — time complexity of solving (32)
is O(n2) which makes the approach prohibitive for large
matrices. Moreover, the average error on each element is
O(1/

√
n) (in contrast, our algorithm has O(1/n) average

error). To see how this affects sample complexity for re-
covery, assume

∑
i,jMi,j = O(n2) (number of 1’s are of

the same order as the number of 0’s in the original matrix)
and O(log n) 1’s are observed. Then (1 − ρ) = O( logn

n )
and the average error according to (34) is 1

n2 ‖M̂−M‖2F =
O(
√
rn

logn ), which diverges as n → ∞. In contrast, the aver-
age error of our estimator will diminish to 0 as n→∞.

2.2. Deterministic setting

In the deterministic setting, a clean 0-1 matrix Y is
observed from M by the thresholding process: Yij =
I(Mij > q), where I(·) is the indicator function and q ∈ R
is the threshold. Again, in our PU learning model, we as-
sume only a subset of positive entries of Y are observed,
i.e. we observe Ω1 from Y where Ω1 is sampled uniformly
from {(i, j) | Yij = 1}. Equivalently, we will use A to
denote the observations, where Aij = 1 if (i, j) ∈ Ω1, and
Aij = 0 otherwise.

It is impossible to recover M even if we observe all the en-
tries of Y . A trivial example is that all the matrices ηeeT

will give Y = eeT if η > q, and we cannot recover η
from Y . Therefore, in the deterministic setting we can only
hope to recover the underlying 0-1 matrix Y from the given
observations. To the best of our knowledge, there is no ex-
isting work that gives a reasonable guarantee of recovering
Y . For example, if we apply the noisy matrix completion
algorithm proposed in (Candès & Plan, 2009), the estima-
tor Ŷ has an error bound ‖Ŷ − Y ‖ ≤ ‖A − Y ‖, which
indicates the error in Ŷ is not guaranteed to be better than
the trivial estimator A (see Appendix C for details).

3. Proposed Algorithms for PU Matrix
Completion

In this section, we introduce two algorithms: shifted ma-
trix completion for non-deterministic PU matrix comple-
tion, and biased matrix completion for deterministic PU
matrix completion. All proofs are deferred to Appendix.

3.1. Shifted Matrix Completion for Non-deterministic
Setting (ShiftMC)

We want to find a matrix X such that the loss ‖M −X‖2F
is bounded, using the noisy observation matrix A gener-
ated from M by (1). Observe that conditioned on Y , the
noise in Aij is asymmetric, i.e. P (Aij = 0|Yij = 1) = ρ
and P (Aij = 1|Yij = 0) = 0. Asymmetric label noise
has been studied in the context of binary classification, and
recently (Natarajan et al., 2013) proposed a method of un-
biased estimator to bound the true loss using only noisy
observations. In our case, we aim to find a matrix minimiz-
ing the unbiased estimator defined on each element, which
leads to the following optimization problem:

min
X

∑
i,j

˜̀(Xij , Aij) (4)

such that ‖X‖∗ ≤ t, 0 ≤ Xij ≤ 1 ∀(i, j).

where ˜̀(Xij , Aij) =

{
(Xij−1)2−ρX2

ij

1−ρ if Aij = 1,
X2
ij if Aij = 0.

(5)

The bound constraint on X in the above estimator ensures
the loss has bounded Lipschitz constant. This optimization
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problem is equivalent to the traditional trace-norm regular-
ization problem

min
X

∑
i,j

˜̀(Xij , Aij) + λ‖X‖∗, (6)

such that 0 ≤ Xij ≤ 1 ∀(i, j),

where λ has a one-to-one mapping to t. We use ˜̀ instead
of the original loss ` because it is the unbiased estimator of
the underlying squared loss `(Xij ,Mij) = (Xij −Mij)2,
as formalized below. Thus, we use ˜̀ on the observed Aij ,
we minimize the loss w.r.t. Yij in expectation.
Lemma 1. For any X ∈ Rm×n, 1

mnE
[∑

i,j(Xij −
Yij)2

]
= 1

mnE
[∑

i,j
˜̀(Xij , Aij)

]
.

Interestingly, we can rewrite ˜̀ as ˜̀(Xij , 1) =
(
Xij −

1
1−ρ
)2 − ρ

(1−ρ)2 . Therefore, (6) can be rewritten as the
following “shifted matrix completion” problem:

X̂ = argmin
X

∑
i,j:Aij=1

(
Xij−

1
1− ρ

)2

+
∑

i,j:Aij=0

X2
ij+λ‖X‖∗

s.t. 0 ≤ Xij ≤ 1 ∀(i, j). (7)

We want to show that the average error of the ShiftMC esti-
mator X̂ decays as O(1/n). In order to do so, we first need
to bound the difference between the expected error and the
empirical error. We define the hypothesis space to be X :=
{X | X ∈ Rm×n and ‖W‖∗ ≤ t}. The expected error can
be written as EA[R˜̀(W )] = EA[ 1

mn

∑
i,j

˜̀(Wij , Aij)],
and the empirical error is R̂˜̀(W ) = 1

mn

∑
i,j

˜̀(Wij , Aij).
We first show that the difference between expected error
and empirical error can be upper bounded:
Theorem 1. Let X := {X ∈ Rm×n | ‖X‖∗ ≤ t, 0 ≤
X ≤ 1}, then

max
X∈X

∣∣∣EA[R˜̀(X)]− R̂˜̀(X)
∣∣∣

≤tC
√
n+
√
m+ 4

√
s

(1− ρ)mn
+ 3

√
log(2/δ)√
mn(1− ρ)

with probability at least 1 − δ, where C is a constant,
E[R˜̀(X)] := E[ 1

mn

∑
i,j

˜̀(Xij , Aij)] is the expected er-
ror, and R̂˜̀(X) = 1

mn

∑
i,j

˜̀(Xij , Aij) is the empirical
error.

Combining Lemma 1 and Theorem 1, we have our first
main result:
Theorem 2 (Main Result 1). With probability at least 1−δ,

1
mn

∑
i,j

(Mij − X̂ij)2 ≤ 6

√
log(2/δ)√
mn(1− ρ)

+

2Ct
√
n+
√
m+ 4

√
s

(1− ρ)mn
.

The average error is of the order of O( 1
n(1−ρ) ) when M ∈

Rn×n, where 1− ρ denotes the ratio of observed 1’s. This
shows that even when we only observe a very small ratio of
1’s in the matrix, we can still estimate M accurately when
n is large enough.

3.2. Biased Matrix Completion for Deterministic
Setting (BiasMC)

In the deterministic setting, we propose to solve the ma-
trix completion problem with label-dependent loss (Scott,
2012). Let `(x, a) = (x− a)2 denote the squared loss, for
a ∈ {0, 1}. The α-weighted loss is defined by

`α(x, a) = α1a=1`(x, 1) + (1− α)1a=0`(x, 0), (8)

where 1a=1, 1a=0 are indicator functions. We then re-
cover the groundtruth by solving the following biased ma-
trix completion (biasMC) problem:

X̂ = argmin
X:‖X‖∗≤t

∑
i,j

`α(Xij , Aij) (9)

= argmin
X:‖X‖∗≤t

α
∑

i,j:Aij=1

(Xij − 1)2 + (1− α)
∑

i,j:Aij=0

X2
ij

The underlying binary matrix Y is then recovered by the
thresholding operator X̄ij = I(X̂ij > q).

A similar formulation has been used in (Sindhwani et al.,
2010) to recommend items to users in the “who-bought-
what” network. Here, we show that this biased matrix
factorization technique can be used to provably recover
Y . For convenience, we define the thresholding operator
thr(x) = 1 if x > q, and thr(x) = 0 if x ≤ q. We first de-
fine the recovery error as R(X) = 1

mn

∑
i,j 1thr(Xij) 6=Yij ,

where Y is the underlying 0-1 matrix. Define the label-
dependent error:

Uα(x, a) = (1−α)1thr(x)=11a=0 +α1thr(x)=−11a=1. (10)

and α-weighted expected error:

Rα,ρ(X) = E
[∑
i,j

Uα(Xij , Aij)
]
,

The following lemma is a special case of Theorem 9 in
(Natarajan et al., 2013), showing that R(X) and Rα,ρ(X)
can be related by a linear transformation:

Lemma 2. For the choice α∗ = 1+ρ
2 and β = 1+ρ

2 , there
exists a constant b that is independent of X such that, for
any matrix X , Rα∗,ρ(X) = βR(X) + b.

Therefore, minimizing the α-weighed expected error in the
partially observed situation is equivalent to minimizing the
true recovery error R. By further relating Rα∗,ρ(X) and
R`α∗ ,ρ(X) := E

[∑
i,j lα∗(Xij , Aij)

]
, we can show:
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Theorem 3 (Main Result 2). Let X̂ be the minimizer of
(9), and X̄ be the thresholded 0-1 matrix of X̂ , then with
probability at least 1− δ, we have

R(X̄) ≤ 2η
1 + ρ

(
Ct

√
n+
√
m+ 4

√
s

mn
+ 3

√
log(2/δ)√
mn(1− ρ)

)
,

where η = max(1/q2, 1/(1− q)2) and C is a constant.

The average error is of the order of O( 1
n(1−ρ) ) when M ∈

Rn×n, where 1−ρ denotes the ratio of observed 1’s, similar
to the ShiftMC estimator.

4. PU Inductive Matrix Completion
In this section, we extend our approaches to inductive ma-
trix completion problem, where in addition to the samples,
row and column features Fu ∈ Rm×d, Fv ∈ Rn×d are also
given. In the standard inductive matrix completion prob-
lem (Jain & Dhillon, 2013), the observations AΩ are sam-
pled from the groundtruth M ∈ Rm×n, and we want to
recover M by solving the following optimization problem:

min
D∈Rd×d

∑
i,j∈Ω

(Aij − (FuDFTv )ij)2 + λ‖D‖∗. (11)

Matrix completion is a special case of inductive matrix
completion when Fu = I, Fv = I . In the multi-label learn-
ing problem, M represents the label matrix and Fu corre-
sponds to examples (typically Fv = I) (Yu et al., 2014;
Xu et al., 2013). This technique has also been applied to
gene-disease prediction (Natarajan & Dhillon, 2014), semi-
supervised clustering (Yi et al., 2013), and theoretically
studied in (Jain & Dhillon, 2013).

The problem is fairly recent and we wish to extend PU
learning analysis to this problem, which is also well mo-
tivated in many real world applications. For example, in
multi-label learning with partially observed labels, nega-
tive labels are usually not available. In the experiments,
we will consider another interesting application — semi-
supervised clustering problem with only positive and unla-
beled relationships.

4.1. Shifted Inductive Matrix Completion for
Non-deterministic Setting (ShiftIMC)

In the non-deterministic setting, we consider the inductive
version of ShiftMC:

min
D∈Rd×d

∑
i,j

˜̀((FuDFTv )ij , Aij) (12)

s. t. ‖D‖∗ ≤ t, 1 ≥ FuDFTv ≥ 0,

where the unbiased estimator of loss ˜̀(·) is defined in (5).
Note that we can assume that Fu, Fv are orthogonal (oth-
erwise we can conduct a preprocessing step to normalize

it). Let ui be the i-th row of Fu (the feature for row
i) and vj be the j-th row of Fv . We define constants
Xu = maxi ‖ui‖,Xv = maxj ‖vj‖. Since the output of
inductive matrix completion is FuDFv , it can only recover
the original matrix when the underlying matrix M can be
written in such form. Following (Xu et al., 2013; Yi et al.,
2013), we assume the features are good enough such that
M = Fu(Fu)TMFv(Fv)T . Recall ‖M‖∗ ≤ t. We now
extend Theorem 2 to PU inductive matrix completion.

Theorem 4. Assume D̂ is the optimal solution of (12) and
the groundtruth M is in the subspace formed by Fu and
Fv: M = Fu(Fu)TMFv(Fv)T , and let M̂ = FTu D̂Fv ,
then, with probability at least 1− δ:

1
mn
‖M − M̂‖2F ≤ 6

√
log(2/δ)√
mn(1− ρ)

+
4t
√

log 2d√
mn
√

1− ρ
XuXv.

(13)

Therefore if t and d are bounded, the mean square error of
ShiftIMC is O(1/n) in the non-deterministic setting.

4.2. Biased Inductive Matrix Completion for
Deterministic Setting (BiasIMC)

In the deterministic setting, we propose to solve the induc-
tive version of BiasMC:

D̂ = arg min
D:‖D‖∗≤t

α
∑

i,j:Aij=1

((FuDFTv )ij − 1)2

+(1− α)
∑

i,j:Aij=0

(FuDFTv )2
ij . (14)

The clean 0-1 matrix Y can then be recovered by Ŷij =
I((FuD̂FTv )ij > q).

Ŷij =

{
1 if (FuD̂FTv )ij ≥ q
0 if (FuD̂FTv )ij < q.

(15)

Similar to the case of matrix completion, Lemma 2 shows
that the expected 0-1 error R(X) and the α-weighted ex-
pected error in noisy observation Rα,ρ(X) can be related
by a linear transformation when α∗ = 1+ρ

2 . With this
choice of α∗, Lemma 2 continues to hold in this case,
which allows us to extend Theorem 3 to PU inductive ma-
trix completion and bound R(Ŷ ) = 1

mn‖Y − Ŷ ‖
2
F :

Theorem 5. Let D̂ be the minimizer of (14) with α∗ =
(1 + ρ)/2, and let Ŷ be generated from D̂ by (15), then
with probability at least 1− δ, we have

R(Ŷ ) ≤ 2η
1 + ρ

(
4t
√

log 2d√
mn
√

1− ρ
XuXv + 6

√
log(2/δ)√
mn(1− ρ)

)
,

where η = max(1/q2, 1/(1− q)2).

Again, we have that if t and d are bounded, the mean square
error of BiasIMC is O(1/n).
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5. Optimization Techniques for PU Matrix
Completion

In this section, we show that BiasMC can be solved very
efficiently for large-scale (millions of rows and columns)
datasets, and that ShiftMC can be solved efficiently after a
relaxation.

First, consider the optimization problem for BiasMC:

argmin
X

α
∑

i,j:Aij=1

(Xij − 1)2 + (1− α)
∑

i,j:Aij=0

X2
ij + λ‖X‖∗

:= fb(X) + λ‖X‖∗, (16)

which is equivalent to the constrained problem (9) with
suitable λ. The typical proximal gradient descent update
is X ← S(X − η∇fb(X), λ), where η is the learning
rate and S is the soft thresholding operator on singular val-
ues (Ji & Ye, 2009). The (approximate) SVD of G :=
(X − η∇fb(X)) can be computed efficiently using power
method or Lanczos algorithm if we have a fast procedure
to compute GP for a tall-and-thin matrix P ∈ Rn×k. In
order to do so, we first rewrite fb(X) as

fb(X) = (1−α)‖X−A‖2F+(2α−1)
∑

i,j:Aij=1

(Xij−Aij)2.

(17)
Assume the current solution is stored in a low-rank form
X = WHT and R = (X − A)Ω1 is the residual on Ω1,
then

GP = XP − 2η [(1− α)(X −A) + (2α− 1)R]P

=(1−2η(1−α))WHTP + 2η[(1−α)A−(2α− 1)R]P,

where the first term can be computed in O(mk2 +
nk2) flops, and the remaining terms can be computed in
O(|Ω1|k) flops. With this approach, we can efficiently
compute the proximal operator. This can also be applied
to other faster nuclear norm solvers (for example, (Hsieh &
Olsen, 2014)).

Next we show that the non-convex form of BiasMC can
also be efficiently solved, and thus can scale to millions of
nodes and billions of observations. It is well known that the
nuclear norm regularized problem minX fb(X) + λ‖X‖∗
is equivalent to

min
W∈Rm×k,H∈Rn×k

fb(WHT ) +
λ

2
(‖W‖2F + ‖H‖2F ) (18)

when k is sufficiently large. We can use a trick similar to
(17) to compute the gradient and Hessian efficiently:

1
2
∇W fb(WHT ) =[(1−α)(WHT−A) + (2α−1)RΩ]H,

1
2
∇2
Wi,·

fb(WHT ) = (1− α)HTH + (2α− 1)HT
ΩiHΩi ,

where HΩi is the sub-matrix with columns {hj : j ∈ Ωi},
and Ωi is the column indices of observations in the i-th row.

Thus, we can efficiently apply Alternating Least Squares
(ALS) or Coordinate Descent (CD) for solving (18). For
example, when applying CCD++ in (Yu et al., 2013), each
coordinate descent update only needs O(|Ωi| + k) flops.
We apply this technique to solve large-scale link prediction
problems (see Section 6).

The optimization problem for ShiftMC is harder to solve
because of the bounded constraint. We can apply the
bounded matrix factorization technique (Kannan et al.,
2014) to solve the non-convex form of (6), where the
time complexity is O(mn) because of the constraint 0 ≤
(WHT )ij ≤ 1 for all (i, j). To scale it to large datasets,
we relax the bounded constraint and solve:

min
W∈Rm×k,H∈Rn×k

‖A−WHT ‖2F +
λ

2
(‖W‖2F + ‖H‖2F )

s. t. 0 ≤W,H ≤
√

1/k (19)

This approach (ShiftMC-relax) is easy to solve by ALS or
CD with O(|Ω|k) complexity per sweep (similar to the Bi-
asMC). In our experiments, we show ShiftMC-relax per-
forms even better than shiftMC in practice.

6. Experiments
We first use synthetic data to show that our bounds are
meaningful and then demonstrate the effectiveness of our
algorithms in real world applications.

6.1. Synthetic Data

We assume the underlying matrix M ∈ Rn×n is generated
by UUT , where U ∈ Rn×k is the orthogonal basis of a
random Gaussian n by k matrix with mean 0 and variance
1. For the non-deterministic setting, we linearly scaleM to
have values in [0, 1], and then generate training samples as
described Section 2. For deterministic setting, we choose
q so that Y has equal number of zeros and ones. We fix
ρ = 0.9 (so that only 10% 1’s are observed). From Lemma
2, α = 0.95 is optimal. We fix k = 10, and test our al-
gorithms with different sizes n. The results are shown in
Figure 1(a)-(b). Interestingly, the results reflect our theory:
error of our estimators decreases with n; in particular, error
linearly decays with n in log-log scaled plots, which sug-
gests a rate of O(1/n), as shown in Theorems 2 and 3. Di-
rectly minimizing ‖A −X‖2F gives very poor results. For
BiasMF, we also plot the performance of estimators with
various α values in Figure 1(b). As our theory suggests,
α = 1+ρ

2 performs the best. We also observe that the error
is well-behaved in a certain range of α. A principled way
of selecting α is an interesting problem for further research.

6.2. Parameter Selection

Before showing the experimental results on real-world
problems, we discuss the selection of the parameter ρ in
our PU matrix completion model (see eq (1)). Note that
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(a) Synthetic data: non-deterministic setting. (b) Synthetic data: deterministic setting. (c) FPR-FNR on ca-GrQcdataset.

(d) FPR-FNR on ca-HepPhdataset. (e) FPR-FNR on LiveJournaldataset. (f) FPR-FNR on MySpacedataset.

Figure 1. (a)-(b): Recovery error of ShiftMC and BiasMC on synthetic data. We observe that without shifting or biasing, error does not
decrease with n (the black lines). The error of our estimators decreases approximately as 1

n
, as proved in Theorems 2 and 3. (c)-(f):

Comparison of link prediction methods. ShiftMC and BiasMC consistently perform better than the rest.

ρ indicates the noise rate of flipping a 1 to 0. If there are
equal number of positive and negative elements in the un-
derlying matrix Y , we will have ρ = 1 − 2s where s =
(# positive entries)/(# total entries). In practice (e.g., link
prediction problems) number of 1’s are usually less than
number of 0 in the underlying matrix, but we do not know
the ratio. Therefore, in all the experiments we chose ρ from
the set {1−2s, 10(1−2s), 100(1−2s), 1000(1−2s)} based
on a random validation set, and use the corresponding α in
the optimization problems.

6.3. Matrix completion for link prediction

One of the important applications that motivated our anal-
ysis in this paper is the link prediction problem. Note that
matrix completion has been used for link prediction on
signed network (Chiang et al., 2014), but the application
to unsigned network has not been discussed before. Here,
we are given n nodes (users) and a set of edges Ωtrain
(relationships) and the goal is to predict missing edges,
i.e. Ωtest. We use 4 real-world datasets: 2 co-author net-
works ca-GrQc(4,158 nodes and 26,850 edges) and ca-
HepPh(11,204 nodes and 235,368 edges), where we ran-
domly split edges into training and test such that |Ωtrain| =
|Ωtest|; 2 social networks LiveJournal(1,770,961 nodes,
|Ωtrain| = 83,663,478 and |Ωtest| = 2,055,288) and MyS-

pace(2,137,264 nodes, |Ωtrain| = 90,333,122 and |Ωtest|
= 1,315,594), where train/test split is done using times-
tamps. For our proposed methods BiasMC, ShiftMC and
ShiftMC-relax, we solve the non-convex form with k = 50
for ca-GrQc, ca-HepPhand k = 100 for LiveJournaland
MySpace. The α and λ values are chosen by a validation
set.

We compare with competing link prediction methods
(Kiben-Nowell & Kleinberg, 2003) Common Neighbors,
Katz, and SVD-Katz (compute Katz using the rank-k ap-
proximation, A ≈ UkΣkVk). Note that the classical matrix
factorization approach in this case is equivalent to SVD
on the given 0-1 training matrix, and SVD-Katz slightly
improves over SVD by further computing the Katz val-
ues based on the low rank approximation (see (Shin et al.,
2012)), so we omit the SVD results in the figures. Note that
the algorithm ldNMF proposed in (Sindhwani et al., 2010)
is time consuming because there are O(n2) hidden vari-
ables to estimate. Therefore, we compare with it only on a
n = 500 subset of ca-GrQc. On this subset, BiasMC got
1.14% and ldNMF got 1.08% top 10 prediction accuracy.

Based on the training matrix, each link prediction method
will output a list of k candidate entries. We evaluate the
quality of the top-k entries by computing the False Pos-
itive Rate (FPR) and False Negative Rate (FNR) on the
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(a) Mushroom dataset.

(b) Segment dataset.

Figure 2. Semi-supervised clustering performance of BiasMC-
inductive on two real datasets. BiasMC-inductive performs bet-
ter than MC-inductive (treats unlabeled relationships as zeros)
and spectral clustering (does not use features). BiasMC-inductive
achieves under 10% error using just 100 samples.

test snapshot. The results are shown in Figure 1 (c)-(f).
ca-GrQcis a small dataset, so we can solve the origi-
nal ShiftMC problem accurately, although ShiftMC-relax
achieves a similar performance here. For larger datasets,
we show only the performance of ShiftMC-relax. In gen-
eral BiasMC performs the best, and ShiftMC tends to per-
form better in the beginning. Overall, our methods achieve
lower FPR and FNR comparing to other methods, which
indicate that we obtain a better link prediction model by
solving the PU matrix completion problem. Also, BiasMC
is highly efficient — it takes 516 seconds for 10 coordinate
descent sweeps on the largest dataset (MySpace), whereas
computing top 100 eigenvectors using eigs in MATLAB
requires 2408 seconds.

6.4. Inductive matrix completion

We use the semi-supervised clustering problem to evaluate
our PU inductive matrix completion methods. PU inductive
matrix completion can be applied to many real-world prob-
lems, including recommender systems with features and 0-
1 observations, and the semi-supervised clustering problem

when we can only observed positive relationships. Here we
use the latter as an example to demonstrate the usefulness
of our algorithm.

In semi-supervised clustering problems, we are given n
samples with features {xi}ni=1 and pairwise relationships
A ∈ Rn×n, where Aij = 1 if two samples are in the
same cluster, Aij = −1 if they are in different clusters,
and Aij = 0 if the relationship is unobserved. Note that
the groundtruth matrix M ∈ {+1,−1}n×n exhibits a sim-
ple structure and is a low rank as well as low trace norm
matrix; it is shown in (Yi et al., 2013) that we can recover
M using IMC when there are both positive and negative
observations. We consider the setting where only positive
relationships are observed, so A is a 0-1 matrix. We show
that biased IMC can recover M using very few positive re-
lationships. We test the algorithms on two datasets: the
Mushroom dataset with 8142 samples, 112 features, and
2 classes; the Segment dataset with 2310 samples, 19 fea-
tures, and 7 classes. The results are presented in Figure
2. We compare BiasMC-inductive with (a) MC-inductive,
which considers all the unlabeled pairs as zeros and mini-
mizes ‖FuDFTv −A‖2F , and (b) spectral clustering, which
does not use feature information. Since the data is from
classification datasets, the ground truth M is known and
can be used to evaluate the results. In Figure 2, the vertical
axis is the clustering error rate defined as the fraction of en-
tries in M predicted with correct sign. Figure 2 shows that
BiasMC-inductive is much better than other approaches for
this task.

7. Conclusions
Motivated by modern applications of matrix completion,
our work attempts to bridge a gap between the theory of
matrix completion and practice. We have shown that even
when there is noise in the form of one-bit quantization as
well as a one-sided sampling process that reveals the mea-
surements, the underlying matrix can be accurately recov-
ered. We consider two recovery settings, both of which are
natural for PU learning, and provide similar recovery guar-
antees for both. Our error bounds are strong and useful in
practice. Our work serves to provide the first theoretical
insight into the biased matrix completion approach that has
been employed as a heuristic for similar problems in the
past. Experimental results on synthetic data conform to our
theory and the effectiveness of the methods are evident for
the link prediction task in real-world networks. A princi-
pled way of selecting or estimating the bias α in BiasMC
seems worthy of exploration given our encouraging results.
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A. Proofs
A.1. Proof of Lemma 1

Proof.

1
mn

E

[∑
i,j

l̃(Xij , Aij)
]

=
1
mn

∑
i,j

E

[
l̃(Xij , Aij)

]

=
1
mn

∑
i,j

(
P (Yij = 0)X2

ij + P (Yij = 1)
(
ρX2

ij

+ (1− ρ)(
(Xij − 1)2 − ρX2

ij

1− ρ
)
))

=
1
mn

∑
i,j

(
P (Yij = 0)X2

ij + P (Yij = 1)(Xij − 1)2
)

=
1
mn

E

[∑
i,j

(Xij − Yij)2

]
=

1
mn

E

[
l(Xij , Yij)

]
.

A.2. Proof of Theorem 1

Proof. We want to bound supX∈X
∣∣∣R̂l̃(X)−EA[Rl̃(X)]

∣∣∣.
First,

EA[Rl̃(X)] ≤ R̂l̃(X) + sup
X∈X

(
EA[

1
mn

∑
i,j

l̃(Xij , Aij)]

− 1
mn

∑
i,j

l̃(Xij , Aij)
)
.

Apply McDiarmid’s Theorem in (Shawe-Taylor & Cris-
tianini, 2004); since each l̃(Xij , Aij) can be either X2

ij or
(Xij−1)2−ρX2

ij

1−ρ , when changing one random variable Aij ,

in the worst case the quantity supX∈X
(
EA[Rl̃(X)] −

1
mn

∑
i,j l̃(Xij , Aij)

)
can be changed by

∣∣∣X2
ij −

(Xij − 1)2 − ρX2
ij

1− ρ

∣∣∣ ≤ ∣∣∣2Xij + 1
1− ρ

∣∣∣ ≤ 3
1− ρ

.

So by McDiarmid’s Theorem, with probability 1− δ/2,

sup
X∈X

(
EA(Rl̃(X))− 1

mn

∑
i,j

l̃(Xij , Aij)
)

≤EA

 sup
X∈X

(
EA(Rl̃(X))− 1

mn

∑
i,j

l̃(Xij , Aij)
)

+ 3

√
log(2/δ)√
mn(1− ρ)

.

Also,

EA

 sup
X∈X

(
EA[Rl̃(X)]− 1

mn

∑
i,j

l̃(Xij , Aij)
) (20)

≤ EA,Ã

 sup
X∈X

( 1
mn

∑
i,j

l̃(Xij , Ãij)−
1
mn

∑
i,j

l̃(Xij , Aij)
)

(21)

= EA,Ã

 sup
X∈X

1
mn

∑
i,j

(l̃(Xij , Ãij)− l̃(Xij , Aij))


(22)

=
1
mn

EA,A′,σ

 sup
X∈X

∑
i,j:Mij=1

σij(l̃(Xij , Ãij)− l̃(Xij , Aij))


(23)

≤ 1
mn

EA,σ

 sup
X∈X

∑
i,j:Mij=1

σij l̃(Xij , Aij)

 (24)

where σij are random variables with half chance to be +1
and half chance to be -1. Where from (22) to (23) we
use the fact that Aij = 0 with probability 1 if Mij =
0. Next we want to bound the Rademacher complexity
EA,σ

[
supX∈X

∑
i,j:Mij=1

σij l̃(Xij , Aij)
]
. When Mij =

1,

l̃(Xij , Aij) =

{
X2
ij with probability ρ

(Xij−1)2−ρX2
ij

1−ρ with probability 1− ρ

Since 0 ≤ Xij ≤ 1, the Lipschitz constant for l̃(Xij , Aij)
is at most 1/(1− ρ), so

(24) ≤ 1
mn

Eσ( sup
X∈X

∑
i,j:Mij=1

σijXij)

≤ 1
(1− ρ)mn

Eσ

[
sup
X∈X

‖PMij=1(σ)‖2‖X‖∗
]
.

As pointed out in (Shamir & Shalev-Shwartz, 2011), we
can then apply the main Theorem in (Latala, 2005), when
Z is an independent zero mean random matrix,

E[‖Z‖2] ≤ C
(

max
i

√∑
j

E[Z2
ij ] + max

j

√∑
i

E[Z2
ij ]

+ 4

√∑
ij

E[Z4
ij ]
)

with a universal constant C.

So in our caseE[‖σ‖2] ≤ C (
√
n+
√
m+ 4

√
s), so (24) ≤

tC
√
n+
√
m+ 4√s

(1−ρ)mn .
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A.3. Proof of Theorem 2

Let X̂ be the minimizer of (4), and

P := tC

√
n+
√
m+ 4

√
s

(1− ρ)mn
+ 3

√
log(2/δ)√
mn(1− ρ)

,

we have

E
[ 1
mn

∑
i,j

(X̂ij − Yij)2
]

= E
[ 1
mn

∑
i,j

l̃(X̂ij , Aij)
]

(Lemma 1)

≤ R̂l̃(X̂) + P (Theorem 1)

≤ R̂l̃(M) + P (by the definition of X̂)

≤ E
[ 1
mn

l̃(Mij , Aij)
]

+ 2P (Theorem 1)

= E
[ 1
mn

∑
i,j

(Mij − Yij)2
]

(Lemma 1)

Therefore
1
mn

∑
i,j

E
[
(Xij − Yij)2 − (Mij − Yij)2

]
≤ 2P.

Since P (Yij = 1) = Mij , we have

E
[
(Xij − Yij)2 − (Mij − Yij)2]

= Mi,j

(
(Xij − 1)2 − (Mij − 1)2

)
+ (1−Mij)(X2

ij −M2
ij)

= (Xij −Mij)2,

therefore
1
mn

∑
i,j

(Xij −Mij)2 ≤ 2P.

A.4. Proof of Theorem 3

Proof. We want to show

Rα,ρ(X)−min
X

Rα,ρ(X) ≤ η(Rlα,ρ(X)−min
X

Rlα,ρ(X)),

(25)
where η = max(1/q2, 1/(1−q)2). Consider the following
two cases. If Yij = 0, then

Rα,ρ(Xij) = α1Xij>q, min
Xij

Rα,ρ(Xij) = 0

Rlα,ρ(Xij) = αX2
ij , min

Xij
Rlα,ρ(Xij) = 0,

so the left hand side of (25) is α1Xij>q and the right hand
side is αX2

ij . Therefore we can simply verify that (25)
holds with η = 1/q2. For the second case if Yij = 1,

Rα,ρ(Xij) = ρ(1− α∗)1Xij>q + (1− ρ)α∗1Xij<q

=
(1− ρ)(1 + ρ)

2
1Xij<q +

ρ(1− ρ)
2

1Xij>q,

Rlα,ρ(Xij) =
(1− ρ)(1 + ρ)

2
(Xij − 1)2 +

ρ(1− ρ)
2

X2
ij .

We can see (1 − ρ)(1 + ρ)1Xij<q ≤ 1
(1−q)2 (1 − ρ)(1 +

ρ)(Xij − 1)2 and ρ(1 − ρ)1Xij<q <
1
q2 ρ(1 − ρ)X2

ij , so
both will satisfied by our chosen η.

Next we compute minXij Rα,ρ(Xij) and
minXij Rlα,ρ(Xij). By definition

Rα∗,ρ(Xij) =

{
ρ(1− α∗) = ρ(1−ρ)

2 if Xij > q

(1− ρ)α∗ = (1+ρ)(1−ρ)
2 if Xij < q.

Therefore

min
Xij

Rα,ρ(Xij) =
ρ(1− ρ)

2
. (26)

On the other hand,

Rlα,ρ(x) = ρ(1− α∗)x2 + (1− ρ)α∗(x− 1)2

=
ρ(1− ρ)

2
x2 +

(1− ρ)(1 + ρ)
2

(x− 1)2.

Taking gradient equals to zero we get x∗ = ρ+1
2ρ+1 , and

therefore

min
x
Rlα,ρ(x) =

(1 + ρ)ρ(1− ρ)
2

≤ ρ(1− ρ). (27)

Combining (26) and (27), we have

min
x
Rα,ρ ≥ min

x
Rlα,ρ/2,

therefore we need η ≥ 2. But this is satisfied by η =
max(1/q2, 1/(1 − q)2). Combining the above arguments,
we proved that (25) holds.

Next we show an upper bound of (25). Using the proof
similar to Theorem 1 we have

Rlα,ρ(X)−min
X

Rlα,ρ(X)

≤Ct
√
n+
√
m+ 4

√
s

mn
+ 3

√
log(2/δ)√
mn(1− ρ)

(28)

Now for the left hand side Rα,ρ(X)−minX Rα,ρ(X). By
Theorem 2, we know that

Rα∗,ρ(X)−min
X

Rα∗,ρ(X) =
(

1 + ρ

2

)
R(X). (29)

Here we use the fact that minX R(X) = 0 because
R(Y ) = 0, and the term B vanished because it is a con-
stant for both sides. Combining (29), (28) and (25), we
have(

1 + ρ

2

)
R(X) ≤ η

(
Ct

√
n+
√
m+ 4

√
s

mn
+ 3

√
log(2/δ)√
mn(1− ρ)

)
,

therefore

R(X) ≤ 2η
1 + ρ

(
Ct

√
n+
√
m+ 4

√
3s

mn
+ 3

√
log(2/δ)√
mn(1− ρ)

)
.
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A.5. Proof of Theorem 4

Proof. For convenience, we let X = FuDF
T
v . We first ap-

ply the same argument in to the proof in Appendix A.2 to
get (24). Now we want to bound the Rademacher com-
pelxity EA,σ[supw∈W

∑
i,j σij l̃(Xij , Aij)] (upper bound

of (24)). Since l̃(Xij , Aij) is Lipchitz continuous with con-
stant 1

1−ρ (use the fact that Xij is bounded between 0 and

1), we have l̃(Xij , Aij) ≤ 1
1−ρ (Xij −Aij). Therefore,

EA,σ[ sup
w∈W

∑
i,j:Aij=1

σij l̃((FuDFTv )ij , Aij)]

≤ EA,σ[ sup
w∈W

∑
i,j:Aij=1

σij
1− ρ

(FuDFTv )ij ] + EA,σ[
σij

1− ρ
]

=
1

1− ρ
EA,σ[ sup

w∈W

∑
i,j:Aij=1

σij tr(uivTj D)]

We then use the following Lemma, which is a special case
of Theorem 1 in (Kakade et al., 2008) when taking ‖ · ‖ to
be the matrix 2 norm and ‖ · ‖∗ (the dual norm) is the trace
norm:

Lemma 3. Let D := {D | D ∈ Rd×d and ‖D‖∗ ≤
D1} (where ‖W‖∗ is the trace norm of W ), and W =
maxi ‖Wi‖2, then

Eσ[ sup
D∈D

1
p

m∑
i=1

σitr(DWi)] ≤ 2WD1

√
log 2d
p

.

Now the set D is {D : ‖D‖∗ ≤ t} and number of terms
that Aij = 1 is p = n2(1 − ρ), so using the above lemma
we have

EA,σ[ sup
D∈D

∑
i,j:Aij=1

σij l̃((FuDFTv )ij , Aij)]

≤ 2
1− ρ

t

(
max
i,j
‖uivTj ‖2

)√
log 2d

√
p

≤ 2
1− ρ

tXuXv
√

log 2d
√
mn
√

1− ρ

=
2
√
mnt
√

log 2d√
1− ρ

XuXv.

Therefore,

1
mn

EA,σ[ sup
D∈D

∑
i,j:Aij=1

σij l̃((FuDFTv )ij , Aij)]

≤ 2t
√

log 2d√
mn
√

1− ρ
XuXv.

Combined with other part of the proof of Theorem 1 we

have

1
mn

∑
i,j

(Mij − FuD̂FTv )2

≤ 6

√
log(2/δ)√
mn(1− ρ)

+
4t
√

log 2d√
mn
√

1− ρ
XuXv.

A.6. Proof of Theorem 5

Proof. We follow the proof for Theorem 3. Again let
X = FuDF

T
v . First, we show that (25) is still true for

the inductive case. The only difference here is to show
that minX:‖X‖∗≤tRα,ρ ≥ ηminX:‖X‖∗≤tRlα,ρ(X) be-
cause now all the (i, j) elements are dependent. However,
as discussed in the previous proof, if we treat each (i, j) in-
dependently, the optimal value for each (i, j) elements will
be

Zij =

{
> q if Aij = 1,
≤ q if Aij = 0.

By assumption we know there exists an D with
‖FuDFTv ‖∗ = ‖D‖∗ ≤ t and X = FuDF

T
v satisfies the

above condition. Therefore the value of minX:‖X‖∗≤tRα,ρ
still takes the same value with Theorem 3. On the other
hand, since now we enforce a more strict constraint that
X = FuDF

T
v , Theorem 3 gives an upper bound of

minD:‖D‖∗≤tRlα,ρ(FuDF
T
v ). Therefore, equation (25)

still holds.

We then also have

Rlα,ρ(FuDF
T
v )−min

D
Rlα,ρ(FuDF

T
v )

≤ 6

√
log(2/δ)√
mn(1− ρ)

+
4t
√

log 2d√
mn
√

1− ρ
XuXv (30)

using the similar proof to Theorem 4.

Combining (30), (25) and Theorem 2, the proof is com-
plete.

B. Hardness of recovering M in the
non-deterministic setting

The 1-bit matrix completion approach of (Davenport et al.,
2012) can be applied to this setting — Given a matrix M ,
a subset Ω is sampled uniformly at random from M , and
the observed values are “quantized” by a known probability
distribution. We can transform our problem to the 1-bit
matrix completion problem by assuming all the unobserved
entries are zeros. For convenience we assume M ∈ Rn×n.
We will show that the one-bit matrix completion approach
in (Davenport et al., 2012) is not satisfactory for PU matrix
completion in the non-deterministic setting. In (Davenport
et al., 2012), the underlying matrixM is assumed to satisfy
‖M‖∗ ≤ t and ‖M‖∞ ≤ α; we are given a subset (chosen
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uniformly random) Ω with |Ω| = m and we observe the
following quantity on Ω:

Yi,j =

{
1 with probability f(Mij),
−1 with probability 1− f(Mij).

(31)

By setting f(Mij) = (1 − ρ)Mij and 1 ≥ Mij ≥ 0, and
assuming Ω contains all the n2 entries, it is equivalent to
our problem.

The estimator is obtained by solving the following opti-
mization problem:

M̂ = argmax
X:‖X‖∗≤t

∑
i,j∈Ω

( ∑
i,j:Yij=1

log(f(Xij))

+
∑

i,j:Yij=0

log(1− f(Xij))
)
. (32)

The following result shows that M̂ is close to M :

Theorem 6 ((Davenport et al., 2012)). Assume ‖M‖∗ ≤ t,
and Y is generated by (31), then

1
n2
‖M̂ −M‖2F ≤

√
2Cα

√
2nr
m

, (33)

where m = |Ω|, Cα := C2αLαβα where C2 is a constant
and

Lα = sup
|x|≤α

|f ′(x)|
f(x)(1− f(x))

and βα = sup
|x|≤α

f(x)(1− f(x))
(f ′(x))2

.

By substituting f(x) = (1 − ρ)x into the above formulas
we can find Lα ≥ 1

α(1−(1−ρ)α) and βα ≥ α(1−(1−ρ)α)
1−ρ , so

Lαβα ≥ 1
1−ρ . Therefore the above theorem suggests that

1
n2
‖M̂ −M‖2F ≤ O

( √
nr

(1− ρ)
√
m

)
.

In our setting, m = n2, so we have

1
n2
‖M̂ −M‖2F ≤ O

( √
r

(1− ρ)
√
n

)
. (34)

Thus the recovery error is O
(

1
(1−ρ)

√
n

)
, which implies that

the sample complexity for recovery using this approach is
quite high: For example, observing O(n log n) 1’s, when
M is dense, is not sufficient.

The main drawback of using this approach for PU matrix
completion is computation — time complexity of solving
(32) is O(n2) which makes the approach prohibitive for
large matrices. Moreover, the average error on each ele-
ment is O(1/

√
n) (in contrast, our algorithm has O(1/n)

average error). To see how this affects sample complex-
ity for recovery, assume

∑
i,jMi,j = O(n2) (number

of 1’s are of the same order as the number of 0’s in the
original matrix) and O(n log n) 1’s are observed. Then
(1− ρ) = O( logn

n ) and the average error according to (34)
is 1

n2 ‖M̂ −M‖2F = O(
√
rn

logn ), which diverges as n → ∞.
In contrast, we will show that the average error of our esti-
mator vanishes as n→∞.

C. Hardness of applying noisy matrix
completion to our deterministic setting

An easy way to model PU matrix completion problem in
the deterministic setting is to think of it as a traditional ma-
trix completion problem with n2 “noisy” observed entries.
In (Candès & Plan, 2009), it is assumed that A = M + Z
where Z is noise and δ = ‖Z‖F . The idea is to solve:

min ‖X‖∗ such that ‖PΩ(X −A)‖F ≤ δ, (35)

where δ is total amount of noise. (Candès & Plan, 2009)
established the following recovery guarantee:

Theorem 7 ((Candès & Plan, 2009)). Let M ∈ Rn×n be a
fixed matrix of rank r, and assume M is µ-incoherent, i.e.,

‖ui‖∞ ≤
√
µ/n and ‖vi‖∞ ≤

√
µ/n, (36)

where ui,vi are eigenvectors ofM . Suppose we observem
entries of M with locations sampled uniformly at random,
and

m ≥ Cµ2nr log6 n, (37)

where C is a numerical constant, then

‖M̂ −M‖ ≤ 4

√
(2 + p)n

p
δ + 2δ, (38)

where p = m/n2.

If we apply Theorem 7 to our case, δ = ‖Z‖F = ρ
1−ρ s̄, the

error of the recovered matrix M̂ using (35) can be bounded
as:

‖M̂ −M‖F ≤ ‖A−M‖F , (39)

and clearly this bound is not very useful.


