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Abstract

Clustering problems often involve datasets
where only a part of the data is relevant to
the problem, e.g., in microarray data anal-
ysis only a subset of the genes show cohe-
sive expressions within a subset of the con-
ditions/features. The existence of a large
number of non-informative data points and
features makes it challenging to hunt for co-
herent and meaningful clusters from such
datasets. Additionally, since clusters could
exist in different subspaces of the feature
space, a co-clustering algorithm that simul-
taneously clusters objects and features is of-
ten more suitable as compared to one that
is restricted to traditional “one-sided” clus-
tering. We propose Robust Overlapping Co-
Clustering (ROCC), a scalable and very ver-
satile framework that addresses the problem
of efficiently mining dense, arbitrarily posi-
tioned, possibly overlapping co-clusters from
large, noisy datasets. ROCC has several de-
sirable properties that make it extremely well
suited to a number of real life applications.

1. Motivation

When clustering certain real world datasets, it has
been observed that only a part of the data forms
cohesive clusters. For example, in the case of mi-
croarray data, typically only a small subset of the
genes cluster well and the rest can be considered non-
informative (Gupta & Ghosh, 2006). Problems ad-
dressed by eCommerce businesses, such as market bas-
ket analysis and fraud detection involve huge, noisy
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datasets with coherent patterns occurring only in small
pockets of the data. Moreover, for such data, coherent
clusters could be arbitrarily positioned in subspaces
formed by different, possibly overlapping subsets of
features, e.g., different subsets of genes may be cor-
related across different subsets of experiments in mi-
croarray data. Additionally, it is possible that some
features may not be relevant to any cluster.

Traditional clustering algorithms like k -means or ap-
proaches such as feature clustering (Dhillon et al.,
2003a) do not allow clusters existing in different sub-
sets of the feature space to be detected easily. Co-
clustering simultaneously clusters the data along mul-
tiple axes, e.g., in the case of microarray data it si-
multaneously clusters the genes as well as the experi-
ments (Cheng & Church, 2000) and can hence detect
clusters existing in different subspaces of the feature
space. In this paper we focus on real life datasets,
where co-clusters are arbitrarily positioned in the data
matrix, could be overlapping and are obfuscated by
the presence of a large number of irrelevant points.
Our goal is to discover dense, arbitrarily positioned
and overlapping co-clusters in the data, while simul-
taneously pruning away non-informative objects and
features.

2. Related Work

Density based clustering algorithms such as DB-
SCAN (Ester et al., 1996), OPTICS and Bregman
Bubble Clustering (Gupta & Ghosh, 2006) have a mo-
tivation similar to our proposed approach and use the
notion of local density to cluster only a relevant sub-
set of the data into multiple dense clusters. However,
all of these approaches are developed for one-sided
clustering only, where the data points are clustered
based on their similarity across the entire set of fea-
tures. In contrast, both co-clustering (biclustering)
and subspace clustering approaches locate clusters in
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subspaces of the feature space. The literature in both
areas is recent but explosive, so we refer to the sur-
veys and comparative studies in (Madeira & Oliveira,
2004; Parsons et al., 2004; Prelic et al., 2006) as good
starting points. As we shall see in Section 3, none of
the existing methods provide the full set of capabilities
that the proposed method provides.

Co-clustering was first applied to gene expression data
by Cheng and Church (2000), who used a greedy search
heuristic to generate arbitrarily positioned, overlap-
ping co-clusters, based on a homogeneity constraint.
However, their iterative insertion and deletion based
algorithm is expensive, since it identifies individual co-
clusters sequentially rather than all at once. The al-
gorithm also causes random perturbations to the data
while masking discovered biclusters, which reduces the
clustering quality. The plaid model approach (Lazze-
roni & Owen, 2002) improves upon this by directly
modeling overlapping clusters, but still cannot identify
multiple co-clusters simultaneously. These algorithms
are not very general as they assume additive Gaus-
sian noise models. Neither can they effectively handle
missing data.

In addition to the greedy, iterative algorithms dis-
cussed above, deterministic algorithms such as Bi-
Max (Prelic et al., 2006) and OPSM (Ben-Dor et al.,
2002) have also been proposed. The BiMax approach
is based on a simple, binary data model, which results
in a number of co-clusters that is exponential in the
number of genes and experiments, making it imprac-
tical in case of large datasets. The order preserving
sub matrix algorithm (OPSM) looks for submatrices
in which the expression levels of all the genes induce
the same linear ordering of the experiments. This al-
gorithm although very accurate, is designed to iden-
tify only a single co-cluster. A recent extension to
OPSM (Zhang et al., 2008) finds multiple, overlapping
co-clusters in noisy datasets, but is very expensive in
the number of features.

Bregman Co-Clustering (BCC), proposed by Banerjee
et al. (2007), is a highly efficient, generalized frame-
work for partitional co-clustering (Madeira & Oliveira,
2004) that works with any distance measure that is a
Bregman divergence, or equivalently any noise distri-
bution from the regular exponential family. The BCC
framework is however restricted to grid-based, parti-
tional co-clustering and assigns every point in the data
matrix to exactly one co-cluster, i.e., the co-clustering
is exhaustive and exclusive.

Parsons et al. (2004) present a survey of subspace
clustering algorithms, which includes bottom-up grid
based methods like CLIQUE and iterative top-down

algorithms like PROCLUS. However, most of them
are computationally intensive, need extensive tuning
to get meaningful results and identify uniform clusters
with very similar values rather than clusters with co-
herent trends or patterns. The pCluster model (Wang
et al., 2002) and the more recent reg-cluster model (Xu
et al., 2006) generalize subspace clustering and aim to
identify arbitrary scaling and shifting co-regulations
patterns. However, unlike our proposed approach,
these pattern-based, heuristic approaches do not use
a principled cost function and do not scale well due to
high complexity in the number of features.

3. Our Contributions

We propose Robust Overlapping Co-clustering
(ROCC), a novel approach for discovering dense,
arbitrarily positioned co-clusters in large, possibly
high-dimensional datasets. Our approach is robust in
the presence of noisy and irrelevant objects as well as
features, which our algorithm automatically detects
and prunes during the clustering process. ROCC is
based on a systematically developed objective func-
tion, which is minimized by an iterative procedure
that provably converges to a locally optimal solution.
ROCC is also robust to the noise model of the data
and can be tailored to use the most suitable distance
measure for the data, selected from a large class of
distance measures known as Bregman divergences.

The final objective of ROCC is achieved in two steps.
In the first step, the Bregman co-clustering algo-
rithm is adapted to automatically prune away non-
informative data points and perform feature selection
by eliminating non-discriminative features and hence
cluster only the relevant part of the dataset. This
step finds co-clusters arranged in a grid structure, but
only a predetermined number of rows and columns are
assigned to the co-clusters. Note however that this
result cannot be achieved by simply removing some
rows/columns from the BCC result. An agglomera-
tion step then appropriately merges similar co-clusters
to discover dense, arbitrarily positioned, overlapping
co-clusters. Figure 1 contrasts the nature of the co-
clusters identified by ROCC with those found by BCC
and illustrates the way in which they are conceptually
derived from the partitional model of BCC.

The ROCC framework has the following key features
that distinguish it from existing co-clustering algo-
rithms:

1. The ability to mine the most coherent co-clusters
from large and noisy datasets.

2. Detection of arbitrarily positioned and possibly
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Figure 1. Nature of clusters identified by BCC and ROCC.
Shaded areas represent clustered elements, rearranged ac-
cording to cluster labels, while non-shaded areas denote
discarded values.

overlapping co-clusters in a principled manner by
iteratively minimizing a suitable cost function.

3. Generalization to all Bregman divergences, in-
cluding squared Euclidean distance, commonly
used for clustering microarray data and I-
divergence, commonly used for text data cluster-
ing (Dhillon et al., 2003b).

4. The ability to naturally deal with missing data
values, without introducing random perturba-
tions or bias in the data.

5. Efficient detection of all co-clusters simultane-
ously rather than sequentially, enabling scalability
to large and high-dimensional datasets.

As far as we know, no existing co-clustering algo-
rithm (Zhang et al., 2008; Xu et al., 2006; Baner-
jee et al., 2007; Cheng & Church, 2000) has all of
the above properties. Our contribution is significant,
since as described in Section 1 there exist several ap-
plications where all these properties are necessary for
discovering meaningful patterns.

4. Problem Definition

We begin with the formulation of the first step of the
ROCC algorithm. Let m be the total number of rows
(data points) and n the total number of columns (fea-
tures). The data can be represented as an m×n matrix
Z of data points and features. Let sr and sc be the
specified number of rows and columns, respectively, to
be retained after pruning. If the exact values are not
known, it is sufficient to set sr and sc conservatively
to large values since the algorithm (Section 5.3) does
a second round of pruning as needed. Our aim is to
simultaneously cluster sr rows and sc columns of Z
into a grid of k row clusters and l column clusters.
The co-clusters will hence be comprised of sr × sc en-
tries selected from the m × n entries of Z. Let K and
L denote the sets consisting of the sr clustered rows
and the sc clustered columns respectively. Let ρ be a

mapping from the sr rows ∈ K to the k row clusters
and γ be a mapping from the sc columns ∈ L to the
l column clusters. Let squared Euclidean distance be
the selected distance measure 1. We want to find a co-
clustering defined by (ρ, γ) and sets K and L for the
specified sr and sc that minimize the following objec-
tive function

k∑

g=1

l∑

h=1

∑

u∈K:ρ(u)=g

∑

v∈L:γ(v)=h

wuv(zuv − ẑuv)2 , (1)

where zuv is the original value in row u, column v
of the matrix, assigned to row cluster g and column
cluster h and ẑuv is the value approximated within co-
cluster g-h. wuv is the non-negative weight associated
with matrix entry zuv, which allows the algorithm to
deal with missing values and data uncertainties. For
example, the weights for known values can be set to
1 and missing values can be effectively ignored by set-
ting their weights to 0. The objective function is hence
the element-wise squared error between the original
and the approximated value, summed only over the
clustered elements (sr × sc) of the matrix Z. The
value ẑuv can be approximated in several ways, de-
pending on the type of summary statistics that each
co-cluster preserves. Banerjee et al. (2007) identify six
possible sets of summary statistics, of increasing com-
plexity, that one might be interested in preserving in
the reconstructed matrix Ẑ, which lead to six differ-
ent co-clustering schemes. Two of these approximation
schemes for ẑuv are described in Section 5.3.

In the next step of ROCC, the goal is to agglomerate
similar co-clusters to recover the arbitrarily positioned
co-clusters. In order to agglomerate co-clusters, we
first define a distance measure between two candidate
co-clusters (cc1 and cc2) as follows. Let cc denote the
co-cluster formed by the union of the rows and columns
in cc1 and cc2. The matrix entries ẑuv in cc are ap-
proximated using the selected approximation scheme.
The average element-wise error e for cc is computed
as e = 1

N

∑
zuv∈cc(zuv − ẑuv)

2, where N is the num-
ber of elements in cc. The error e is defined to be the
distance between cc1 and cc2.

5. ROCC Algorithm

5.1. Solving Step 1 of the ROCC Problem

A co-clustering (ρ, γ), that minimizes the objective
function (1), can be obtained by an iterative algorithm.

1A more general description, which allows any Bregman
divergence as the loss function, is given in Section 5.3.
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The objective function can be expressed as a sum of
row or column errors, computed over the sr rows and
sc columns assigned to co-clusters. If row u is assigned
to row cluster g, the row error is the error summed over
the appropriate sc elements in the row, i.e., if ρ(u) = g,

then Eu(g) =
∑l

h=1

∑
v∈L:γ(v)=h wuv(zuv − ẑuv(g))2.

For a fixed γ, the best choice of the row cluster as-
signment for row u is the g that minimizes this error,
i.e., ρnew(u) = arg gmin Eu(g). After computing the
best row cluster assignment for all the m rows, the top
sr rows with minimum error are selected to partici-
pate in the current row clusters. A similar approach is
used to assign columns to column clusters. Note that
the rows/columns that are not included in the current
sr/sc rows/columns assigned to co-clusters are still re-
tained since they could be included in the co-clusters
in future iterations.

Given the current row and column cluster assignments
(ρ, γ), the values ẑuv within each co-cluster have to be
updated by recomputing the required co-cluster statis-
tics based on the approximation scheme. This prob-
lem is identical to the Minimum Bregman Information
(MBI) problem presented in (Banerjee et al., 2007)
for updating the matrix reconstruction Ẑ. Solving the
MBI problem for this update is guaranteed to decrease
the objective function.

This iterative procedure is described in Figure 2. Step
1(i) decreases the objective function due to the prop-
erty of the MBI solution, while Steps 1(ii) and 1(iii)
directly decrease the objective function. The objective
function hence decreases at every iteration. Since this
function is bounded from below by zero, the algorithm
is guaranteed to converge to a locally optimal solution.

5.2. Solving Step 2 of the ROCC Problem

We now provide a heuristic to hierarchically agglom-
erate similar co-clusters. The detailed steps are:

(i) Pruning co-clusters. Since the desired number
of co-clusters is expected to be significantly smaller
than the number of co-clusters at this stage of the al-
gorithm, co-clusters with the largest error values can
be filtered out in this step. Filtering also reduces the
computation effort required by the following merging
step. If one has no idea of the final number of co-
clusters, a simple and efficient filtering heuristic is to
select the error cut-off value as the one at which the
sorted co-cluster errors show the largest increase be-
tween consecutive values. The co-clusters with errors
greater than the cut-off are filtered out. Alternatively,
if the final number of co-clusters to be found is pre-
specified, it can be used to prune away an appropriate
number of co-clusters with the largest errors.

(ii) Merging similar co-clusters. This step in-
volves hierarchical, pairwise agglomeration of the co-
clusters left at the end of the pruning step (Step 2(i))
to recover the true co-clusters. Each agglomeration
identifies the “closest” pair of co-clusters that can be
well represented by a single co-cluster model and are
thus probably part of the same original co-cluster, and
merges them to form a new co-cluster 2. “Closest” here
is in terms of the smallest value of distance as defined
in Section 4. The rows and columns of the new co-
cluster consist of the union of the rows and columns of
the two merged co-clusters. Merging co-clusters in this
manner allows co-clusters to share rows and columns
and hence allows partial overlap between co-clusters.
If the number of co-clusters to be identified is pre-
specified, one can stop merging when this number is
reached. If not, merging is continued all the way until
only a single co-cluster (or a reasonably small num-
ber of co-clusters) is left. The increase in the distance
between successively merged co-clusters is then com-
puted and the set of co-clusters just before the largest
increase is selected as the final solution.

5.3. Overall ROCC Meta-Algorithm

In this section we put together the procedures de-
scribed in Sections 5.1 and 5.2 and present the com-
plete ROCC algorithm. The key idea is to over-
partition the data into small co-clusters arranged in
a grid structure and then agglomerate similar, parti-
tioned co-clusters to recover the desired co-clusters.
The iterative procedure (Section 5.1) is run with large
enough values for the number of row and column clus-
ters (k and l). Similarly, the sr and sc input parame-
ters are set to sufficiently large values. Since the prun-
ing step (Step 2(i) in Section 5.2) takes care of discard-

ing less coherent co-clusters, setting sr ≥ strue
r and

sc ≥ strue
c is sufficient. The resulting k× l clusters are

then merged as in hierarchical agglomerative cluster-
ing until a suitable stopping criterion is reached. The
pseudo-code for the complete algorithm is illustrated
in Figure 2.

Approximation Schemes. The ROCC algorithm
can use each of the six schemes (co-clustering bases)
listed by Banerjee et al. (2007) for approximating the
matrix entries ẑuv. For concreteness, we illustrate
two specific approximation schemes with squared Eu-
clidean distance, which give rise to block co-clusters
and pattern-based co-clusters respectively 3. The

2A variant of this algorithm can be derived by adopting
Ward’s method (Ward, 1963) to agglomerate co-clusters.
Empirically we found little difference between the two ap-
proaches.

3These co-cluster definitions correspond to basis 2 and
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meta-algorithm in Figure 2 uses C to refer to the se-
lected co-clustering basis.

Block co-clusters. Let the co-cluster row and col-
umn indices be denoted by sets U and V respec-
tively. In this case, a matrix entry is approximated
as ẑuv = zUV , where zUV = 1

|U||V |

∑
u∈U,v∈V zuv is the

mean of all the entries in the co-cluster.

Pattern-based co-clusters. zuv is approximated as
ẑuv = zuV + zUv − zUV , where zuV = 1

|V |

∑
v∈V zuv

is the mean of the entries in row u whose column in-
dices are in V and zUv = 1

|U|

∑
u∈U zuv is the mean of

the entries in column v whose row indices are in U .
This approximation can identify co-clusters that show
a coherent trend or pattern in the data values, making
it suitable for clustering gene expression data (Cho &
Dhillon, 2008).

Distance Measures. In Section 4 we developed the
objective function (1) assuming squared Euclidean dis-
tance as the distance measure. The objective function
and the iterative procedure to minimize it can be gen-
eralized to all Bregman divergences (Banerjee et al.,
2007). The selected Bregman divergence is denoted
by dφ in Figure 2.

Algorithm: ROCC
Input: Zm×n, sr, sc, k, l, basis C, dφ

Output: Set of co-clusters

Step 1
Begin with a random co-clustering (ρ, γ)
Repeat
Step (i): Update co-cluster models, ∀[g]k1 , [h]l1,
Update statistics for co-cluster (g, h) based on
basis C to compute new ẑ values

Step (ii): Update ρ
(iia). ∀[u]m1 ,

ρ(u) = arg gmin
∑l

h=1

∑
v∈L:γ(v)=h wuvdφ(zuv, ẑuv(g))

(iib). K = the set of sr rows with least error
from among the m rows

Step (iii): Update γ
(iiia). ∀[v]n1 ,

γ(v) = arg hmin
∑k

g=1

∑
u∈K:ρ(u)=g wuvdφ(zuv, ẑuv(h))

(iiib). L = the set of sc columns with least error
from among the n columns

until convergence
Step 2: Post-process (see text for details)
(i) Prune co-clusters with large errors.
(ii) Merge similar co-clusters until stopping criterion is reached.
return identified co-clusters.

Figure 2. Pseudo-code for ROCC Meta-Algorithm

basis 6 defined by the BCC framework (Banerjee et al.,
2007) respectively.

5.4. ROCC with Pressurization

The iterative minimization procedure in Step 1 of the
ROCC algorithm begins with random initialization for
ρ and γ, which could lead to poor local minima. A
better local minimum can be achieved by applying
an extension of the pressurization technique used by
BBC (Gupta & Ghosh, 2006). Our strategy is to be-
gin by clustering all the data and iteratively shave off
data points and features till sr rows and sc columns
are left. Let spress

r (j) and spress
c (j) denote the num-

ber of data points and features to be clustered using

the Step 1 procedure (Figure 2) in the jth iteration
of pressurization. spress

r (1) and spress
c (1) are initialized

to m and n respectively, after which these parame-
ters are decayed exponentially till spress

r (j) = sr and
spress

c (j) = sc. The rate of decay is controlled by pa-
rameters βrow and βcol, which lie between 0 and 1.
At iteration j, spress

r (j) = sr + ⌊(m − sr) ∗ βj−1
row⌋ and

spress
c (j) = sc +⌊(m−sc)∗βj−1

col ⌋. The intuition is that
by beginning with all the data being clustered and
then slowly reducing the fraction of data clustered,
co-clusters can move around considerably from their
initial positions to enable the discovery of small, co-
herent patterns.

6. Experimental Results

6.1. Finding Co-clusters in Microarray Data

We now evaluate the performance of ROCC on two
yeast microarray datasets, the Lee dataset (Lee et al.,
2004) and the Gasch dataset (Gasch et al., 2000).
The Lee dataset consists of gene expression values
of 5612 yeast genes across 591 experiments and can
be obtained from the Stanford Microarray Database
(http://genome-www5.stanford.edu/). The Gasch
dataset consists of the expression values of 6151 yeast
genes under 173 environmental stress conditions and
is available at http://genome-www.stanford.edu/

yeast_stress/. Since the ground truth for both
datasets is available only in the form of pairwise link-
ages between the genes that are known to be function-
ally related, we compare the quality of the co-clusters
identified by different co-clustering algorithms by com-
puting the overlap lift (Gupta & Ghosh, 2006) for the
genes in each co-cluster. Overlap lift measures how
many times more correct links are predicted as com-
pared to random chance and is related to a normalized
version of the proportion of disconnected genes mea-
sure used by (Prelic et al., 2006). On these datasets,
the aim is to find the most coherent and biologically
useful 150 to 200 co-clusters. We run ROCC (with
pressurization) on the Lee dataset with the input pa-
rameters set to sr = 2000, sc = 400, k = 50 and l = 10
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and on the Gasch dataset with sr = 500, sc = 120,
k = 80, l = 15. Based on the final number of clusters
to be identified, Step 2 of ROCC prunes all but the
best 200 co-clusters and then continues merging until
150 co-clusters are left. The set of co-clusters just be-
fore the largest increase in merge distance is returned
as the solution.

Figure 3 compares the performance of ROCC with
prominent co-clustering algorithms, i.e., Cheng and
Church’s Biclustering algorithm, the OPSM algo-
rithm (Ben-Dor et al., 2002), the BiMax algo-
rithm (Prelic et al., 2006), and the BCC algorithm
on the Lee and Gasch microarray datasets. Through
extensive experimentation, Prelic et al. (2006) show
that the OPSM and the BiMax algorithms outper-
form other well known co-clustering algorithms like
Samba (Tanay et al., 2002), ISA (Bergmann et al.,
2003) and xMotif (Murali & Kasif, 2003) on real mi-
croarray data. The BiMax and OPSM results were
generated using the BicAT software( http://www.

tik.ee.ethz.ch/sop/bicat/) (Barkow et al., 2006).
Since it would be infeasible to evaluate the exponen-
tial number of co-clusters identified by BiMax, we se-
lected the first 200 co-clusters for comparison. Though
OPSM is designed to return only the best co-cluster,
it is extended in BicAT to return up to 100 largest co-
clusters among those that achieve the optimal score.
The value of the l parameter for OPSM was set to 10.
The Biclustering algorithm 4 is run with the number
of clusters equal to 200. The value of the parame-
ter α is set to the average H-score (Cheng & Church,
2000) of the co-clusters in the ROCC solution with
the highest overlap lift over varying sr and sc values,
i.e., α = 0.032 for Lee and α = 0.017 for Gasch 5.
Since BCC clusters all the data, pruning is carried out
by a post-processing step. This step sorts the rows
and columns by their distance to the corresponding
cluster representatives and selects the sr rows and sc

columns with smallest errors. In the Lee and Gasch
datasets respectively, around 15% and 3% of the ma-
trix entries are missing. As described in Section 5,
ROCC and BCC can ignore missing entries by appro-
priately setting the weight matrix. The missing en-
tries in the data matrix input to the other algorithms
are replaced by random values in the same range as
the known expression values. Both ROCC and BCC
use squared Euclidean distance and find pattern-based
co-clusters. BCC uses the same sr and sc values as

4We used the implementation provided by Cheng and
Church.

5We found the biclustering results to not be very sen-
sitive to the choice of α (range of α values from 0.005 to
0.04 were tried).

ROCC. The ROCC, BCC and Biclustering results are
averaged over 10 trials, while OPSM and BiMax are
deterministic.

Figure 3 shows that on both datasets, ROCC does
much better than the other co-clustering approaches
in terms of the overlap lift of the gene clusters. The
figure also displays above each bar, the percentage of
the data matrix entries clustered by the correspond-
ing algorithm. On the Lee dataset, it is interesting
that although ROCC clusters a much larger fraction of
the data matrix entries than Biclustering, OPSM and
BiMax, the co-clusters are of superior quality. The
Gasch dataset is more noisy than Lee, which explains
why a larger fraction of the dataset has to be pruned
as compared to Lee to get meaningful clusters. Le-
sion studies confirmed that both step 1 and step 2 of
the ROCC algorithm contribute to the improvement
in performance, step 1 being more important. We em-
pirically compared only step 1 with other approaches
(BCC, BBC, k-means) on the Lee and Gasch datasets,
for different fractions of retained data (for other algo-
rithms the least fitting data was discarded in a post-
processing step). ROCC with only step 1 was signif-
icantly better than all others for 10% or more of the
data discarded. A more detailed description is pre-
sented in (Deodhar et al., 2008).

Most of the gene clusters identified by ROCC on the
Lee dataset were biologically significant, with very low
p-values. Table 1 summarizes some of the identified
high purity gene clusters. The coverage (x/y) indicates
that x out of the y known members of a category were
found. In contrast, the 10 best gene clusters identified
by Biclustering had an average p-value of 5.50e-04.

Table 1. Examples of biologically significant clusters found
by ROCC on the Lee dataset.

# genes Category(Coverage) p-value
20 tRNA ligase (8/36) 6.63e-14
63 ER membrane (14/84) 3.886e-14
20 PF00270-DEAD (12/51) <1e-14
12 Glycolysis (8/16) <1e-14
24 PF00660-SRP1-TIP1 (22/30) <1e-14

6.2. Simultaneous Feature Selection and
Clustering

We now illustrate an interesting application of the
ROCC algorithm to perform feature selection along
one axis, while simultaneously clustering along the
other. ROCC interleaves feature selection with clus-
tering and iteratively improves both, which is intu-
itively better than independently performing feature
selection a priori and then clustering using the identi-
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Figure 3. Comparison of ROCC with other co-clustering
algorithms on the Lee and Gasch datasets. The number
above each bar indicates the percentage of the data matrix
entries clustered by each algorithm.

fied features (Law et al., 2004). Additionally, ROCC
also clusters related features, achieving simultaneous
dimensionality reduction.

We consider an exemplary application of ROCC
in the above context to a lung cancer microarray
dataset (Gordon et al., 2002) with 12533 genes and
181 human tissue samples. The samples belong to two
lung cancer classes, malignant pleural mesothelioma
(31 samples) and adenocarcinoma (150 samples). In
this application, the aim is to cluster the samples, to
recover the two existing sample groups in an unsuper-
vised manner, using the expression values of the genes
as features. Many of the genes are known to be non-
informative and have noisy expression values, which
makes feature selection an important issue. We use
a version of the dataset that is pre-processed based
on domain knowledge, where genes that do not show
substantial variation in expression values across the
samples are removed as described in (Cho & Dhillon,
2008), resulting in a set of 2401 genes. Even though
the pre-processing step results in removing several
non-discriminative genes, we apply ROCC to test if
any more genes can be identified, that on pruning will
improve sample cluster accuracy further. For this ap-
plication, ROCC (with pressurization) is set up to clus-
ter all the samples and prune along the “gene” axis.
Note that the agglomeration procedure (Step 2) is not
required for this application.

Sample clustering solutions are evaluated by comput-
ing the accuracy of the cluster labels with respect to
the true class labels as defined in (Cho & Dhillon,
2008). Figure 4 displays the sample cluster accu-
racy of ROCC at different fractions of genes clustered.
For comparison, the sample cluster accuracy values of
BCC, which uses all the genes to obtain a co-clustering
of genes and samples, and k -means, which uses all the

genes as features to cluster the samples are also plotted
as straight lines in the same figure. These experiments
are performed on the column standardized dataset,
where every column has zero mean and unit variance.
BCC and ROCC use squared Euclidean distance and
find pattern-based co-clusters with k = 20,l = 2. The
results are averaged over 20 runs. One can see that
ROCC gives almost perfect clustering, even with only
10% of the genes selected, significantly better than
BCC and k -means.
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Figure 4. Lung Cancer data: sample clustering accuracy

7. Concluding Remarks

In this paper, we have presented Robust Overlapping
Co-clustering as a comprehensive framework capable
of dealing with several challenges in clustering real life
datasets. ROCC is robust to the presence of irrele-
vant data points and features, and discovers coherent
co-clusters very accurately as illustrated in Section 6.
Moreover, though ROCC requires several input pa-
rameters to be supplied, i.e., sr, sc, k and l, it is
relatively very robust to the choice of these param-
eters because of the post-processing steps as detailed
in Section 5.3. While in this paper we focused on clus-
tering microarray data, it would be worthwhile to in-
vestigate the applicability of suitable instances of the
ROCC framework to clustering problems in different
domains like text mining and market basket analysis.
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