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Abstract

The k-means algorithm with cosine similarity, also known as the spherical k-means algorithm, is a
popular method for clustering document collections. However, spherical k-means can often yield quali-
tatively poor results, especially for small clusters, say 25-30 documents per cluster, where it tends to get
stuck at a local maximum far away from the optimal. In this paper, we present the first-variation princi-
ple that refines a given clustering by incrementally moving data points between clusters, thus achieving
a higher objective function value. Combining first-variation with spherical k-means yields a powerful
ping-pong strategy that often qualitatively improves k-means clustering. We present several experimen-
tal results to show that our proposed method works well in clustering high-dimensional and sparse text
data.

keywords: clustering, high-dimensional, k-means, refinement algorithm, first variation.

1 Introduction

Clustering or grouping document collections into conceptually meaningful clusters is a well-studied problem.
A starting point for applying clustering algorithms to unstructured document collections is to create a vector
space model, alternatively known as a bag-of-words model [17]. The basic idea is (a) to extract unique
content-bearing words from the set of documents treating these words as features and (b) to then represent
each document as a vector of certain weighted word frequencies in this feature space. Typically, a large
number of words exist in even a moderately sized set of documents where a few thousand words or more are
common; hence the document vectors are very high-dimensional. In addition, a single document typically
contains only a small fraction of the total number of words in the entire collection; hence, the document
vectors are generally very sparse, i.e., contain a lot of zero entries.

The k-means algorithm is a popular method for clustering a set of data vectors [5, 2, 18]. The classical
version of k-means uses Euclidean distance, however this distance measure is often inappropriate for its
application to clustering a collection of documents [21]. An effective measure of similarity between documents,
and one that is often used in information retrieval, is cosine similarity, which uses the cosine of the angle
between document vectors [17]. The k-means algorithm can be adapted to use the cosine similarity metric,
see [16], to yield the spherical k-means algorithm, so named because the algorithm operates on vectors that
lie on the unit sphere [4]. Since it uses cosine similarity, spherical k-means exploits the sparsity of document
vectors and is highly efficient [3].

The size of desired clusters is an important requirement for a clustering solution. From a large corpus
where the number of documents may range from 100,000 to a few million, to small document collections,
such as clustering web search results where the typical number of documents is 100-200, the end user often
wants to see small clusters of relevant documents. In addition, hierarchical clustering of large collections
often leads to small document clusters deep down in the tree hierarchy.
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The spherical k-means algorithm, similar to the Euclidean algorithm, is a hill-climbing procedure and is
prone to getting stuck at a local optimum (finding the global optimum is NP-complete). For large document
clusters, it has been found to yield good results in practice, i.e., the local optimum found yields good
conceptual clusters [4, 21, 3]. However, as shown in Section 3, spherical k-means often produces poor results
on small and moderately sized clusters where it tends to get stuck in a qualitatively inferior local optimum.

In this paper, we present an algorithm for refining the clusters produced by the spherical k-means
algorithm. Our refinement algorithm alternates between two phases: (a) first-variation and (b) spherical
k-means itself. A first-variation step moves a single document from one cluster to another, thereby increasing
the objective function value. Multiple iterations of first-variation allow an escape from local maximum, so
that fresh iterations of spherical k-means can be applied to further increase the objective function. This ping-
pong strategy yields a powerful refinement algorithm which often qualitatively improves k-means clustering.
Note that our refinement algorithm always improves upon the input clustering in terms of the objective
function value. We present several experimental results to validate these claims.

Many variants of the k-means algorithm, such as “batch” and “incremental” versions have been proposed
in the literature, see Section 6 for a discussion. The main contribution of our paper is our ping-pong strategy
that alternates between “batch” k-means and first-variation iterations, thereby harnessing the power of both
in terms of improved results and computational speed.

We now give an outline of the paper. In Section 2, we present the spherical k-means algorithm while
Section 3 presents scenarios in which this algorithm performs poorly. In Section 4, we introduce the first-
variation method and in Section 4.1, we present our proposed refinement algorithm that ping-pongs between
first variation and spherical k-means. Experimental results in Section 5 show that our refinement algorithm
yields qualitatively better results giving higher objective function values. In Section 6 we discuss related
work and finally, in Section 7 we present our conclusions and future work.

2 Spherical k-means algorithm

We start with some necessary notation. Let d be the number of documents, w be the number of words
and let X = {x1,x2, . . . ,xd} denote the set of non-negative document vectors, where each xi ∈ Rw and
‖xi‖2 = 1, i.e., each xi lies on the unit sphere. A clustering of the document collection is its partitioning
into the disjoint subsets π1, π2, ..., πk, i.e.,

k⋃
j=1

πj = X and πj ∩ πl = φ, j 6= l.

For a cluster π we denote the sum
∑
x∈π

x by s(π). The concept vector of the cluster π is defined by

c(π) =
s(π)
‖s(π)‖

,

i.e., the concept vector of the cluster π is the normalized expectation of π. We define the “quality” or
“coherence” of a non empty cluster π as

q (π) =
∑
x∈π

xT c(π) = ‖s(π)‖. (1)

We set q(φ) = 0 for convenience. Finally, for a partition {πj}k
j=1 we define the objective function to be the

sum of the qualities of the k clusters:

Q
(
{πj}k

j=1

)
=

k∑
j=1

q (πj) =
k∑

j=1

∑
x∈πj

xT cj ,

where we have written cj for c(πj). The goal is to find a clustering that maximizes the value of the above
objective function. In what follows we present the spherical k-means algorithm which is an iterative process
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that generates a sequence of partitions{
π

(0)
l

}k

l=1
,
{

π
(1)
l

}k

l=1
, . . . ,

{
π

(t)
l

}k

l=1
, . . . with Q

({
π

(t+1)
j

}k

j=1

)
≥ Q

({
π

(t)
j

}k

j=1

)
. (2)

To emphasize the relationship between the partitions
{

π
(t)
l

}k

l=1
and

{
π

(t+1)
j

}k

j=1
we shall denote

{
π

(t+1)
j

}k

j=1

by nextKM

({
π

(t)
l

}k

l=1

)
. For a partition

{
π

(t)
l

}k

l=1
with concept vectors c(t)

l = c
(
π

(t)
l

)
, and a document

vector x ∈ π
(t)
i we denote by present(t,x) and max(t,x) two special indices defined as follows:

present(t,x) = i, max(t,x) = arg max
l

xT c(t)
l .

When there is no ambiguity we shall suppress the iteration parameter t and denote the indices just by
present(x) and max(x). With the above notation, we are ready to present the spherical k-means algorithm:

Given a user supplied tolerance tol > 0 do the following:

1. Start with a partitioning
{

π
(0)
l

}k

l=1
and the concept vectors c(0)

1 , c(0)
2 , . . . , c(0)

k associated with the
partitioning. Set the index of iteration t = 0.

2. For each document vector x ∈ X find the concept vector cmax(x) closest in cosine similarity to x

(unless stated otherwise we break ties arbitrarily). Next, compute the new partitioning
{

π
(t+1)
l

}k

l=1
=

nextKM

({
π

(t)
l

}k

l=1

)
induced by the old concept vectors

{
c(t)

l

}k

l=1
:

π
(t+1)
l = {x ∈ X : l = max(x)} , 1 ≤ l ≤ k. (3)

3. Compute the new concept vectors corresponding to the partitioning computed in (3):

c(t+1)
l =

s(π(t+1)
l )

‖s(π(t+1)
l )‖

.

4. If
[
Q

(
nextKM

({
π

(t)
l

}k

l=1

))
−Q

({
π

(t)
l

}k

l=1

)
> tol

]
, increment t by 1, and go to step 2 above.

5. Stop.

As noted in (2), it can be shown that the above algorithm is a gradient-ascent scheme, i.e., the objective
function value does not decrease from one iteration to the next. See [4] for details. Like any other gradient-
ascent scheme, the spherical k-means algorithm is prone to local maxima.

3 Inadequacy of k-means

In this section, we present some scenarios in which the spherical k-means algorithm can get stuck in a
qualitatively poor local maximum.

Example 3.1 Consider the three unit vectors in R2:

x1 = (1, 0)T , x2 = (cos θ, sin θ)T , x3 = (0, 1)T .

Let the initial partition be π
(0)
1 = {x1,x2}, π

(0)
2 = {x3}.

The value of the objective function for this partition is Q0 = 2 cos
θ

2
+1. When 0 ≤ θ ≤ π

3
the concept vector

c1 = cos
θ

2
of the cluster π

(0)
1 is closest in cosine similarity to vectors x1 and x2. Hence, an application of

the spherical k-means does not change the partition.

3



The partition π
(1)
1 = {x1}, π

(1)
2 = {x2,x3}, has the objective function value Q1 = 2 cos

(
π

4
− θ

2

)
+ 1. If

θ =
π

3
, then Q0 = 2 cos

(π

6

)
+ 1 < 2 cos

( π

12

)
+ 1 = Q1, and so the optimal partition is missed by k-means.

As we will see later in Section 4, a “spherical first variation” iteration generates the optimal partition
π

(1)
1 = {x1}, π

(1)
2 = {x2,x3} starting from π

(0)
1 and π

(0)
2 :

Example 3.2 Consider the set of vectors X = {x1,x2, ...,xk2} such that

xik+j =
1
k
ei+1 + e(i+1)k+j , 0 ≤ i ≤ k − 1, 1 ≤ j ≤ k,

where el is the vector with 1 in its lth-location and 0’s elsewhere. Note that these vectors have dimensionality
k2 + k, and form k natural clusters with xik+j being in the (i + 1)-st cluster. The structure of these data
vectors can be seen more clearly by arranging them as columns of a matrix:

A = [x1,x2, . . . ,xk2 ] =


K1 K2 . . . Kk

I 0 . . . 0
0 I . . . 0
. . . . . . . . . . . .
0 . . . . . . I

 ,

where Kl is the k × k matrix with entries 1
k in the lth row and 0’s elsewhere, and I is the k × k identity

matrix.

Note that all vectors have the same norm, ||xi||2 =
√

1 + 1
k2 , and the intra-cluster and inter-cluster dot

products are respectively given by

1. xT
i xj = 1

k2 , where (l − 1)k + 1 ≤ i < j ≤ lk and l = 1, . . . , k,

2. xT
i xj = 0, otherwise.

As mentioned above if we want to cluster the k2 vectors into k clusters, the best clustering would have
x1,x2, . . . ,xk in the first cluster, the vectors xk+1,xk+2, . . . ,x2k in the second cluster, and so on. For this

optimal clustering, the cosine of any xi with its own concept vector is 1+ 1
k√

1+ 1
k2

√
k+1

=
√

k+1
k2+1 , and 0 with

any other concept vector.
But if we happen to initialize the k clusters as follows: cluster 1 consists of x1, xk+1, . . . ,xk2−k+1, cluster 2

consists of x2,xk+2, . . . ,xk2−k+2, and generally cluster l consists of xl,xk+l, . . . ,xk2−k+l, for 1 ≤ l ≤ k. Then
it can be seen that spherical k-means does not move any vectors from one cluster to another. This is because

the cosine of any xi with its own concept vector is
1+ 1

k2√
1+ 1

k2

√
k+ 1

k

= 1√
k
, and

1
k2√

1+ 1
k2

√
k+ 1

k

= 1√
k2+1

√
k

with

any other concept vector. Therefore spherical k-means gets stuck at this initial clustering. The situation is
similar with most other starting partitions. Indeed, in a set of experiments for k = 5, we observed that all
100 runs of spherical k-means with different initializations stopped without a change in the initial clustering.
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Example 3.3 The above behavior is often seen in real-life with document collections. As a concrete exam-
ple, we took a collection of 30 documents consisting of 10 documents each from the three distinct classes
MEDLINE, CISI and CRAN (see Section 5 for more details). These 30 documents contain a total of 1073
words (after removing stop words). Due to this high-dimensionality, the cosine similarities between the 30
document vectors are quite low. The average cosine similarity between all documents is 0.025; the average
cosine between documents in the same class is 0.294 while the average inter-class cosine is 0.0068. Thus
there is a clear separation between intra-class cosines and inter-class cosines.

However, when we run spherical k-means on this data set, there is hardly any movement of document
vectors between clusters irrespective of the starting partition — indeed we observed that 96% of 1000 different
starting partitions resulted in no movement at all, i.e., k-means returned a final partition that was identical
to the initial partition. This behavior is unusual; in contrast, for large data sets the first few iterations of
spherical k-means typically lead to a lot of movement of data points between clusters [4, 3]. However, a
closer look reveals the reasons for this failure. Consider a document vector x, and consider an initial cluster
πi such that x 6∈ πi. Due to the small number of data points and the small average cosine similarity between
documents, xT ci turns out to be quite small in magnitude for an arbitrary initial partitioning. However,
consider x and its own cluster πl, l = present(x). The cosine similarity xT cl may be broken down into two
parts:

xT cl =
1

‖s(πl)‖
+

∑
y∈πl−{x}

xT y
‖s(πl)‖

where we use the fact that xT x = 1. Note that the first term above is due to the contribution of x in cl. For
small high-dimensional data sets and an arbitrary initial partitioning, this first term itself is typically much
larger in magnitude than xT ci, x 6∈ πi. As a result, a spherical k-means iteration retains each document
vector in its original cluster. Thus, one could start with an arbitrarily poor clustering and the k-means
algorithm returns this poor clustering as the final output. We now see how to overcome this difficulty.

4 First Variations and Refinement Algorithm

In this section, we describe algorithms that “fix” the above examples.

Definition 4.1 A first variation of a partition {πl}
k
l=1 is a partition {π′l}

k
l=1 obtained from {πl}

k
l=1 by

removing a single vector x from a cluster πi of {πl}
k
l=1 and assigning this vector to an existing cluster πj of

{πl}
k
l=1.

Each first variation of a partition {πl}
k
l=1 is associated with a vector x. Note that there are k first variations

associated with a vector x that belongs to a cluster πi. We denote the set of all first variation partitions of
{πl}

k
l=1 by FV

(
{πl}

k
l=1

)
. Among all the elements of FV

(
{πl}

k
l=1

)
we seek to select the “steepest ascent”

first variation partition. The formal definition of this partition is given next.

Definition 4.2 The partition nextFV
(
{πl}

k
l=1

)
is a first variation of {πl}

k
l=1 so that for each first variation

{π′l}
k
l=1 one has

Q
(
nextFV

(
{πl}

k
l=1

))
≥ Q

(
{π′l}

k
l=1

)
.

The proposed first variation algorithm starts with an initial partition
{

π
(0)
l

}k

l=1
and generates a sequence of

partitions {
π

(0)
l

}k

l=1
,
{

π
(1)
l

}k

l=1
, . . . ,

{
π

(t)
l

}k

l=1
,
{

π
(t+1)
l

}k

l=1
, . . .

so that {
π

(t+1)
l

}k

l=1
= nextFV

({
π

(t)
l

}k

l=1

)
, t = 0, 1, . . . .
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We now pause briefly to illustrate differences between first variation iterations and iterations of the spherical
k–means algorithm. To simplify the presentation we consider a two cluster partition {Z,Y} where Z =
{z1, . . . , zn}, and Y = {y1, . . . ,ym}. Our goal is to examine whether a single vector, say zn, should be
removed from Z, and assigned to Y. We denote the potential new clusters by Z− and Y+, that is

Z− = {z1, . . . , zn−1}, and Y+ = {y1, . . . ,ym, zn}.

Note that the spherical k–means algorithm examines the quantity

∆k = zT
n [c(Y)− c(Z)] .

If ∆k > 0, then the spherical k–means algorithm moves zn from Z to Y. Otherwise zn remains in Z.

Unlike the spherical k–means algorithm, the spherical first variation algorithm computes

∆ =
[
q
(
Z−)

− q(Z)
]
+

[
q
(
Y+

)
− q(Y)

]
,

where the quality q is as in (1). A straightforward computation shows that

∆ =

[
n−1∑
i=1

zT
i c(Z−)−

n−1∑
i=1

zT
i c(Z)− zT

nc(Z)

]
+

[
m∑

i=1

yT
i c(Y+) + zT

nc(Y+)−
m∑

i=1

yT
i c(Y)

]

=
n−1∑
i=1

zT
i

[
c(Z−)− c(Z)

]
+

{
m∑

i=1

yT
i

[
c(Y+)− c(Y)

]
+ zT

n

[
c(Y+)− c(Y)

]}
+ zT

n [c(Y)− c(Z)] .

Thus

∆=
n−1∑
i=1

zT
i

[
c(Z−)− c(Z)

]
+

{
m∑

i=1

yT
i

[
c(Y+)− c(Y)

]
+ zT

n

[
c(Y+)− c(Y)

]}
+ ∆k. (4)

By the Cauchy-Schwarz inequality, we have
n−1∑
i=1

zT
i c(Z−) ≥

n−1∑
i=1

zT
i c(Z), and, therefore,

n−1∑
i=1

zT
i

[
c(Z−)− c(Z)

]
≥ 0.

For the same reason
m∑

i=1

yT
i

[
c(Y+)− c(Y)

]
+ zT

n

[
c(Y+)− c(Y)

]
≥ 0.

These two inequalities along with (4) imply that:

∆ ≥ ∆k.

The last inequality shows that even when ∆k ≤ 0 and cluster affiliation of zn is not changed by the spherical
k–means algorithm, the quantity ∆ may still be positive. Thus, while Q

(
{Z−,Y+}

)
> Q ({Z,Y}), the

partition {Z−,Y+} will be missed by the spherical k–means algorithm (see Example 3.1).
We now turn to the magnitude of ∆−∆k. From (4),

0 ≤ ∆−∆k = s(Z−)T
[
c(Z−)− c(Z)

]
+ s(Y+)T

[
c(Y+)− c(Y)

]
. (5)

Since the vectors s(Z−) and c(Z−) are proportional, the larger the difference c(Z−)− c(Z) is the larger the
dot product s(Z−)T [c(Z−)− c(Z)] becomes. A similar argument holds for the second term on the right
hand side of (5). Hence we can expect a “substantial” difference between ∆ and ∆k when removing a
vector from cluster Z and assigning it to cluster Y “significantly” changes locations of the corresponding
concept vectors. This phenomenon is unlikely to happen when the clusters are large. However, first variation
iterations become efficient in the case of small clusters (clusters of size 100 or less in our experience).
The “spherical first variation” algorithm is formally presented below:

Given a user supplied tolerance tol > 0 do the following:
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1. Start with a partitioning
{

π
(0)
l

}k(0)

l=1
. Set the index of iteration t = 0.

2. Generate nextFV

({
π

(t)
l

}k

l=1

)
.

3. If
[
Q

(
nextFV

({
π

(t)
l

}k

l=1

))
−Q

({
π

(t)
l

}k

l=1

)
≥ tol

]
, set

{
π

(t+1)
l

}k

l=1
= nextFV

({
π

(t)
l

}k

l=1

)
, in-

crement t by 1, and go to step 2.

4. stop.

It is easy to see that a single “spherical first variation” iteration applied to the initial partition of Example
3.1 generates the “optimal partition”.
We now address the computational complexity associated with first variation iterations. The time and
memory complexity of first variation iterations are basically the same as those of the spherical k–means
algorithm. The computational bottleneck of first variation iterations is in the computation of

q
(
π

(t)
i − {x}

)
− q

(
π

(t)
i

)
and q

(
π

(t)
j ∪ {x}

)
− q

(
π

(t)
j

)
for all the document vectors x ∈ X. Note that

q
(
π

(t)
i − {x}

)
− q

(
π

(t)
i

)
=

√∥∥∥s(
π

(t)
i

)∥∥∥2

− 2
∥∥∥s(

π
(t)
i

)∥∥∥xT c
(
π

(t)
i

)
+ 1 −

∥∥∥s(
π

(t)
i

)∥∥∥ (6)

and

q
(
π

(t)
j ∪ {x}

)
− q

(
π

(t)
j

)
=

√∥∥∥s(
π

(t)
j

)∥∥∥2

+ 2
∥∥∥s(

π
(t)
j

)∥∥∥xT c
(
π

(t)
j

)
+ 1 −

∥∥∥s(
π

(t)
j

)∥∥∥ . (7)

We remark that computation of the quantities
∥∥∥s(

π
(t)
l

)∥∥∥, and xT c
(
π

(t)
l

)
, x ∈ X, l = 1, . . . , k are needed

for iterations of the spherical k–means algorithm as well.

4.1 The Refinement Algorithm

While “spherical first variation” computes an exact change in the values of the objective function, iterations
of the algorithm lead to small increases in the objective function value; on the other hand k-means iterations
typically lead to larger increases. To achieve best results we “combine” these iterations. Our “ping-pong”
refinement algorithm is a two step procedure. — the first step runs a spherical k–means iteration; if the first
step fails the second step runs a spherical first variation iteration. The proposed refinement algorithm is as
follows.

Given a user supplied tolerance tol > 0 do the following:

1. Start with a partitioning
{

π
(0)
l

}k

l=1
. Set the index of iteration t = 0.

2. Generate the partition nextKM

({
π

(t)
l

}k

l=1

)
. If

[
Q

(
nextKM

({
π

(t)
l

}k

l=1

))
−Q

({
π

(t)
l

}k

l=1

)
≥ tol

]
,

set
{

π
(t+1)
l

}k

l=1
= nextKM

({
π

(t)
l

}k

l=1

)
, increment t by 1 and go to step 2.

3. Generate the partition nextFV

({
π

(t)
l

}k

l=1

)
. If

[
Q

(
nextFV

({
π

(t)
l

}k

l=1

))
−Q

({
π

(t)
j

}k

j=1

)
≥ tol

]
,

set
{

π
(t+1)
l

}k

l=1
= nextFV

({
π

(t)
l

}k

l=1

)
, increment t by 1, and go to step 2.

4. Stop.
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Table 1: Confusion matrices for Example 3.2 (k = 5). The objective function values for the initial partition
and final partition are 10.8193 and 12.0096 respectively.

cluster 0 2 0 0 0 1
cluster 1 0 2 2 0 1
cluster 2 0 0 1 0 0
cluster 3 0 1 1 4 1
cluster 4 3 2 1 1 2

cluster 0 5 0 0 0 0
cluster 1 0 5 0 0 0
cluster 2 0 0 5 0 0
cluster 3 0 0 0 5 0
cluster 4 0 0 0 0 5

initial partition final partition

Figure 1: Objective function increase for Example 3.2 (k = 5)

We emphasize that most of the computations associated with step 3 above have already been performed in
step 2, see (6) and (7). Hence the computational price of running a first variation iteration just after an
iteration of the spherical k–means algorithm is negligible. Note also that the above algorithm can do no
worse than spherical k-means. Indeed, as we show below, in many cases the quality of clusters produced is
much superior.

5 Experimental Results

In this section, we present experimental results which show that our refinement strategy often qualitatively
improves k-means clustering results. In all our experiments with spherical k-means, we tried several initial-
ization schemes varying from random initial partitions to choosing the initial centroids as data vectors that
are “maximally” far apart from each other.

For our first experiment we created the data set described in Example 3.2 setting k = 5. We observed
that all 100 runs of spherical k-means with different initializations stopped without changing the initial
partition. However, on applying our refinement algorithm to this initial partitioning, we were able to recover
the optimal clustering in all 100 cases. For a particular run, Table 1 shows the confusion matrices for the
initial partition and the final partition. Note that entry(i, j) in a confusion matrix gives the number of
vectors in cluster i that belong to the true class j; thus, a diagonal confusion matrix is desirable. Figure 1
shows the percentage increase in objective function as the refinement algorithm progresses.

For real-life experiments, we used the MEDLINE, CISI, and CRANFIELD collections (available from
ftp://ftp.cs.cornell.edu/pub/smart). MEDLINE consists of 1033 abstracts from medical journals, CISI
consists of 1460 abstracts from information retrieval papers, while CRANFIELD consists of 1400 abstracts
from aerodynamical systems papers.

For our experiments we created three data sets of 30, 150, and 300 documents respectively, see Exam-
ple 3.3. Each data set was created by an equal sampling of the three collections. After removing stopwords,
the document vectors obtained are very high-dimensional and sparse. For example the dimension for the 30
document data set is 1073. We then generated initial partitions for each data set. In all cases the spherical
k-means algorithm did not change the initial partition. We then applied our refinement algorithm to gen-
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Table 2: Confusion matrices for 30 documents with 1073 words. The objective function values for the initial
partition and final partition are 11.0422 and 11.9669 respectively.

cluster 0 5 1 2
cluster 1 2 7 1
cluster 2 3 2 7

cluster 0 9 1 0
cluster 1 0 9 0
cluster 2 1 0 10

initial partition final partition

Figure 2: Objective function increase for 30 documents

Table 3: Confusion matrices for 150 documents with 3652 words. The objective function values for the initial
partition and final partition are 28.8772 and 35.0355 respectively.

cluster 0 25 10 17
cluster 1 5 18 10
cluster 2 20 22 23

cluster 0 49 0 0
cluster 1 1 49 0
cluster 2 0 1 50

initial partition final partition

Figure 3: Objective function increase for 150 documents
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Table 4: Confusion matrices for 300 documents with 5577 words. The objective function values for the initial
partition and final partition are 52.694 and 58.3033 respectively.

cluster 0 52 10 26
cluster 1 13 55 37
cluster 2 35 35 37

cluster 0 99 0 0
cluster 1 0 77 0
cluster 2 1 23 100

initial partition final partition

Figure 4: Objective function increase for 300 documents

erate the final partitions. These results are summarized in Tables 2, 3 and 4 by the confusion matrices of
the initial and final partitions. In addition, Figures 2, 3 and 4 plot the percentage increase in the objective
function values.

All the final partitions generated have almost diagonal confusion matrices and about 10% higher objective
function values, which shows that our ping-pong strategy qualitatively improves spherical k-means clustering.
The confusion matrices in Table 2 and 3 are almost optimal, while the final partition generated in Table 4
is qualitatively better than the spherical k-means result, but is not optimal. In Section 7, we address future
work to further improve on our algorithm.

6 Related Work

The k-means algorithm has been well-studied and is one of the most widely used clustering methods [5, 10].
Some of the important early work is due to Forgy[6] and MacQueen[14]. In the vector quantization literature,
k-means clustering is also referred to as the Lloyd-Max algorithm[7]; see [9] for a comprehensive history of
quantization and its relations to statistical clustering. Many variants of k-means exist; the version we
presented in Section 2 is generally attributed to Forgy (see [6, 14]) and is similar to the one given in [5,
10.4.3]; we call this “batch” k-means since the centroids are updated after a batch of points has been
reassigned. Another version, which we call “incremental” k-means, randomly selects a single vector x whose
re–assignment from a cluster πi to a cluster πj leads to a better value of the objective function (see [5, 10.8]
where this incremental algorithm is referred to as “Basic Iterative Minimum-Squared-Error Clustering”).
Incremental k-means is similar to our first-variation iterations. The ISODATA algorithm introduces an
additional step in each k-means iteration, in which the number of clusters is adjusted[1, 8].

Of course, the idea of using a “variation” in order to improve the current value of a function is very old
and can be traced to the 1629 work of Fermat[20].

However, as we have found, neither the batch version nor the incremental version is satisfactory for our
purposes. As shown in Section 3, batch k-means can give poor results in high-dimensional settings. On the
other hand, the incremental version has a serious computational drawback since it requires an update of
cluster centroids with each move in the algorithm. Our main contribution in the paper is the “ping-pong”
strategy which exploits the strong points of both batch and incremental k-means.

Other clustering algorithms use “medoids” instead of centroids for clustering, for example, the PAM
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clustering algorithm swaps a single medoid with a non-selected object as long as the swap results in an
improvement of the quality of the clustering (see [11]). This idea is further pushed forward in [15] and [22].

7 Conclusion and Future Research

The paper introduces two procedures for refining k-means clustering. The first one, the spherical first
variation, is a modification of spherical k-means which leads to better clustering results at the expense of
execution speed. The improvement in clustering results due to first variations becomes significant in the case
of small clusters. This is especially helpful when clustering results are to be presented to a user expecting
small clusters containing relevant data. The second algorithm combines spherical k-means and spherical first
variation in a “ping-pong” manner. The combination enjoys the speed of spherical k-means and the precision
of spherical first variation. The computational complexity of the “ping-pong” combination is practically the
same as that of the spherical k-means algorithm.
Most of the clustering methods suffer from the defect that they can never repair what was done in previous
steps. Indeed whatever a divisive algorithm has split up can not be reunited. Once an agglomerative
algorithm has joined two objects, they can not be separated in the future (see e.g. [11]). Like the k-means
clustering algorithm the “ping-pong” algorithm introduced in this paper may decrease the number of clusters,
but generates no new clusters.
While computationally efficient the “ping-pong” algorithm suffers from some drawbacks. The algorithm is
unable to predict the number of clusters in the “right” partitioning of the data. The initial choice of k
centroids, which may be crucial for clustering, remains anybody’s guess. The guess does not always reflect
the data geometry hidden in a high dimensional vector space.
Our future enhancement of the algorithm focuses on the following main directions:
Direction 1: Variable number of clusters at each iteration.
Following the spirit of [13] we shall allow the number of clusters to change from one iteration to the next.
To accomplish this we modify the objective function as follows:

Qω

({
πj

}k

j=1

)
=

k∑
j=1

 ∑
x∈π

j

xT cj

 + kω =
k∑

j=1

q
(
πj

)
+ kω,

where ω is a scalar parameter. When ω = 0 the trivial partition maximizes the objective function. A
negative ω imposes penalty on the number of clusters, and prevents the trivial partition from becoming the
optimal one.
We plan to push this idea further. Rather that keeping ω constant, we plan to select the value of ω at each
iteration. The selection will be based on the current partition, and the parameter ω will then become a
feedback, and the iterative process can considered to be a discrete control system (see e.g. [19]).
Direction 2: Enhancement of the first variation algorithm.
While the first variation component of the algorithm leads to a small change in the objective function,
iterations of first variation push the objective function away from the local maximum. We intend to enhance
the first variation algorithm following the ideas of Kernighan and Lin [12] by allowing chains of moves to
increase the value of the objective function.
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