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Abstract

Let LDLt be the triangular factorization of an unreduced symmetric tridiagonal matrix
T − τI . Small relative changes in the nontrivial entries ofL andD may be represented by
diagonal scaling matricesD1 andD2; LDLt −→ D2LD1DD1L

tD2. The effect ofD2 on the
eigenvaluesλi − τ is benign. In this paper we study the inner perturbations induced byD1.
Suitable condition numbers govern therelativechanges in the eigenvaluesλi − τ . We show
that whenτ = λj is an eigenvalue then therelativecondition number ofλm − λj , m /= j , is
the same for alln twisted factorizations, one of which isLDLt, that could be used to represent
T − τI . See Section 2.

We prove that asτ −→ λj the smallest eigenvalue has relative condition number relcond=
1+O(|τ − λj |). Each relcond is a rational function ofτ . We identify the poles and then use
orthogonal polynomial theory to develop upper bounds on the sum of the relconds ofall the
eigenvalues. These bounds require O(n) operations for ann× nmatrix. We show that the sum
of all the relconds is bounded byκ trace(L|D|Lt) and conjecture thatκ < n/‖LDLt‖. The
quantity trace(L|D|Lt)/‖LDLt‖ is a natural measure of element growth in the context of this
paper.

An algorithm for computing numerically orthogonal eigenvectors without recourse to the
Gram–Schmidt process is sketched. It requires that there exist values ofτ close to each cluster
of close eigenvalues such that all the relconds belonging to the cluster are modest (say6 10),
the sensitivity of the other eigenvalues is not important. For this reason we develop O(n)

bounds on the sum of the relconds associated with a cluster. None of our bounds makes
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reference to the nature of the distribution of the eigenvalues within a cluster which can be
very complicated. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Eigenvalue; Symmetric tridiagonal matrix

1. Discussion and summary

A real symmetric tridiagonal matrixT permits triangular factorizationT =
L+D+Lt+ provided that no proper leading principal submatrix ofT is singular. The
main goal of this paper is to show that the entries inL+ andD+ determine the very
small eigenvalues ofT to high relative accuracy except in a few easily recognized
cases. This is in sharp contrast to eigenvalue dependence on the entries ofT except
for special classes such as scaled diagonally dominantT’s [2]. An illustration and
precise statement of some of our results are given at the end of this section but first
it is proper to step back and explain why this recondite result in Perturbation Theory
is of general interest.

Current methods for diagonalizingT use the QR algorithm for the eigenvalues
and inverse iteration for the eigenvectors and have been considered very satisfactory.
They require only O(n2) operations forT’s of ordern except for certain cases. The
existence of such cases was first noted (by Dr. George Fann of Pacific Northwest
National Laboratories) in the early 1990s. WhenT has a large cluster of, say, 100 or
more eigenvalues all agreeing to 4 or more decimal places then the execution time
dramatically increases. The cause is the O(n3) Gram–Schmidt process invoked to
make sure that all computed eigenvectors associated with the cluster are orthogonal
to working accuracy.

On the other hand the ‘true’ eigenvectors ofT are orthogonal and so if we can ap-
proximate them very accurately (error angle O(ε)) then orthogonality to working pre-
cision follows automatically. In [3,5] we have shown how to compute, despite round-
off errors, an accurate approximation toλ’s eigenvector under two conditions:
(i) λ has few (63) decimal digits in common with its neighbors;
(ii) λ is approximated to highrelative accuracy (all bits but the last few must be

correct).
In order to achieve (i), the origin must be shifted close to each cluster, i.e., one uses
T − τI instead ofT. To achieve (ii), the shifted eigenvaluesλi − τ in the cluster
must bedefinedto highrelativeaccuracy byT − τI . The trouble is that, in general,
this is not the case. So one must either give up this approach or find a new represen-
tation ofT − τI that does define its very small eigenvalues to the desired accuracy.
Our finding is that triangular factorization ofT − τI has the desired property except
in rare situations that can be detected in O(n) operations. We show that when there
is little element growth then all eigenvalues are usually defined to high relative accu-
racy. Sinceτ may be chosen anywhere in a small interval on either side of a cluster
there is a continuum ofτ ’s that satisfy both (i) and (ii) for the whole cluster. See the
illustration below.
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In 1967, Kahan discovered a tricky proof that the Cholesky factorsLLt of a pos-
itive-definiteT have the required property: smallrelativechanges in the entries ofL
cause smallrelativechanges in each eigenvalue ofLLt = T however small it may
be. That is what is meant by saying thatL definesthe eigenvalues to highrelativeac-
curacy and that is the meaning of our title’s phrase ‘relatively robust representation’
of T. Only in the late 1990s have simple explanations of Kahan’s result been found.

Our task is to investigate the indefinite case. In Section 2, we introduce a condition
number relcond (>1) for each eigenvalueλi − τ . In the definite case all relconds are
unity. We give a variety of small indefinite examples and show that whenτ is an
eigenvalue then all possible twisted factorizations ofT − τI give the same value
for relcond(λi − τ ). That is why we stay with the familiarL+D+Lt+ and ignore
U−D−U t−. Here ends the motivation for our study.

An illustration: The matrixW+21 was introduced by Wilkinson [16] in the 1960s:
diag= (10,9,8, . . . ,1,0,1, . . . ,8,9,10), the next to diagonal entries are all 1. The
eigenvalues are orderedλ1 < λ2 < · · · < λ21. Eigenvaluesλ20 and λ21 are near
10.75 and differ by 10−13, λ18 andλ19 are near 9.21 and differ by 2δ = 5.6× 10−11,
λ16 andλ17 are near 8.1 and differ by 10−9. In Table 1, we exhibit some condition
numbers, relcond (defined in Section 2), when the shiftτ is close to{λ18, λ19}. The
top row in Table 1 is the index of the unshifted eigenvalue. Whenτ = λ18 trian-
gular factorization does not exist but neverthelessτ = λ18− δ gives an excellent
representation. The relconds shown forλ19+ δ do not change asτ −→ λ19.

One of our results, a realistic bound on the relative condition numbers for an in-
terior cluster, is given in Theorem 5, Section 8, but a crude corollary that establishes
our claim may be quoted here.

Consider a clusterC of #(C) close eigenvalues with reasonable gaps on its
left end(gap-left) and on its right end(gap-right) separating it from the rest
of the spectrum of T. Letτ be chosen very close to, or at, the left end ofC, let
T − τI = L+D+Lt+, letωk = signD+(k, k) then∑
λi∈C

relcond(λi − τ ) 6 #(C)+ 2

gap-left

∑
ωk=−1

(
L+|D+|Lt+

)
kk
,

where |D+| = (D2+)1/2. The point is that neither#(C) nor tiny gaps inside
the cluster influence the second term. There is a similar result for the right
end ofC.

Table 1
Condition numbers for selectedλi

τ 1 16 17 18 19 20 21

λ19+ δ 1.00 1.26 1.26 1.00 1.00 1.35 1.35
λ18− δ 1.87 1.26 1.26 1.51 2.54 1.35 1.35
λ18− δ/100 101.9 1.26 1.26 1.99 198.8 1.35 1.35
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Our final result is a bound on
∑
λi∈C relcond(λi − τ ) but it makes no reference

to element growth and is computable in O(n) operations. It illustrates a mechanism
by which the tiny eigenvalues can have small relconds while the large ones have
huge relconds.

We also show that, if triangular factorization exists withτ = λj , then, as
τ −→ λj ,

relcond(λj − τ ) = 1+O
(|λj − τ |) .

The limit case, whenτ = λj , is well known; whenD+(n, n) = 0 then norelative
perturbation can disturb its singularity nor make large relative changes to the eigen-
vector entries.

Let us sketch the sequential algorithm that is based on the results of this paper.
Suppose thatT is positive-definite. Compute the Cholesky factorizationLLt = T
and find all eigenvalues ofLLt to high relative accuracy. Next compute the eigenvec-
tors for allλ− τ with large relative gaps by the method in [5]. If some eigenvalues
remain without eigenvectors, then pick a new shiftτ at, or close to, one end of
the remaining spectrum. Perform a careful factorizationL̄D̄L̄t = LLt − (newτ )I
using dqds algorithms described in [5] and monitor the bounds mentioned above. If
necessary perturbτ (away from the cluster) until the bounds are acceptable. Then
refine, to high relative accuracy, the shifted small eigenvalues with large relative
gaps and compute their eigenvectors. Repeat the process with suitable shiftsτ until
all eigenvectors have been computed.

Our results do not provide easy reading but the analysis has been shortened signif-
icantly by invoking kernel polynomials and the Christoffel–Darboux identity. Thus,
Sections 3 and 4 present background material that may not be familiar to some read-
ers. Our analysis begins in Section 5, where we study the vector whose squared norm
is a relcond. Section 6 is an important digression to prove a conjecture made by one
of us in [3]. Section 7 shows clearly how the indefinite case differs from the definite
one, see (38), and leads us to a conjecture that gives an elegant bound on the sum of
all relconds in terms of element growth.

Our computable bounds for individual clusters, Theorems 5 and 6, are given in
Section 8.

2. Relative condition numbers

Consider the eigenvector equation for any eigenvectorsm of T, ‖sm‖ = 1,

L+D+Lt+sm = (T − τI)sm = sm(λm − τ ). (1)

The eigenvalues have been shifted byτ and it is the robustness of these shifted values
that is our concern here.

An attractive property of tridiagonals is that arbitraryrelativeperturbations to the
n− 1 parameters inL+ and then parameters inD+ may be represented as
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L+ −→ EL+E−1 and D+ −→ D+F 2

for appropriately chosen diagonal scaling matrices close toI. See [5] for details. The
tridiagonal matrix changes fromL+D+Lt+ to

EL+E−1FD+FE−1Lt+E.
Outer perturbations corresponding toE have been studied by several authors [6,7,
9–11,15] and are known to cause smallrelative changes in each eigenvalue. A
preliminary study of inner perturbations, corresponding toE−1F , was made by
Dhillon [13], and in his thesis he has introduced a single condition number for
inner perturbations. Let us write

E−1F = I + D, ‖D‖ 6 η. (2)

He applies standard first-order additive perturbation theory to

L+(I + D)D+(I + D)Lt+ = L+D+Lt+ + 2L+DD+Lt+ + L+D2D+Lt+.
The changeδλj to λj − τ is given by a Rayleigh quotient

δλj=2st
jL+DD+Lt+sj +O(η2),

|δλj |62ηst
jL+|D+|Lt+sj +O(η2),

since, by (2),∣∣vtDD+v
∣∣ 6 ηvt|D+|v for all v.

So

|δλj |
|λj − τ | 6 2η

st
jL+|D+|Lt+sj

|λj − τ | +O(η2) = 2η
st
jL+|D+|Lt+sj

|st
jL+D+Lt+sj | +O(η2).

Dhillon defines the condition number forλj − τ under small relative changes in the
entries ofL+ andD+ as

relcond(λj − τ ) := relcond(λj − τ ;L+,D+) :=
∥∥ |D+|1/2Lt+sj

∥∥2

|λj − τ | . (3)

In (3) the explicit reference toτ reminds the reader that the shift isτ .
Our main interest is in values ofτ close to or even equal to certain eigenvalues of

T. Consequently,D+ may be either ill-conditioned or singular and so we now derive
an alternative expression for relcond which reveals that relcond is independent of
D+.

From (1) withm← j ,

D+Lt+sj = L−1+ sj (λj − τ )
and from the expression forδλj above

δλj =2st
jL+DD+Lt+sj +O(η2)

=2st
jL+DL−1+ sj (λj − τ )+O(η2).
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For any positive-definite diagonal scaling matrixC

δλj = 2st
jL+CDC−1L−1+ sj (λj − τ )

so that, using (2)

|δλj |
|λj − τ |62

∥∥∥s t
jL+C

∥∥∥ · ‖D‖ ∥∥∥C−1L−1+ sj

∥∥∥
62η

∥∥∥s t
jL+C

∥∥∥ · ∥∥∥C−1L−1+ sj

∥∥∥
62η‖L+C‖ · ‖(L+C)−1‖
=2η cond(L+C).

Thus,

relcond(λj − τ )=
∥∥∥st
jL+C

∥∥∥ · ∥∥∥C−1L−1+ sj

∥∥∥ (4)

6min
C

cond(L+C). (5)

One of us has shown that cond(L+) can be computed in a stable way (no overflows
or underflows) in O(n) operations. See [4]. We say more about the best scaling matrix
C in Section 2.2.

For the analysis in the remaining sections it is convenient to introduce an alternate
notation. Define

L :=L+|D+|1/2, X :=sign(D+).

In the event thatD+ is singular, i.e.,(D+)n,n = 0, we need a convention and choose
Xn,n = 1,Ln,n = 0. Thus,X2 = I . Now

T − τI = L+D+Lt+ = LXLt (6)

andX will not be perturbed.
It is worth mentioning that there is an unsymmetric eigenvalue problem closely

related toLXLtsm = sm(λm − τ ), namely,

XLtL
(
XLtsm

)=(XLtsm
)
(λm − τ ),(

st
mL
)
XLtL=(λm − τ )st

mL.

Inner perturbations ofLXLt become outer perturbations ofXLtL. Now the ordi-
nary (absolute) condition number ofλm − τ for XLtL equals the relative condition
number given in (3):

relcond(λm − τ ) = st
mLL

tsm

|s t
mLXLtsm|

= secant∠
(
Ltsm,XLtsm

)
:= cond

(
λm − τ ;XLtL

)
.
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In [16, Chapter 2], Wilkinson showed that it is impossible to have just one large
condition number among the eigenvalues of an unsymmetric matrix and so the same
is true for our relconds.

2.1. Examples

Here we give the reader a guide to our relative condition numbers by studying
various examples.

Example 1.Consider the Toeplitz matrix


2 1
1 2 1

1 2 1
1 2




with well-separated eigenvalues

λ1 = 0.3820, λ2 = 1.3820, λ3 = 2.6180, λ4 = 3.6180.

Takeτ = λ3(1+ ε), ε ≈ 2.2× 10−16, to formT − τI = LXLt. Thus,

L =




0.786151

−1.272010 0.999999

1.000000 1.272010

−0.786151 3.65002× 10−8




and

X = diag(−1,1,−1,−1).

At first glance, we might fear that

relcond(λ3− τ ) = s t
3LL

ts3

|λ3− τ |
may be large since|λ3− τ | = 4.44× 10−16, L is nearly singular and the Cholesky-
like bound (5) withC = |D+|1/2 gives

relcond(λj − τ ) 6 cond(L) = 9.01× 107, 1 6 j 6 4.

A closer look atL shows that its rank is revealed by its(4,4) element and thus by
D+ in theL+D+Lt+ decomposition. The bound (5) withC = I gives

relcond(λj − τ ) 6 cond(L+) = 6.975, 1 6 j 6 4.

Despite the near singularity ofL, LXLt determines all its eigenvalues to high rel-
ative accuracy. In fact, the relative condition numbers for all the eigenvaluesλj − τ
are 1.00, 1.89, 1.00 and 1.89, respectively.
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Example 2.When there are close eigenvalues, the choice ofτ can be critical in get-
ting a relatively robust representation. For example, consider the 21× 21 Wilkinson
matrixW+21, which has several pairs of close eigenvalues. The pair(λ14, λ15) is near
7 and has separationλ15− λ14 = 4.1× 10−7. Consider two factorizations, one with
τ1 = λ14− ε and the other withτ2 = λ15+ ε (ε ≈ 2× 10−16):

W+21− τ1I = L14X14L
t
14, W+21− τ2I = L15X15L

t
15.

There is a large element growth inL14 (‖L14‖2 = 1.9× 109), whereas there is no el-
ement growth in formingL15. The large element growth leads to some large relative
condition numbers:

relcond(λ15− τ1;L14) = 2.8× 108,

relcond(λ1− τ1;L14) = 1.4× 108.

Note that hereλ15− τ1 = 4.1× 10−7 whereasλ1− τ1 = −8.129. Due to the ele-
ment growth eigenvalues as large as−8.12 are not determined to relative or abso-
lute accuracy (with respect to‖W+21‖) by L14. Similarly, λ3 − τ1, λ5− τ1, λ7− τ1,
λ9− τ1, λ11− τ1, andλ13− τ1 have large relconds. Somewhat surprisingly, the
smallest eigenvalueλ14− τ1 is determined to high relative accuracy with

relcond(λ14− τ1;L14) = 2.15.

See Section 6 for more on the relcond of the smallest eigenvalue asτ −→ λj . On
the other hand, nearλ15 there is no element growth andall eigenvalues ofL15XLt

15
are relatively robust. In particular,

relcond(λ14− τ2;L15) = 1.0,

relcond(λ15− τ2;L15) = 1.0

and the largest relcond is less than 2.1.

Example 3.In all examples we have tried, absence of element growth in the triangu-
lar factorization has given relative robustness, see Section 7. However, the converse
is not always true. Consider the tridiagonal [3, p. 114]

T =



√
2/2

√
2/2 η

1+ η 1− 3η 1+ 3η 1+ 2η√
2/2

√
2/2 η


 .

With ε ≈ 2.2× 10−16 andη = √ε the eigenvalues areλ1 ≈ ε, λ2 ≈ 1+√ε, λ3 ≈
1+ 2

√
ε, λ4 ≈ 2.0. FormingT − I = LXLt gives

L =




1.057× 10−4

6.688× 103 6.688× 103

−1.057× 10−4 2.114× 10−4

4.983× 10−5 1.409× 10−4
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with

X = diag(1,−1,1,1).

Now, ‖L‖2 = 8.95× 107 and cond(L) = 1.37× 108. The rather large element
growth suggests that the eigenvalues{λj − τ }may not be relatively robust. Indeed

relcond(λ1− 1) ≈ relcond(λ4− 1) ≈ 4.5× 107.

However, the twosmallesteigenvaluesλ2− 1 andλ3 − 1 are relatively well condi-
tioned:

relcond(λ2− 1) = 1.666, relcond(λ3− 1) = 2.333. (7)

Here we have the remarkable situation in which the large eigenvalues are not relative-
ly robust, while the small eigenvalues are determined to high relative accuracy. The
nice relconds in (7)are explained by small second components in the eigenvectors
s2 ands3 – boths2(2) ands3(2) are O(10−8) and neutralize the large elements in the
second column ofL when formingLts, see (3).

Example 4.There are cases where no eigenvalue is relatively robust. For example,

L =




0.7451
−0.6967 2.01× 10−7

1.81× 106 1.81× 106

1.51× 10−14 0.2744




with

X = diag(−1,1,−1,−1).

Eigenvalues ofLXLt are

−1.075, −0.075, −0.075, 0.924

with relative condition numbers

1.1× 1011, 6.4× 1012, 6.8× 107, 6.5× 1012.

In our primary application (computing orthogonal eigenvectors), we have no in-
terest in the above situation where‖L‖ is large and no eigenvalue ofLXLt is small
(like ε). On the contrary, we must chooseτ so thatLXLt is nearly singular.

2.2. Twisted factorizations

If T − τI permits triangular factorization in both directions, from top to bottom
and from bottom to top, then

T − τI = L+D+Lt+ = U−D−U t−.
It is an interesting property of tridiagonal matrices that from these two representa-
tions one can create a one parameter family of (twisted) factorizationsN̄kD̄kN̄

t
k with

essentially no extra work. Using Matlab notation,
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N̄k(1:k,1:k) = L+(1:k,1:k),

N̄k(k: n, k: n) = U−(k: n, k: n)
and these equations are consistent because

L+(k, k) = U−(k, k) = 1.

Finally,

D̄k(i, i) =


D+(i, i), i < k,

D−(i, i), i > k,

γk, i = k.
There are various formulas forγk. The most symmetrical is

γk = D+(k)+D−(k)− (T (k, k)− τ ).
We say thatk is the twist index.

For theoretical purposes it is convenient to defineNk = N̄k|D̄k|1/2 and Xk =
sign(D̄k).

At first sight the existence of these extra factorizations seems to complicate the
search for relatively robust representations. For each shiftτ we must consider the
best among the twisted factorizations. The following surprising result eases the situ-
ation significantly.

Theorem 1. Let T be an unreduced symmetric tridiagonal matrix with eigenpairs
(λj , sj ), j = 1, . . . , n. If, and only if, sj has no zero entries, thenT − λj I permits a
twisted factorizationT − λj I = NkXkN t

k for eachk = 1, . . . , n and relcond(λm −
λj ;Nk), m /= j, is the same for all k.

Proof. By the convention introduced for formula (6),Xk(k, k) = 1 andNk(k, k) =
0. If ek denotes thekth column ofI then, because of the twist,

Nkek = ek · 0.
The existence of the twisted factorizations is an immediate consequence of well-
known formulae forL+, U−, etc. From (12) and (16) withβi = T (i + 1, i):

D+(i, i) = −βi sj (i + 1)

sj (i)
, i < n,

D+(n, n) = 0,

D−(i, i) = −βi−1
sj (i − 1)

sj (i)
, i > 1,

D−(1,1) = 0.

If no entry ofsj vanishes then both sets of pivots are nonzero until the end andL+,
D+, U−,D− are well defined andγk = 0.

The claim for the relconds holds because all the twisted factorsNk in T − λj I =
NkXkN t

k are closely related. WriteL = Nn by columns as
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L = (`1, `2, . . . , `n−1, o)

and

T − λj I = LXLt =
n−1∑
i=1

`iωi`
t
i + 0, ωi = X(i, i).

Recall that̀ i is null except in positionsi andi + 1. The crucial step in the proof is
to push columnsk throughn− 1 of L to the right for eachk = 1, . . . , n− 1 to get

Nk = (`1, . . . , `k−1, o, `k, . . . , `n−1),

Xk = (ω1, . . . , ωk−1,1, ωk, . . . , ωn−1).

Note thatNk has its twist at indexk. Thus,

NkXkN
t
k =

n−1∑
i=1

`iωi`
t
i + 0= T − λj I.

So, by the analogue of (3),

relcond(λm − λj ;Nk)=
∥∥N t

ksm
∥∥2

|λm − λj |

=
∑n−1
i=1

(
`t
ism

)2
|λm − λj |

and the right-hand side is independent ofk. �

Since our interest is in values ofτ very close to or at eigenvalues we conclude
that we are not going to miss a good representation by staying withL+D+Lt+.

However, the twists are relevant to obtaining good bounds. ReplaceL+D+Lt+ by
N̄kD̄kN̄

t
k in (4) and setC = I to see that

relcond(λm − λj )=
∥∥st
mN̄k

∥∥ ∥∥∥N̄−1
k sm

∥∥∥
6cond

(
N̄k
)
.

We conjecture that ifk is chosen so that|sj (k)| = ‖sj‖∞, then cond(N̄k) is close
to min cond(L+C) over all scaling matricesC. GivenL+,D+, U−,D− a suitablek
may be found in O(n) operations [12]. Theorem 1 justifies the notation relcond(λm −
λj ) to replace relcond(λm − λj ; N̄k, D̄k).

3. Associated orthogonal polynomials

The material in this section is essential to our analysis.
Consider triangular factorization as a function of a real parameterτ . If τ is not an

eigenvalue of a proper leading principal submatrix ofT, then
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T − τI = L+D+Lt+,
whereL+ is lower bidiagonal andD+ is diagonal. The symbol+ indicates that the
elimination is made with increasing indices. It is convenient to write the factoriza-
tion in an unconventional way that ought to be called the Cholesky factorization of
T − τI , namely,

T − τI = LXLt, (8)

where

L = L+|D+|1/2, X = sign(D+). (9)

The dependence ofL andX on τ is suppressed. By this change of representation we
confine our concern with relative changes to the entries of one matrixL instead of
two matricesL+ andD+.

Letp0(τ ) = 1 and define the vectorp= p1:n(τ ) = (p0(τ ), p1(τ ), . . . , pn−1(τ ))
t

by

(T − τI)p= −enpn(τ ), (10)

whereej denotes columnj of I. Let αi = T (i, i), βi = T (i, i + 1) > 0. Apply (10)
for j = 1,2, . . . , n− 1, to find

p1(τ ) = τ − α1

β1
,

p2(τ ) = (α2 − τ )p1+ β1p0

−β2
= det[T2− τI2]

β1β2
,

whereTi = T (1: i,1: i). Hence, by induction, fork < n,

pk(τ ) = (−1)k
det[Tk − τIk]
β1β2 · · ·βk (11)

and (11) holds fork = n as well if βn :=1. We shall see that these polynomials
pi are intimately related to the matrixL in (9). The leading coefficient ofpj is
1/(β1β2 · · ·βj ) > 0, j < n, while that ofpn is 1/(β1β2 · · ·βn−1) > 0. Note that
whenτ = λj thenpn(τ) = 0 and the normalized eigenvectorsj satisfies

pk−1(λj ) = sj (k)

sj (1)
. (12)

Following Matlab notation letv(1: k) denote the subvector ofv in positions 1,2, . . . ,
k. If pk(τ ) = 0, thenp(1 : k) is an eigenvector of the leading principal submatrixTk.
In general,

(Tk − τIk)p(1:k) = −ekpk(τ )βk. (13)

For future reference we note that, fork < n,

(T − τI)
(

p(1:k)
o

)
= (−ekpk(τ )+ ek+1pk−1(τ )) βk. (14)
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The eigenvector matrixSof T is defined byS(k, i) = si (k) and the orthogonality of
rowsk andm of Syields, by (12),

0=
n∑
i=1

S(k, i)S(m, i) =
n∑
i=1

si (1)2pk−1(λi)pm−1(λi), k /= m.

The{pi} are not just orthogonal but form an orthonormal system for the inner product
on the space of polynomials of degree less thann given by

〈ϕ,ψ〉 :=
n∑
i=1

si(1)
2ϕ(λi)ψ(λi ). (15)

In what follows the expressionpi(τ ) will often be abbreviated bypi . From (11)

dk(τ ) :=D+(k)= det[Tk − τIk]
det[Tk−1− τIk−1]
=−βk pk

pk−1
(16)

and from (9) the entries ofL are given by:

lkk = |dk|1/2 =
∣∣∣∣βk pk

pk−1

∣∣∣∣
1/2

, (17)

lk+1,k = |dk|
1/2βk

dk
= ωk

∣∣∣∣βk pk−1

pk

∣∣∣∣
1/2

, (18)

ωk = sign(dk),

so that

Lek =
√
βk

(
ek

∣∣∣∣ pkpk−1

∣∣∣∣
1/2

+ ek+1ωk

∣∣∣∣pk−1

pk

∣∣∣∣
1/2
)
,

‖Lek‖2 = βk
(
p2
k−1 + p2

k

|pk−1pk|

)
> 2βk. (19)

Expressions (15)–(19) are used in subsequent sections.

4. Kernel polynomials

Our results have been simplified by the Christoffel–Darboux formula (20) that we
now derive.

For a vectorv let v(i : j) denote the subvector ofv having entriesi throughj. We
continue to abbreviatepi(τ ) by pi .



134 B.N. Parlett, I.S. Dhillon / Linear Algebra and its Applications 309 (2000) 121–151

Premultiply (14) byst
m to find

st
m(T − τI)

(
p(1 : k)

o

)
= βk[−sm(k)pk + sm(k + 1)pk−1].

On the other handst
m(T − τI) = (λm − τ )s t

m, so

st
m(T − λj I)

(
p(1 : k)

o

)
= (λm − τ )[sm(1 : k)tp(1 : k)].

Equate the two expressions on the right and divide bysm(1) to obtain a remarkable
formula,

(λm − τ )
k−1∑
i=0

pi(τ )pi(λm)

= βkdet

[
pk−1 pk−1(λm)

pk pk(λm)

]
, k = 1,2, . . . , n− 1. (20)

Formula (20) is the Christoffel–Darboux relation for orthogonal polynomials. See
[1, Chapter 1, Theorem 4.5].

Following standard notation, for fixedτ and variableξ define the polynomials,

Kj(ξ, τ ) :=
j∑
i=0

pi(ξ)pi(τ ). (21)

This function is called the reproducing kernel. For the space of polynomialsϕ of
degree not exceedingj endowed with the inner product given in (15),Kj plays the
role of the Dirac delta function,

〈Kj (·, τ ), ϕ(·)〉 = ϕ(τ). (22)

In particular

〈Kj (·, τ ),Kj (·, τ )〉 = Kj (τ, τ ) = ‖p(1 : j + 1)‖2. (23)

It is known [1, Chapter 1] thatϕ = Kj (·, τ ) minimizes〈ϕ, ϕ〉 over all polynomials
of degree6 j that satisfy

ϕ(τ) = Kj (τ, τ ).
The zeros ofKj (·, τ ) interlace those ofpj andpj−1 in a special way.

In terms ofKj the Christoffel–Darboux relation becomes

Kk−1(τ, λm) = βk
det

[
pk−1 pk−1(λm)

pk pk(λm)

]
λm − τ (24)

and this is an identity inλm. Let λm −→ τ , to find

Kk−1(τ, τ ) = βk det

[
pk−1 p′k−1
pk p′k

]
.
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5. Expressions forLts

Since relcond(λ− τ ) depends on‖Lts‖2 we develop expressions forLts to be
used in later sections.

First we use the pivotsdk(τ ) defined in Section 3. Recall thatωk = sign(dk),
dk = D+(k, k).

Theorem 2. LetT − τI = LXLt exist and let(λ, s) be any eigenpair ofT . Then

(
Lts

)
(1) = ω1(λ− τ )s(1)

|α1− τ |1/2 ,

(
Lts

)
(k) = ωks(k)dk(τ )− dk(λ)|dk(τ )|1/2 , 1< k < n,(

Lts
)
(n) = s(n)|dn(τ )|1/2.

Proof. By (12),s(k + 1) = pk(λ)s(1). Thus, fork = 1, . . . , n− 1, use (17) and (18)
to find

(Lts)(k) = lkks(k)+ lk+1,ks(k + 1)

= |dk(τ )|1/2s(k)+
(

ωkβk

|dk(τ )|1/2
)
s(k + 1)

= ωks(k)

|dk(τ )|1/2
[
dk(τ )+ βk pk(λ)

pk−1(λ)

]
(by (12))

= ωks(k)

|dk(τ )|1/2 (dk(τ )− dk(λ)) (using(16)).

Fork = n, (Lts)(n) = |dn(τ )|1/2s(n) sinceLt is upper bidiagonal. �

Corollary 1. Letpk denotepk(τ ). In terms of the polynomialspk(ξ), for k < n,(
Lts

)
(k) = sign(pk−1)s(1)|βkpkpk−1|1/2

(
pk−1(λ)

pk−1
− pk(λ)

pk

)
, (25)

(
Lts

)
(n) = s(1)

∣∣∣∣ pnpn−1

∣∣∣∣
1/2

· pn−1(λ).

Also (
Lts

)
(n) = sign(pn−1(λ))

∣∣∣∣pn−1(λ)

p′n(λ)
· pn
pn−1

∣∣∣∣
1/2

.

Proof. Use (16) to rewrite Theorem 2. For the casek = n use

s(n)2 = pn−1(λ)/p
′
n(λ) (26)
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from [14, Corollary 7.9.1]. �

The kernel polynomials let us rewrite Corollary 1 in a convenient form.

Theorem 3. Let T − τI = LXLt and T s = sλ. In terms of the vectorp= p(τ )
defined in(10), for k < n,(

Lts
)
(k) = −sign(pk)

|βkpkpk−1|1/2 s(1)Kk−1(τ, λ)(λ− τ ).
The result holds fork = n if βn is defined as1.

Proof. Recall the Christoffel–Darboux identity

βk det

[
pk−1 pk−1(λ)

pk pk(λ)

]
= (λ− τ )Kk−1(τ, λ).

Expand (25) from Corollary 1 to find, fork < n,

(Lts)(k)=sign(pk−1)s(1)
|βkpkpk−1|1/2
pkpk−1

det

[
pk−1(λ) pk−1
pk(λ) pk

]

= sign(pk)s(1)βk
|βkpkpk−1|1/2 det

[
pk−1(λ) pk−1
pk(λ) pk

]

=−sign(pk)s(1)

|βkpkpk−1|1/2Kk−1(τ, λ)(λ− τ ).

Fork = n use Corollary 1 andβn = 1 and note thatpn(λ) = 0. �

Finally, take the product of Theorem 3 and Corollary 1 to find a third representa-
tion. From (16),−sign(pk · pk−1) = ωk:

ωk

(
Lts

)
(k)2

λ− τ = s(1)2
(
pk−1(λ)

pk−1
− pk(λ)

pk

)
Kk−1(τ, λ). (27)

6. The caseτ −→ λj

This section shows that, asτ −→ λj ,Ltsj /|λj − τ |1/2 −→ en +O(|τ − λj |1/2).
It follows that relcond(λj − τ ) = 1+O(|τ − λj |) and thus proves Conjecture 2 in
Section 5.2.3 of [3]. We exhibit the constant hidden by O.

Recall from (8) that

T − τI = LXLt, X = diag(±1).

Let (λj , sj ) be an eigenpair ofT such thatsj has no zero entries and‖sj‖ = 1.
Recall that



B.N. Parlett, I.S. Dhillon / Linear Algebra and its Applications 309 (2000) 121–151 137

sj (k) = sj (1)pk−1(λj ).

ConsiderLtsj for τ close toλj . Take the last entry first. By Corollary 1,(
Ltsj

)
(n)2 =

∣∣∣∣ pn(τ)pn−1(τ )
· pn−1(λj )

p′n(λj )

∣∣∣∣ .
Definep〈j〉n (τ ) bypn(τ) = (τ − λj )p〈j〉n (τ ) so that(

Ltsj
)
(n)2

|τ − λj | =
∣∣∣∣∣p
〈j〉
n (τ )

p′n(λj )

∣∣∣∣∣
∣∣∣∣pn−1(λj )

pn−1(τ )

∣∣∣∣ . (28)

By (11)

p
〈j〉
n (τ )=

∏
i /=j (τ − λi)∏n−1

i=1 βi

=p〈j〉n (λj )+ (τ − λj )p〈j〉 ′n (λj )+O((τ − λj )2).
Also

p
〈j〉
n (λj )=p′n(λj ),
p
〈j〉′
n (τ )=p〈j〉n (τ )

∑
i /=j
(τ − λi)−1,

p′n−1(τ )=pn−1(τ )

n−1∑
i=1

(τ − θi)−1,

wherepn−1(θi) = 0, i = 1, . . . , n− 1. Thus,

p
〈j〉
n (τ )

p′n(λj )
= 1+ (τ − λj )

∑
i /=j
(λj − λi)−1+O((τ − λj )2),

pn−1(τ )

pn−1(λj )
= 1+ (τ − λj )

n−1∑
i=1

(λj − θi)−1+O
(
(τ − λj )2

)

and, asτ −→ λj ,

(
Ltsj

)
(n)2

|τ − λj | =1+ (τ − λj )

∑
i /=j
(λj − λi)−1 −

n−1∑
i=1

(λj − θi)−1

]

+O
(
(τ − λj )2

)
, (29)

It remains to show that, fork < n, (Ltsj )(k) = O(τ − λj ).
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By Theorem 3, fork < n,

|(Ltsj )(k)|
|τ − λj | =

sj (1)|Kk−1(τ, λj )|
|βkpkpk−1|1/2

−→ gj (k) := sj (1)|Kk−1(λj , λj )|
|βkpk(λj )pk−1(λj )|1/2 asτ → λj . (30)

Let gj (n) = 0 to complete the definition ofgj . Combine (29) and (30) to see that, as
τ → λj ,

Ltsj

|τ − λj |1/2 = en + |τ − λj |1/2gj +O(|τ − λj |)

as claimed, and

relcond(λj − τ )

= 1+ |τ − λj |

‖gj‖2 +∑

i /=j
(λj − λi)−1 −

n−1∑
i=1

(λj − θi)−1

]

+O
(
|τ − λj |3/2

)
. (31)

It is useful to see how(Ltsm)(n) −→ 0 form /= j . By (28),(
Ltsm

)
(n)2

|τ − λj | =
∣∣∣∣∣ p
〈j〉
n (τ )

pn−1(τ )

/
p′n(λm)
pn−1(λm)

∣∣∣∣∣
−→

∣∣∣∣ pn−1(λm)

p′n(λm)

/
pn−1(λj )

p′n(λj )

∣∣∣∣ =
(
sm(n)

sj (n)

)2

(32)

asτ → λj , using (26).
It is clear from (32) that the larger is|sj (n)| then the larger is the asymptotic

region in which(Ltsj )(n)→ 1 and(Ltsm)(n)→ 0 asτ → λj . In Section 2.2, it
was shown that forτ = λj all the twisted factorizations yield the same relconds.
Nevertheless, forτ ≈ λj some twisted factorizations will be more rank revealing
than others. In particular twists at the location of maximal entries insj ensure that
the critical diagonal entrȳDk(k, k) = γk satisfies|γk| 6 n|τ − λj |. See [12].

7. Summing the relconds

Now we employ the expressions in Sections 4 and 5 to obtain bounds on relcond
(λm − τ ) for all theλm’s, not necessarily the one closest toτ which was discussed
in Section 6. The natural fear is that the eigenvalues in a tight cluster will be highly
sensitive to small changes inL. The matrixL is determined by the vectorp(τ ) defined
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in (10) and its approximations
(pk
o

)
defined in (14), wherepk abbreviatesp(1 : k). See

(17) and (18). Here are the pertinent relations. When the argument of a function isτ

it will be omitted,pi = pi(τ ).
The tridiagonal form ofT shows, in (14), that fork < n,

(T − τI)
(

pk

o

)
= βk(0, . . . ,0,−pk, pk−1,0, . . . ,0)t, (33)

∥∥∥∥(T − τI)
(

pk

o

)∥∥∥∥
2

= β2
k

(
p2
k−1+ p2

k

)
. (34)

It will be useful to express (34) in terms of the kernel functionsKj(σ, τ ) :=∑j

i=0pi(σ )pi(τ ) from Section 4. Rewrite the left-hand side of (33) using the spec-
tral decomposition

(T − τI)
(

pk

o

)
=S(K− τI)St

(
pk

o

)

=
n∑
i=1

si(λi − τ )si(1)Kk−1(λi, τ ), (35)

sincesi(j) = si (1)pj−1(λi). Hence, by (33) and (35),(
pk

o

)t

(T − τI)
(

pk

o

)
=−βkpk−1pk

=
n∑
i=1

(λi − τ )(si (1)Kk−1(λi , τ ))
2. (36)

Now recall Theorem 3 in Section 5 and replaceβkpk−1pk by (36). Fork < n,(
Ltsm

)
(k)2

|λm − τ | =
|λm − τ |
|βkpk−1pk|(sm(1)Kk−1(λm, τ ))

2

= |λm − τ |(sm(1)Kk−1(λm, τ ))
2∣∣∑n

i=1(λi − τ )(si(1)Kk−1(λi , τ ))2
∣∣ . (37)

Let τ −→ λm in (37) to recover (30) in Section 6.
To give meaning to (37) we sum overm, notk, to find

n∑
m=1

(
Ltsm

)
(k)2

‖λm − τ | =
∑n
m=1 |λm − τ |sm(1)2Kk−1(λm, τ )

2∣∣∑n
i=1(λi − τ )si(1)2Kk−1(λi , τ )2

∣∣
= Pk +Nk
|Pk −Nk| , (38)

where
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Nk :=
∑
λi<τ

(τ − λi)si(1)2Kk−1(λi , τ )
2 > 0.

Whenτ 6 λ1, then, for eachk, Nk = 0 and(Pk + Nk)/(Pk −Nk) = 1. Whenτ >
λn then for eachk, Pk = 0 and (Pk + Nk)/(Pk −Nk) = −1. That is why, inter-
changing the order of summation,

n∑
m=1

relcond(λm − τ ) =
n∑
k=1

n∑
m=1

(
Ltsm

)
(k)2

|λm − τ | =
n∑
k=1

1= n,

in the definite case. In addition (38) shows that, in the indefinite case, if there is
catastrophic cancellation betweenPk andNk , even for onek, then some relconds
will be large. Now we analyze the indefinite case.

The denominator in (38) is|βkpk−1pk| and vanishes when, and only when,
pk−1(τ )pk(τ ) = 0 sinceT is assumed to be unreduced(βk > 0). We doubt that there
is a closed expression for the numerator in terms ofp(k) and we are forced to find

a bound. To this end we define two quantities that measure how close
(pk
o

)
is to an

eigenvector ofT. The first is a Rayleigh quotient:

ρk = ρk(τ ) :=

(
pk

o

)t

(T − τI)
(

pk

o

)
‖pk‖2

= −βkpk−1pk

‖pk‖2 (by (36)). (39)

The second is a normalized residual

rk = rk(τ ) :=

∥∥∥∥(T − τI)
(

pk

o

)∥∥∥∥∥∥pk
∥∥

= βk
(
p2
k−1 + p2

k

)1/2
‖pk‖ (by (34)). (40)

These expressions remain valid fork = n if we takeβn = 1 but we do not exploit
this fact.

Both (39) and (40) are easily computed for allk, in O(n) operations using the
three-term recurrence for the{pi(τ )}. Note that

ρ1 = T11− τ, ‖r1‖ =
(
(T11− τ )2+ T21

)1/2
,

min
i
|λi − τ | 6 ‖rk‖ 6 max

i
|λi − τ | = ‖LXLt‖.

A lengthy calculation shows that

ρ′k(τ ) =
{+1, pk−1(τ ) = 0,
−1, pk(τ ) = 0.
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See Remark 4 at the end of Section 8.

Theorem 4. Assume thatpn = (p0(τ ), . . . , pn−1(τ ))
t has no zero entries. Letλj

be the eigenvalue of T closest toτ . The factorizationT − τI = LXLt exists and, in
terms ofrk andρk defined above,

n∑
m=1

relcond(λm − τ ) 6 1+
n−1∑
k=1

‖Lek‖2
‖rk‖ +O(|τ − λj |), (41)

n∑
m=1

relcond(λm − τ ) 6 1+ ‖LXLt‖
n−1∑
k=1

|ρk|−1+O(|τ − λj |). (42)

Proof. In Section 6 it was shown that, for the casek = n, (Ltsj )(n)
2/|λj − τ | =

1+O(|τ − λj |) and(Ltsm)(n)
2/|λm − τ | = O(|τ − λj |). Hence,

n∑
m=1

(
Ltsm

)
(n)2

|λm − τ | = 1+O(|τ − λj |).

For k < n we begin from (38). The numerator may be majorized by the Cauchy–
Schwartz inequality(

∑
wi |λi − τ |)2 6

∑
wi(λi − τ )2∑wi . Use (34) and (35) to

find

n∑
m=1

(
Ltsm

)
(k)

|λm − τ | 6
βk
(
p2
k−1 + p2

k

)1/2 ∥∥pk
∥∥

|βkpk−1pk|

=βk
(
p2
k−1+ p2

k

|pk−1pk|

) ∥∥pk
∥∥

βk
(
p2
k−1+ p2

k

)1/2
= ‖Lek‖2
‖rk‖ (by (19) and(40)). (43)

Recall that
n∑

m=1

relcond(λm − τ ) =
n∑

m=1

n∑
k=1

(
Ltsm

)
(k)2

|λm − τ | .

Reverse the order of summation and apply (43) to obtain (41). Instead of the Cau-
chy–Schwartz inequality we can take out of the numerator in (36) maxi |λi − τ | =
‖T − τI‖ = ‖LXLt‖ and obtain

n∑
m=1

(
Ltsm

)
(k)2

|λm − τ | 6
∥∥LXLt

∥∥ · ∥∥pk
∥∥2

|βkpk−1pk| =
∥∥LXLt

∥∥
|ρk| (by (39)). (44)
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Reverse the order of summation in
∑n
m=1

∑n
k=1 (L

tsm)(k)
2/|λm − τ | and apply (44)

to obtain (42). �

Remark 1. If |pn−1(τ )| = ‖pn‖∞, then the denominators‖rk‖ in (41) cannot be-
come arbitrarily small. Let

θk :=∠
(

pn,
(

pk

o

))
.

Then

cos θk =
∥∥pk

∥∥2∥∥pk
∥∥ · ‖pn‖ =

∥∥pk
∥∥

‖pn‖ 6
(

1− 1

n

)1/2

,

| sin θk| > 1√
n
.

By the fundamental gap theorem [14, Chapter 11],

gap(τ )√
n

6 | sin θk| gap(τ ) 6 ‖rk‖, (45)

where gap(τ ) := mini /=j |τ − λi |, whereλj is the eigenvalue closest toτ .
By Theorem 1 in Section 2.2, we can choose any twisted factorization of

(T − τI), whenτ is an eigenvalue, without changing relcond(λi − τ ). If a largest
entry in τ ’s eigenvector occurs in positionk, then we may analyze relcond for the
factorization with twist atk. The same lower bound (45) on the residual norms will
hold in this case too.

Neither bound in Theorem 4 can be attained. So we now derive an exact expres-
sion for

∑n
m=1 relcond(λm − τ ) that displays the role of element growth. Recall

(19), fork < n,

‖Lek‖2=βk
p2
k−1+ p2

k

|pk−1pk| =
β2
k

(
p2
k−1+ p2

k

)
|βkpk−1pk|

=
∑n
i=1(λi − τ )2(si(1)Kk−1(λi, τ ))

2∑n
i=1(λi − τ )(si(1)Kk−1(λi, τ ))2

.

Next multiply numerator and denominator of (38) by
∑n
i=1(λi − τ )2(si (1)Kk−1

(λi, τ ))
2 and rearrange to find
n∑

m=1

(
Ltsm

)
(k)2

|λm − τ | =
‖Lek‖2
πk(τ )

, (46)

where

πk(τ ) :=
∑n
i=1 |λi − τ |

(|λi − τ |si(1)2Kk−1(λi , τ )
2
)

∑n
i=1 |λi − τ |si (1)2Kk−1(λi, τ )2

.
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Fork = n we have already seen that
n∑

m=1

(
Ltsm

)
(n)2

|λm − τ | = 1+O(|τ − λj |),

whereλj is the eigenvalue closest toτ . Again reversing the order of summation

n∑
m=1

relcond(λm − τ ) =
n−1∑
k=1

‖Lek‖2
πk(τ )

+ 1+O(|τ − λj |).

The ratiosπk(τ ) seem difficult to analyze but on our test bed of examplesπk(τ ) >
π1(τ ) for 2 6 k 6 n. We conjecture that

n∑
m=1

relcond(λm − τ ) 6 1

π1(τ )
trace

(
LLt)+ 1+O(|τ − λj |).

Consider the case when all the|si(1)| are equal. Suppose that max|λi − τ | = |λ1−τ |
and defineri = |λi − τ |/|λ1− τ |, i = 2, . . . , n. Then

π1(τ )=
∑
i (λi − τ )2∑
i |λi − τ |

=(τ − λ1)
1+ r2

2 + · · · + r2
n

1+ r2+ · · · + rn
>
τ − λ1

n
=
∥∥LXLt

∥∥
n

.

By Theorem 1 there is no need to consider an extreme case in which|τ − λj | 6
ε and |sj (1)| ≈ 1. We may assume that ifλj is the closest eigenvalue toτ then
|sj (1)| 6 1/

√
2. Finally, we conjecture that in all cases

n∑
m=1

relcond(λm − τ ) 6 n
trace

(
LLt

)
‖LXLt‖ .

8. Bounds for an interior cluster

In Section 1, an algorithm was described for computing orthogonal eigenvectors
of T. When a new shift is chosen and a new factorization performed the only new
eigenvectors to be computed are those with large relative gaps. In other words, eigen-
vectors for eigenvalues close to the shift. Consequently, it is desirable to have bounds
on relcond(λi − τ ) just for cluster of eigenvaluesλi close toτ . We now derive O(n)
computable bounds for such cases.

From the eigenvector equation

(T − τI)sm = LXLtsm = sm(λm − τ )
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it follows that, forλm /= τ ,

1=
(
Ltsm

)t
X
(
Ltsm

)
λm − τ =

n∑
k=1

ωk

(
Ltsm

)
(k)2

λm − τ ,

whereωk = sign(−βkpk−1pk) = sign(dk) for the pivotsdk, see (16). Consequently
for λm > τ

relcond(λm − τ ) :=
n∑
k=1

(
Ltsm

)
(k)2

|λm − τ |

=
∑
ωk=+1

(
Ltsm

)
(k)2

|λm − τ | +
∑
ωk=−1

(
Ltsm

)
(k)2

|λm − τ |

= 1+ 2
∑
ωk=−1

(
Ltsm

)
(k)2

|λm − τ | . (47)

The representation (47) lets us focus on a subset of indicesk. From (36) in the pre-
vious section

−βkpk−1pk=
∑
τ6λi

(λi − τ )si(1)2Kk−1(λi, τ )
2

−
∑
λi<τ

(τ − λi)si(1)2Kk−1(λi , τ )
2

=Pk −Nk (as in (38)).

So the casesωk = −1 are characterized byNk > Pk or 2Nk > Pk +Nk; so∑
λi<τ

(τ − λi)si (1)2Kk−1(λi , τ )
2 >

1

2

n∑
i=1

|λi − τ |si(1)2Kk−1(λi , τ )
2. (48)

Now suppose thatλj is the left end of a cluster of close eigenvalues so that
λj − λj−1 is not small. In many casesλj − λj−1 is of the order of the average
gap (λn − λ1)/(n− 1) but that is not necessary to the analysis that follows.
Consider the shiftτ 6 λj and very close, if not equal toλj .

From (48) comes a useful estimate. Define an average ofτ ’s distance from the
eigenvalues to its left,

A−k :=
∑j−1
i=1 (τ − λi)2si (1)2Kk−1(λi , τ )

2∑j−1
i=1 (τ − λi)si (1)2Kk−1(λi , τ )2

6
∑n
i=1(τ − λi)2si (1)2Kk−1(λi , τ )

2∑j−1
i=1 (τ − λi)si (1)2Kk−1(λi, τ )2

.

From (48) forωk = −1,
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A−k
2

6
∑n
i=1(τ − λi)2si(1)2Kk−1(λi , τ )

2∑n
m=1 |τ − λm|sm(1)2Kk−1(λm, τ )2

. (49)

We use (49) later. Clearly,A−k > τ − λj−1.

Theorem 5. Consider a clusterC of #(C) close eigenvalues in the interior of the
spectrum of T. Choose a shiftτ close to but not exceeding the left end ofC. Define
A−k as above. If the factorizationT − τI = LXLt exists, then

∑
λm∈C

relcond(λm − τ ) 6 #(C)+ 2
∑
ωk=−1

‖Lek‖2
A−k

.

Proof. Invoke (47) forλm ∈ C to find that

∑
λm∈C

relcond(λm − τ ) = #(C)+ 2
∑
λm∈C

∑
ωk=−1

(
Ltsm

)
(k)2

|λm − τ | .

Reverse the summations and invoke (47) for eachλm ∈ C, whereλm − τ > 0,∑
λm∈C

relcond(λm − τ )

= #(C)+ 2
∑
ωk=−1

‖Lek‖2
∑
λm∈C |λm − τ |sm(1)2Kk−1(λm, τ )

2∑n
i=1(λi − τ )2si (1)2Kk−1(λi , τ )2

.

The numerator above comes from a subset of the terms definingPk andPk < Nk

whenωk = −1. Thus,∑
λm∈C

relcond|λm − τ |

6 #(C)+
∑
ωk=−1

‖Lek‖2
∑n
m=1 |λm − τ |sm(1)2Kk−1(λm, τ )

2∑n
i=1(λi − τ )2si (1)2Kk−1(λi , τ )2

6 #(C)+ 2
∑
ωk=−1

‖Lek‖2
A−k

(by (49)). �

Corollary 2. With the hypotheses of Theorem5 and

gap-left := min{τ − λi : λi < τ }
then ∑

λm∈C
relcond(λm − τ ) 6 #(C)+ 2

gap-left

∑
ωk=−1

(
LtL

)
kk
.
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Proof. A−k is a weighted average ofτ − λi , λi < τ , and so gap-left6 A−k . Now
substitute gap-left forA−k in Theorem 5. �

At the right end of the cluster theks withωk = +1 are used.

Corollary 3. If a shiftτ ′ is chosen close to but not less than the right end of a cluster
C, if T − τ ′I = L′X′(L′)t and

gap-right:= min{λj − τ ′ : λj > τ ′},
then ∑

λm∈C
relcond

(
λm − τ ′

)
6 #(C)+ 2

gap-right

∑
ω′k=+1

[(
L′
)t
L′
]
kk
.

Remark 2. The bound in Theorem 5 is a sum of two expressions. The term 2∑
ωk=−1 ‖Lek‖2/A−k applies to allλm > τ , not just those in cluster. Hence,∑
λm>τ

relcond(λm − τ ) 6 #{λm > τ } + 2
∑
ωk=−1

‖Lek‖2
A−k

. (50)

Similarly,∑
λm<τ

relcond(λm − τ ) 6 #{λm < τ } + 2
∑
ωk=+1

‖Lek‖2
A+k

, (51)

where

A+k :=
∑
λi>τ (λi − τ )2si (1)2Kk−1(λi , τ )

2∑
λi>τ (λi − τ )si (1)2Kk−1(λi, τ )2

.

Example 3 exhibits a factorizationT − τI = LXLt with large element growth.
The relconds of the large eigenvalues are large but the relconds of the two tiny ei-
genvalues are bounded by 2.5 and so the representation is relatively robust for the
cluster. Next we give a computable bound for the cluster nearest 0 that is independent
of element growth inL. Recall from Section 7,

ρk(τ ) := − βkpkpk−1∥∥pk
∥∥2 , k = 1, . . . , n. (52)

which is the Rayleigh quotient of
(pk
o

)
with respect toT − τI . The result is valid for

any cluster but our interest is only in the one closest to zero.

Theorem 6. LetC = {λj , λj+1, . . .} be a cluster of eigenvalues. Then, using(52),
asτ → λj ,
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∑
λm∈C

relcond(λm − τ ) 6 max
λm∈C

|λm − τ |
n−1∑
k=1

|ρk(τ )|−1+ 1+O(|τ − λj |).

Proof. From Theorem 3, fork < n,(
Ltsm

)
(k)2

|λm − τ | =
|λm − τ |
|βkpkpk−1| (sm(1)Kk−1(λm, τ ))

2 .

From (32) in Section 6, asτ → λj ,(
Ltsm

)
(n)2

|λm − τ | −→
(
sm(n)

sj (n)

)2 ∣∣∣∣ τ − λjτ − λm
∣∣∣∣ .

Using (52), fork < n,(
Ltsm

)
(k)2

|λm − τ | =
|λm − τ |
|ρk(τ )|

(
sm(1)Kk−1(λm, τ )

‖pk‖
)2

. (53)

Now sum (53) over the cluster

∑
λm∈C

(
Ltsm

)
(k)2

|λm − τ | =
∑
λm∈C

|λm − τ |
|ρk(τ )|

(
sm(1)Kk−1(λm, τ )∥∥pk

∥∥
)2

6 maxC |λm − τ |
|ρk(τ )| ·

∑
m∈C (sm(1)Kk−1(λm, τ ))

2

‖pk‖2
6 maxC |λm − τ |

|ρk(τ )| , (54)

since the eigenvector matrixSyields(
pk

o

)
= SSt

(
pk

o

)
=

n∑
i=1

sisi (1)Kk−1(λi , τ ).

For the last terms, asτ → λj ,

∑
m∈C

(
Ltsm

)
(n)2

|λm − τ | −→
∑
m∈C

(
sm(n)

sj (n)

)2 ∣∣∣∣ τ − λjτ − λm
∣∣∣∣

−→
{

1+O(|τ − λj |), j ∈ C,
O(|τ − λj |), j 6∈ C.

(55)

Sum (54) fork = 1, . . . , n− 1 and then add (55) to obtain Theorem 6.�

The bound on maxC |λm − τ |∑n−1
k=1 |ρk(τ )|−1 may be accumulated in O(n) op-

erations whenT − τI is factored using the three term recurrence for{pi}.
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Theorem 6 should be compared with (42), the term maxC |λm − τ | compensates
for

∑n−1
k=1 |ρk|−1 which may be large when there is element growth inLXLt.

Remark 3. Supposeτ = λj andC={λj , λj+1, . . . , λj+`}, then relcond(λj − τ ) =
1. Suppose that

n−1∑
k=1

|ρk(τ )|−1 = µ

λj+1− λj (definingµ),

then ∑
λm∈C

relcond(λm − λj ) 6 µ
λj+` − λj
λj+1 − λj + 1.

For a fairly uniform distribution in the clusterC this gives a bound ofµ · `+ 1 and
bears out our experience that a cluster nearτ has approximately the same relconds
for each eigenvalue ifµ = O(1).

Remark 4. The algebraic functionρk(τ ) vanishes at the zeros ofpk−1 andpk. It
can be shown that

ρ′k(τ ) =
{+1 if pk−1(τ ) = 0,
−1 if pk(τ ) = 0.

Suppose thatC = {λj , λj+1, . . . , λj+`} is a cluster of close eigenvalues butsj has
some zero entries. Thus,λj is not a valid shift. If, instead, we chooseτ = λj −
1
2(λj+1− λj ), then we can expect|ρk(τ )| = O(λj+1 − λj ), k = 1, . . . , n− 1 and
the associated factorizationT − λI = LXLt should provide a relatively robust rep-
resentation for the smallest cluster even if some of the eigenvalues further fromτ

have large relconds.

9. Sensitivity of eigenvectors

It turns out that the natural definition of a condition number for an eigenvector of
LXLt underinner multiplicative perturbations is a complicated combination of the
relconds of all the eigenvalues. We derive the formula for relcondi (s) in this section.

Recall from Section 2 that inner perturbations changeT − τI = LXLt −→
LDXLt with D diagonal and positive-definite. For smallrelative perturbations to
L’s entries the perturbationD = I + D with ‖D‖ 6 2η, the perturbation level and so
gives an additive perturbation

LXLt + LDXLt.
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OurD here is twice theD in Section 2. The change in a specific eigenvectorsj may be
expanded in the other eigenvectors as

∑
i /=j siηij . Standard first order perturbation

theory [16, Chapter 2], starts from

(
LXLt + LDXLt)


sj +

∑
i /=j

siηij


 =


sj +

∑
i /=j

siηij


 (λj + δj )

and, to first order inη, yields

LDXLtsj +
∑
i /=j

si (λi − τ )ηij = sj δj + (λj − τ )
∑
i /=j

siηij .

Premultiplication bys t
j gives the material presented in Section 2. Premultiplication

by s t
k, k /= j , yields

st
kLDXLtsj + (λk − τ )ηkj = (λj − τ )ηkj +O(η2). (56)

At this point we invoke the definition in Section 2,∥∥Ltsi
∥∥ = √|λi − τ | relcond(λi − τ ). (57)

SinceX = diag(±1), ‖DX‖ = ‖D‖ 6 2η, and so, to first order inη

|(λj − λk)ηkj |=
∣∣s t
kLDXLtsj

∣∣
62η

[|λk − τ | · |λj − τ | relcond(λj − τ )relcond(λk − τ )
]1/2

+O(η2). (58)

We mention thatD may be chosen so that the bound in (58) is attained. In the discus-
sion of eigenvectors it is the angleψj (in radians) betweensj andsj +∑i /=j siηij

that is of interest. The eigenvectors ofLXLt are orthonormal and so

tan(ψj )=

∑
i /=j

η2
ij




1/2

62η
√
|λj − τ | · relcond(λj − τ )

·

∑
i /=j

|λi − τ | · relcond(λi − τ )
(λj − λi)2




1/2

+O(η2). (59)

The coefficient of 2η in (59) gives the appropriate expression for relcond(sj ) =
relcond(sj ;LXLt). It is a somewhat complicated function of the relconds for all
the eigenvalues as well as the (relative) separation of the eigenvalues. In order to
improve appearances we introduce a little used measure (denotedχ in [9]) of relative
separation,

relsep(a, b) := |a − b|√|a||b| (60)
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and observe that this function can reach∞. By this device

relcond(sj ) :=
√

relcond(λj − τ )

·

∑
i /=j

relcond(λi − τ )
relsep2(λj − τ, λi − τ )




1/2

. (61)

We conclude with some implications of our definition of relcond(sj ).

Remark 5. If sj has no zero entries, thenLXLt exists whenτ = λj and relcond
(sj ) = 0 as it should becauseLtsj = o in this case and soLDXLtsj = o however
largeD may be.

Remark 6. The unusual definition of relcond(sj ) in (61) with its range(0,∞] aris-
es because it concerns theabsolutechange in the angleψj due torelativechanges in
L’s entries.

Remark 7. The definition (60) makes our relseps larger than traditional measures
such as(|a − b|/max{|a|, |b|}). For example, ifτ = λj , then the termi = j makes
no contribution to relcond(sk), k /= j . Whenk = j + 1 the sensitivity ofsj+1 is most
influenced by the contribution ofλj+2 even when|λj − λj+1| � |λj+1 − λj+2|.

Remark 8. WhenT − τI is definite then all relcond(λi − τ ) = 1 and

relcond(sj ) =

∑
i /=j

1

relsep2(λj − τ, λi − τ )




1/2

.

This shows thata cluster near the middle of the spectrumhas eigenvectors sensitive
to small relative errors in the Cholesky factors because|λj − τ | and|λj+1− τ | will
be large. This observation confirms the necessity for takingτ close to each cluster in
turn in order to compute orthogonal eigenvectors associated with those clusters.

Remark 9. Consider an interior clusterCwith τ close to one end so that relsep(λi −
τ, λj − τ ) > 1 for λj ∈ C, λi 6∈ C. Then the eigenvalues outsideC contribute little
to relcond(sj ).

Forλj ∈ C

relcond(sj ) ≈

 ∑
λi∈C,i /=j

1

relsep2(λi − τ, λj − τ )




1/2

.
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This expression is easily computed and if it is larger than desired the cluster may
be split into subclusters. For example, consider a cluster in which all eigenvalues
agree to 4 decimals but 7 at one end agree to 6 decimals and 5 at the other end also
agree to 6 decimals. It might be profitable to subdivide into a subcluster at each end.
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