
ScaLAPACK: A Portable Linear Algebra Library for Distributed
Memory Computers - Design Issues and Performance �

(Technical Paper)

L. S. Blackfordy, J. Choiz, A. Clearyx, J. Demmel{, I. Dhillon{, J. Dongarrak,
S. Hammarling��, G. Henryyy, A. Petitetx, K. Stanley{, D. Walkerzz, and R. C. Whaleyx

Abstract

This paper outlines the content and performance of ScaLAPACK, a collection of mathematical soft-
ware for linear algebra computations on distributed memory computers. The importance of developing
standards for computational and message passing interfaces is discussed. We present the different com-
ponents and building blocks of ScaLAPACK, and indicate the difficulties inherent in producing correct
codes for networks of heterogeneous processors. Finally, this paper briefly describes future directions for
the ScaLAPACK library and concludes by suggesting alternative approaches to mathematical libraries,
explaining how ScaLAPACK could be integrated into efficient and user-friendly distributed systems.

Keywords: parallel computing, numerical linear algebra, math libraries.

�This work was supported in part by the National Science Foundation Grant No. ASC-9005933; by the Defense Advanced
Research Projects Agency under contract DAAH04-95-1-0077,administered by the Army Research Office;by the Office of Scientific
Computing, U.S. Department of Energy, under Contract DE-AC05-84OR21400; and by the National Science Foundation Science
and Technology Center Cooperative Agreement No. CCR-8809615.

y(formerly L. S. Ostrouchov) Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301
zSoongsil University, Seoul, Korea
xDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301
{Computer Science Division, University of California, Berkeley, Berkeley, CA 94720
kDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, and Mathematical Sciences Section,

Oak Ridge National Laboratory, Oak Ridge, TN 37831
��Department of Computer Science, University of Tennessee, Knoxville, TN 37996-1301, and NAG Ltd, England
yyIntel SSPD, 15201 NW Greenbrier Pkwy., Bldg CO1-01, Beaverton OR 97006-5733
zzMathematical Sciences Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

10-89791-854-1/1996/$5.00 © 1996 IEEE

Contents

1 Overview and Motivation 1

2 Design of ScaLAPACK 1
2.1 Portability, Scalability and Standards : 1
2.2 ScaLAPACK Software Components : 2
2.3 Processes versus Processors : 3
2.4 Local Components : 3
2.5 Block Cyclic Data Distribution : 3
2.6 PBLAS : 5
2.7 LAPACK/ScaLAPACK code comparison : 6

3 ScaLAPACK – Content 6
3.1 Linear Equations : 8
3.2 Band Decomposition : 9
3.3 Orthogonal Factorizations and Linear Least Squares Problems : : : : : : : : : : : : : : 9
3.4 Generalized Orthogonal Factorizations and Linear Least Squares Problems : : : : : : : 9
3.5 Symmetric Eigenproblems : 9
3.6 Nonsymmetric Eigenproblem and Schur Factorization : : : : : : : : : : : : : : : : : : 10
3.7 Singular Value Decomposition : 11
3.8 Generalized Symmetric Definite Eigenproblems : 11

4 Heterogeneous Networks 11

5 Performance 12
5.1 Choice of Block Size : 13
5.2 Choice of Grid Size : 14

6 Future Directions 18

7 Conclusions 18

2

1 Overview and Motivation

ScaLAPACK is a library of high performance linear algebra routines for distributed memory MIMD
machines. It is a continuation of the LAPACK project, which has designed and produced an efficient linear
algebra library for workstations, vector supercomputers and shared memory parallel computers [1]. Both
libraries contain routines for the solution of systems of linear equations, linear least squares problems and
eigenvalue problems. The goals of the LAPACK project, which continue into the ScaLAPACK project,
are efficiency so that the computationally intensive routines execute as fast as possible; scalability as the
problem size and number of processors grow; reliability, including the return of error bounds; portability
across machines; flexibility so that users may construct new routines from well designed components;
and ease of use. Towards this last goal the ScaLAPACK software has been designed to look as much like
the LAPACK software as possible.

Many of these goals have been attained by developing and promoting standards, especially spec-
ifications for basic computational and communication routines. Thus LAPACK relies on the BLAS
[26, 15, 14], particularly the Level 2 and 3 BLAS for computational efficiency, and ScaLAPACK [32]
relies upon the BLACS [18] for efficiency of communication and uses a set of parallel BLAS, the PBLAS
[9], which themselves call the BLAS and the BLACS. LAPACK and ScaLAPACK will run on any
machines for which the BLAS and the BLACS are available. A PVM [20] version of the BLACS has
been available for some time and the portability of the BLACS has recently been further increased by the
development of a version that uses MPI [33].

The first part of this paper presents the design of ScaLAPACK. After a brief discussion of the
BLAS and LAPACK, the block cyclic data layout, the BLACS, the PBLAS, and the algorithms used
are discussed. We also outline the difficulties encountered in producing correct code for networks of
heterogeneous processors; difficulties that we believe are little recognized by other practitioners.

The paper then discusses the performance of ScaLAPACK. Extensive results on various platforms
are presented. One of our goals is to model and predict the performance of each routine as a function
of a few problem and machine parameters. One interesting result is that for some algorithms, speed is
not a monotonic increasing function of the number of processors. In other words, it can sometimes be
beneficial to let some processors remain idle. Finally, we look at possible future directions and give some
concluding remarks.

2 Design of ScaLAPACK

2.1 Portability, Scalability and Standards

The key insight of our approach to designing linear algebra algorithms for advanced architecture comput-
ers is that the frequency with which data are moved between different levels of the memory hierarchy must
be minimized in order to attain high performance. Thus, our main algorithmic approach for exploiting
both vectorization and parallelism is the use of block-partitioned algorithms, particularly in conjunction
with highly-tunedkernels for performing matrix-vector and matrix-matrix operations (BLAS). In general,
block-partitioned algorithms require the movement of blocks, rather than vectors or scalars, resulting in
a greatly reduced startup cost because fewer messages are exchanged.

A second key idea is that the performance of an algorithm can be tuned by a user by varying the
parameters that specify the data layout. On shared memory machines, this is controlled by the block
size, while on distributed memory machines it is controlled by the block size and the configuration of the
logical process grid.

In order to be truly portable, the building blocks underlying parallel software libraries must be
standardized. The definition of computational and message-passing standards [26, 15, 14, 33] provides
vendors with a clearly defined base set of routines that they can optimize. From the user’s point of view,
standards ensure portability. As new machines are developed, they may simply be added to the network,
supplying cycles as appropriate.

1

PBLAS

ScaLAPACK

Message Passing Primitives

LAPACK

BLAS

BLACS

ScaLAPACK Software Hierarchy

Global

Local

(MPI, PVM, MPL, GAM, etc.)

Figure 1: ScaLAPACK Software Hierarchy

From the mathematical software developer’s point of view, portability may require significant effort.
Standards permit the effort of developing and maintaining bodies of mathematical software to be leveraged
over as many different computer systems as possible. Given the diversity of parallel architectures,
portability is attainable to only a limited degree, but machine dependencies can at least be isolated.

Scalability demands that a program be reasonably effective over a wide range of numbers of pro-
cessors. The scalability of parallel algorithms over a range of architectures and numbers of processors
requires that the granularity of computation be adjustable. To accomplish this, we use block-partitioned
algorithms with adjustable block sizes. Eventually, however, polyalgorithms (where the actual algorithm
is selected at runtime depending on input data and machine parameters) may be required.

Scalable parallel architectures of the future are likely to use physically distributed memory. In the
longer term, progress in hardware development, operating systems, languages, compilers, and communi-
cation systems may make it possible for users to view such distributed architectures (without significant
loss of efficiency) as having a shared memory with a global address space. For the near term, however,
the distributed nature of the underlying hardware will continue to be visible at the programming level;
therefore, efficient procedures for explicit communication will continue to be necessary. Given this fact,
standards for basic message passing (send/receive), as well as higher-level communication constructs
(global summation, broadcast, etc.), are essential to the development of portable scalable libraries. In
addition to standardizing general communication primitives, it may also be advantageous to establish
standards for problem-specific constructs in commonly occurring areas such as linear algebra.

2.2 ScaLAPACK Software Components

Figure 1 describes the ScaLAPACK software hierarchy. The components below the dashed line, labeled
Local, are called on a single processor, with arguments stored on single processors only. The components
above the line, labeled Global, are synchronous parallel routines, whose arguments include matrices and
vectors distributed in a 2D block cyclic layout across multiple processors. We describe each component
in turn.

2

2.3 Processes versus Processors

In ScaLAPACK, algorithms are presented in terms of processes, rather than physical processors. In
general there may be several processes on a processor, in which case we assume that the runtime system
handles the scheduling of processes. In the absence of such a runtime system, ScaLAPACK assumes one
process per processor.

2.4 Local Components

The BLAS (Basic Linear Algebra Subprograms) [14, 15, 26] include subroutines for common linear al-
gebra computations such as dot-products, matrix-vector multiplication, and matrix-matrix multiplication.
As is well known, using matrix-matrix multiplication tuned for a particular architecture can effectively
mask the effects of the memory hierarchy (cache misses, TLB misses, etc.), and permit floating point
operations to be performed at the top speed of the machine.

As mentioned before, LAPACK, or Linear Algebra PACKage [1], is a collection of routines for linear
system solving, linear least squares problems, and eigenproblems. High performance is attained by
using algorithms that do most of their work in calls to the BLAS, with an emphasis on matrix-matrix
multiplication. Each routine has one or more performance tuning parameters, such as the sizes of the
blocks operated on by the BLAS. These parameters are machine dependent, and are obtained from a
table at run-time.

The LAPACK routines are designed for single processors. LAPACK can also accommodate shared
memory machines, provided parallel BLAS are available (in other words, the only parallelism is implicit
in calls to BLAS). Extensive performance results for LAPACK can be found in the second edition of the
users’ guide [1].

The BLACS (Basic Linear Algebra Communication Subprograms) [18] are a message passing library
designed for linear algebra. The computational model consists of a one or two dimensional grid of
processes, where each process stores matrices and vectors. The BLACS include synchronous send/receive
routines to send a matrix or submatrix from one process to another, to broadcast submatrices to many
processes, or to compute global reductions (sums, maxima and minima). There are also routines to
construct, change, or query the process grid. Since several ScaLAPACK algorithms require broadcasts
or reductions among different subsets of processes, the BLACS permit a processor to be a member of
several overlapping or disjoint process grids, each one labeled by a context. Some message passing
systems, such as MPI [27, 33], also include this context concept. (MPI calls this a communicator.) The
BLACS provide facilities for safe interoperation of system contexts and BLACS contexts.

2.5 Block Cyclic Data Distribution

On a distributed memory computer the application programmer is responsible for decomposing the data
over the processes of the computer. The way in which a matrix is distributed over the processes has a
major impact on the load balance and communication characteristics of the concurrent algorithm, and
hence largely determines its performance and scalability. The current implementation of ScaLAPACK
assumes the matrices to be distributed according to the block-cyclic decomposition scheme. The block
cyclic distribution provides a simple, yet general-purpose way of distributing a block-partitioned matrix
on distributed memory concurrent computers. The High Performance Fortran standard [23, 25] provides
a block cyclic data distribution as one of the basic data distributions.

Assuming a two-dimensional block cyclic data distribution, an M by N matrix is first decomposed into
MB by NB blocks starting at its upper left corner. These blocks are then uniformly distributed across the
process grid. Thus every process owns a collection of blocks, which are locally and contiguously stored
in a two dimensional “column major” array. We present in Fig. 2 the partitioning of a 9� 9 matrix into
2� 2 blocks. Then in Fig. 3 we show how these 2� 2 blocks are mapped onto a 2� 3 process grid, i.e.,

3

M = N = 9 and MB = NB = 2. The local entries of every matrix column are contiguously stored in
the processes’ memories.

9 x 9 matrix partitioned in 2 x 2 blocks

a11a12

a21a22

a13a14

a23a24

a19

a29

a15a16

a25a26

a17a18

a27a28

a43a44

a34a33

a41a42

a32a31

a49

a39

a48a47

a38a37

a45a46

a35a36

a52a51

a61a62

a54a53

a63a64

a55a56

a65a66

a58a57

a67a68

a59

a69

a71a72

a81a82

a73a74

a83a84

a75a76

a85a86

a79

a89

a77a78

a87a88

a91a92 a93a94 a95a96 a97a98 a99

Figure 2: Matrix partitioning

0

0

1

1

2 x 3 process grid point of view

a11a12

a21a22

a13a14

a23a24

a19

a29

a15a16

a25a26

a17a18

a27a28

a43a44

a34a33

a41a42

a32a31

a49

a39

a48a47

a38a37

a45a46

a35a36

a52a51

a61a62

a54a53

a63a64

a55a56

a65a66

a58a57

a67a68

a59

a69

a71a72

a81a82

a73a74

a83a84

a75a76

a85a86

a79

a89

a77a78

a87a88

a91a92 a93a94 a95a96a97a98 a99

2

Figure 3: Mapping of matrix onto 2� 3 process grid

For further details on data distributions, refer to [17].

4

2.6 PBLAS

In order to simplify the design of ScaLAPACK, and because the BLAS have proven to be very useful
tools outside LAPACK, we chose to build a set of Parallel BLAS, or PBLAS, whose interface is as similar
to the BLAS as possible. This decision has permitted the ScaLAPACK code to be quite similar, and
sometimes nearly identical, to the analogous LAPACK code. Only one substantially new routine was
added to the PBLAS, matrix transposition, since this is a complicated operation in a distributed memory
environment [11].

We hope that the PBLAS will provide a distributed memory standard, just as the BLAS have provided
a shared memory standard. This would simplify and encourage the development of high performance and
portable parallel numerical software, as well as providing manufacturers with a small set of routines to
be optimized. The acceptance of the PBLAS requires reasonable compromises among competing goals
of functionality and simplicity. These issues are discussed below.

The PBLAS operate on matrices distributed in a 2D block cyclic layout. Since such a data layout
requires many parameters to fully describe the distributed matrix, we have chosen a more object-oriented
approach, and encapsulated these parameters in an integer array called an array descriptor which is
passed to the PBLAS. An array descriptor includes

(1) the descriptor type,
(2) the BLACS context,
(3) the number of rows in the distributed matrix,
(4) the number of columns in the distributed matrix,
(5) the row block size (MB in section 2.5),
(6) the column block size (NB in section 2.5),
(7) the process row over which the first row of the matrix is distributed,
(8) the process column over which the first column of the matrix is distributed,
(9) the leading dimension of the local array storing the local blocks.

Below is an example of a call to the BLAS double precision matrix multiplication routine DGEMM,
and the corresponding PBLAS routine PDGEMM; note how similar they are:

CALL DGEMM (TRANSA, TRANSB, M, N, K, ALPHA,
A(IA, JA), LDA,
B(IB, JB), LDB, BETA,
C(IC, JC), LDC)

CALL PDGEMM(TRANSA, TRANSB, M, N, K, ALPHA,
A, IA, JA, DESC_A,
B, IB, JB, DESC_B, BETA,
C, IC, JC, DESC_C)

DGEMM computesC = � �C +� �op(A)�op(B), where op(A) is either A or its transpose depending
on TRANSA, op(B) is similar, op(A) isM -by-K, and op(B) isK-by-N . PDGEMM is the same, with
the exception of the way in which submatrices are specified. To pass the submatrix starting at A(IA; JA)
to DGEMM, for example, the actual argument corresponding to the formal argument A would simply be
A(IA; JA). PDGEMM, on the other hand, needs to understand the global storage scheme ofA to extract
the correct submatrix, so IA and JA must be passed in separately. DESC A is the array descriptor for
A. The parameters describing the matrix operands B and C are analogous to those describing A. In a
truly object-oriented environment, matrices and DESC A would be synonymous. However, this would
require language support, and detract from portability.

Our implementation of the PBLAS emphasizes the mathematical view of a matrix over its storage. In
fact, it is even possible to reuse our interface to implement the PBLAS for a different block data distribution
that would not fit in the block-cyclic scheme (this is planned for future releases of ScaLAPACK).

5

The presence of a context associated with every distributedmatrix provides the ability to have separate
“universes” of message passing. The use of separate communication contexts by distinct libraries (or
distinct library invocations) such as the PBLAS insulates communication internal to the library from
external communication. When more than one descriptor array is present in the argument list of a routine
in the PBLAS, it is required that the individual BLACS context entries must be equal. In other words,
the PBLAS do not perform “inter-context” operations.

The PBLAS do not included specialized routines to take advantage of packed storage schemes for
symmetric, Hermitian, or triangular matrices, nor of compact storage schemes for banded matrices.

2.7 LAPACK/ScaLAPACK code comparison

Given the infrastructure described above, the ScaLAPACK version (PDGETRF) of the LU decomposition
is nearly identical to its LAPACK version (DGETRF), as illustrated in Figure 4.

3 ScaLAPACK – Content

The ScaLAPACK library includes routines for the solution of linear systems of equations, symmetric
positive definite banded linear systems of equations, condition estimation and iterative refinement, for
LU and Cholesky factorization, matrix inversion, full-rank linear least squares problems, orthogonal and
generalized orthogonal factorizations, orthogonal transformation routines, reductions to upper Hessen-
berg, bidiagonal and tridiagonal form, reduction of a symmetric-definite generalized eigenproblem to
standard form, the symmetric, generalized symmetric and the nonsymmetric eigenproblem. Software is
available in single precision real, double precision real, single precision complex, and double precision
complex.

The subroutines in ScaLAPACK are classified as follows:

� driver routines, each of which solves a complete problem, for example solving a system of linear
equations, or computing the eigenvalues of a real symmetric matrix. Users are recommended to use
a driver routine if there is one that meets their requirements. Global and local input error-checking
are performed for these routines.

� computational routines, each of which performs a distinct computational task, for example an LU
factorization, or the reduction of a real symmetric matrix to tridiagonal form. Each driver routine
calls a sequence of computational routines. Users (especially software developers) may need to call
computational routines directly to perform tasks, or sequences of tasks, that cannot conveniently
be performed by the driver routines. Global and local input error-checking are performed for these
routines.

� auxiliary routines, which in turn can be classified as follows:

– routines that perform subtasks of block-partitioned algorithms — in particular, routines that
implement unblocked versions of the algorithms;

– routines that perform some commonly required low-level computations, for example scaling a
matrix, computing a matrix-norm, or generating an elementary Householder matrix; some of
these may be of interest to numerical analysts or software developers and could be considered
for future additions to the PBLAS;

– a few extensions to the PBLAS, such as routines for matrix-vector operations involving
complex symmetric matrices (the PBLAS themselves are not strictly speaking part of ScaLA-
PACK).

A draft ScaLAPACK Users’ Guide [32] and a comprehensive Installation Guide is provided, as well
as test suites for all ScaLAPACK, PBLAS, and BLACS routines.

6

SEQUENTIAL LU FACTORIZATION CODE

DO 20 J = 1, MIN(M, N), NB

JB = MIN(MIN(M, N)-J+1, NB)

Factor diagonal and subdiagonal blocks and test for exact

singularity.

CALL DGETF2(M-J+1, JB, A(J, J), LDA, IPIV(J),

$ IINFO)

Adjust INFO and the pivot indices.

IF(INFO.EQ.0 .AND. IINFO.GT.0) INFO = IINFO + J - 1

DO 10 I = J, MIN(M, J+JB-1)

IPIV(I) = J - 1 + IPIV(I)

10 CONTINUE

Apply interchanges to columns 1:J-1.

CALL DLASWP(J-1, A, LDA, J, J+JB-1, IPIV, 1)

IF(J+JB.LE.N) THEN

Apply interchanges to columns J+JB:N.

CALL DLASWP(N-J-JB+1, A(1, J+JB), LDA, J, J+JB-1,

$ IPIV, 1)

Compute block row of U.

CALL DTRSM('Left', 'Lower', 'No transpose', 'Unit',

$ JB, N-J-JB+1, ONE, A(J, J), LDA,

$ A(J, J+JB), LDA)

IF(J+JB.LE.M) THEN

Update trailing submatrix.

CALL DGEMM('No transpose', 'No transpose',

$ M-J-JB+1, N-J-JB+1, JB, -ONE,

$ A(J+JB, J), LDA, A(J, J+JB), LDA,

$ ONE, A(J+JB, J+JB), LDA)

END IF

END IF

20 CONTINUE

PARALLEL LU FACTORIZATION CODE

DO 10 J = JA, JA+MIN(M,N)-1, DESCA(6)

JB = MIN(MIN(M,N)-J+JA, DESCA(6))

I = IA + J - JA

Factor diagonal and subdiagonal blocks and test for exact

singularity.

CALL PDGETF2(M-J+JA, JB, A, I, J, DESCA, IPIV, IINFO)

Adjust INFO and the pivot indices.

IF(INFO.EQ.0 .AND. IINFO.GT.0)

$ INFO = IINFO + J - JA

Apply interchanges to columns JA:J-JA.

CALL PDLASWP('Forward', 'Rows', J-JA, A, IA, JA, DESCA,

$ J, J+JB-1, IPIV)

IF(J-JA+JB+1.LE.N) THEN

Apply interchanges to columns J+JB:JA+N-1.

CALL PDLASWP('Forward', 'Rows', N-J-JB+JA, A, IA,

$ J+JB, DESCA, J, J+JB-1, IPIV)

Compute block row of U.

CALL PDTRSM('Left', 'Lower', 'No transpose', 'Unit',

$ JB, N-J-JB+JA, ONE, A, I, J, DESCA, A, I,

$ J+JB, DESCA)

IF(J-JA+JB+1.LE.M) THEN

Update trailing submatrix.

CALL PDGEMM('No transpose', 'No transpose',

$ M-J-JB+JA, N-J-JB+JA, JB, -ONE, A,

$ I+JB, J, DESCA, A, I, J+JB, DESCA,

$ ONE, A, I+JB, J+JB, DESCA)

END IF

END IF

10 CONTINUE

Figure 4: Comparison of LU factorization in LAPACK and ScaLAPACK

7

3.1 Linear Equations

We use the standard notation for a system of simultaneous linear equations:

Ax = b (1)

where A is the coefficient matrix, b is the right hand side, and x is the solution. In (1) A is assumed to
be a square matrix of order n, but some of the individual routines allow A to be rectangular. If there are
several right hand sides, we write

AX = B (2)

where the columns of B are the individual right hand sides, and the columns of X are the corresponding
solutions. The basic task is to compute X, given A and B.

IfA is upper or lower triangular, (1) can be solved by a straightforwardprocess of backward or forward
substitution. Otherwise, the solution is obtained after first factorizingA as a product of triangular matrices
(and possibly also a diagonal matrix or permutation matrix).

The form of the factorization depends on the properties of the matrix A. ScaLAPACK provides
routines for the following types of matrices, based on the stated factorizations:

� general matrices (LU factorization with partial pivoting):

A = PLU

where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trape-
zoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

� general band matrices including tridiagonal matrices

– (LU factorization with partial pivoting): If A is m-by-n with kl subdiagonals and ku super-
diagonals, the factorization is

A = LU

where L is a product of permutation and unit lower triangular matrices with kl subdiagonals,
and U is upper triangular with kl + ku superdiagonals.

– (LU factorization without pivoting) for matrices where it is known a priori that pivoting is
not necessary for numerical stability, such as diagonally dominant matrices.

� symmetric and Hermitian positive definite matrices including band matrices (Cholesky factor-
ization):

A = UTU or A = LLT (in the symmetric case)

A = UHU or A = LLH (in the Hermitian case)

where U is an upper triangular matrix and L is lower triangular.

� symmetric and Hermitian positive definite tridiagonal matrices (LDLT factorization):

A = UDUT or A = LDLT (in the symmetric case)

A = UDUH or A = LDLH (in the Hermitian case)

where U is a unit upper bidiagonal matrix, L is unit lower bidiagonal, and D is diagonal.

The factorization for a general tridiagonal matrix is like that for a general band matrix with kl = 1
and ku = 1. The factorization for a symmetric positive definite band matrix with k superdiagonals (or
subdiagonals) has the same form as for a symmetric positive definite matrix, but the factor U (or L) is a
band matrix with k superdiagonals (subdiagonals). Band matrices use the band storage scheme described
in section 3.2.

While the primary use of a matrix factorization is to solve a system of equations, other related tasks
are provided as well.

8

3.2 Band Decomposition

Band matrix storage in ScaLAPACK follows the conventions of LAPACK. In LAPACK, an m-by-n
band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a two-dimensional
array with at least kl + ku+ 1 rows and n columns. Columns of the matrix are stored in corresponding
columns of the array, and diagonals of the matrix are stored in rows of the array. The same array layout
is specified in ScaLAPACK except the array is divided across the processes.

The optimal algorithm for solving banded (and as a special case, tridiagonal) linear systems depends
on a variety of parameters, especially the bandwidth. Currently, only algorithms designed for the case
N=P � kl; ku are implemented. The general family of algorithms of this sort is variously known as
partitioning methods, domain decomposition methods, or divide and conquer methods. A prototypical
algorithm of this form is described in [16].

Partitioning methods utilize large-grained task parallelism, in contrast with the algorithms used in
dense ScaLAPACK which are fine-grained. As such, the appropriate decomposition for these algorithms
differs from the dense square matrix case, and a one-dimensional blocked decomposition is used.

The bottleneck that has traditionally limited the effectiveness of partitioning methods is the solution
of the reduced system that represents the interaction of the systems stored on each process. Many
implementations have adopted what are essentially sequential algorithms for the reduced system, but this
detracts from scalability. For ScaLAPACK we have implemented a block odd-even reduction algorithm
whose running time scales optimally.

3.3 Orthogonal Factorizations and Linear Least Squares Problems

ScaLAPACK provides a number of routines for factorizing a general rectangular m-by-n matrix A, as
the product of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal)
matrix.

A real matrixQ is orthogonal ifQTQ = I; a complex matrixQ is unitary ifQHQ = I. Orthogonal
or unitary matrices have the important property that they leave the two-norm of a vector invariant:

kxjj2 = kQxk2; if Q is orthogonal or unitary.

As a result, they help to maintain numerical stability because they do not amplify rounding errors.
Orthogonal factorizations are used in the solution of linear least squares problems. They may also be

used to perform preliminary steps in the solution of eigenvalue or singular value problems.

3.4 Generalized Orthogonal Factorizations and Linear Least Squares Problems

ScaLAPACK includes routines for generalized QR and RQ factorizations. Future releases of ScaLA-
PACK will include routines for solving generalized linear least squares problems.

3.5 Symmetric Eigenproblems

Let A be a real symmetric or complex Hermitian n-by-n matrix. A scalar � is called an eigenvalue and
a nonzero column vector z the corresponding eigenvector if Az = �z. � is always real when A is real
symmetric or complex Hermitian.

The basic task of the symmetric eigenproblem routines is to compute values of � and, optionally,
corresponding vectors z for a given matrix A.

This computation proceeds in the following stages:

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is
real symmetric this decomposition isA = QTQT withQ orthogonal and T symmetric tridiagonal.
If A is complex Hermitian, the decomposition is A = QTQH with Q unitary and T , as before,
real symmetric tridiagonal.

9

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all
eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T = SΛST ,
where S is orthogonal and Λ is diagonal. The diagonal entries of Λ are the eigenvalues of T , which
are also the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of
A are the columns of Z = QS, so that A = ZΛZT (ZΛZH when A is complex Hermitian).

The solution of the symmetric eigenproblem implemented in PDSYEVX consists of three phases: (1)
reduce the original matrixA to tridiagonal formA = QTQT whereQ is orthogonal and T is tridiagonal,
(2) find the eigenvalues Λ = diag(�1; :::; �n) and eigenvectors U = [u1; :::; un] of T so that T = UΛUT ,
and (3) form the eigenvector matrix V of A so A = Q(UΛUT)QT = (QU)Λ(QU)T = V ΛV T . Phases
1 and 3 are analogous to their LAPACK counterparts. However, our current design for phase 2 differs
from the serial (or shared memory) design. We have chosen to do bisection followed by inverse iteration
(like the LAPACK expert driver DSYEVX), but with the reorthogonalization phase of inverse iteration
limited to the eigenvectors stored in a single process. A straightforward parallelization of DSYEVXwould
have led to a serial bottleneck and significant slowdowns in the rare situation of matrices with eigenvalues
tightly clustered together. The current design guarantees that phase (2) is inexpensive compared to the
other phases once problems are reasonably large. An alternative algorithm which eliminates the need
for reorthogonalization is currently being developed by Dhillon and Parlett using Fernando’s double
factorization method [31], and we expect to use this new algorithm in the near future. This new routine
should guarantee high accuracy and high speed independent of the eigenvalue distribution.

3.6 Nonsymmetric Eigenproblem and Schur Factorization

Let A be a square n-by-n matrix. A scalar � is called an eigenvalue and a non-zero column vector v
the corresponding right eigenvector if Av = �v. A nonzero column vector u satisfying uHA = �uH

is called the left eigenvector. The first basic task of the routines described in this section is to compute,
for a given matrix A, all n values of � and, if desired, their associated right eigenvectors v and/or left
eigenvectors u.

A second basic task is to compute the Schur factorization of a matrix A. If A is complex, then its
Schur factorization is A = ZTZH , where Z is unitary and T is upper triangular. If A is real, its Schur
factorization is A = ZTZT , where Z is orthogonal. and T is upper quasi-triangular (1-by-1 and 2-by-2
blocks on its diagonal). The columns of Z are called the Schur vectors of A. The eigenvalues of A
appear on the diagonal of T ; complex conjugate eigenvalues of a real A correspond to 2-by-2 blocks on
the diagonal of T .

We are implementing two parallel algorithms for computing the Schur factorization. The first is a
parallelization of the conventional sequential algorithm, and the second is a novel divide-and-conquer
algorithm. We discuss each briefly in turn.

The ScaLAPACK solution has elements in common with LAPACK. For example, both reduce to
upper Hessenberg form initially. Both use an implicitQR algorithm based approach. The QR algorithm
involves bulge chasing, and LAPACK uses a single bulge. Parallelism is obtained in ScaLAPACK by
chasing multiple bulges that are staggered far enough apart so that all nodes have computation to perform
(except during pipeline start-up and wind-down.) The broadcast of the Householder reflections which is
critical to anyQR algorithm is blocked independently of the distributedblock size. The application of the
Householder reflections are also done in a block fashion (independent of the above broadcast blocking)
to increase data re-use.

Our second algorithm is based on the sign function of a matrix [3, 4, 5]. This algorithm offers the
flexibility of computing just part of the Schur form (corresponding, say, to the eigenvalues with positive
real parts), uses more highly parallelized building blocks from ScaLAPACK than the HQR algorithm
in the last paragraph (matrix inversion, matrix multiply and QR factorization), but also requires more
floating point operations; it remains to be seen for which problems and on which machines which
algorithm is faster. The sign function also entails a dynamic load balancing scheme [7] to implement its
divide-and-conquer approach most efficiently.

10

3.7 Singular Value Decomposition

LetA be a general realm-by-nmatrix. The singular value decomposition (SVD) ofA is the factorization
A = UΣV T , where U and V are orthogonal, and Σ = diag(�1; : : :�r), r = min(m;n), with �1 � � � � �
�r � 0. If A is complex, then its SVD is A = UΣV H where U and V are unitary, and Σ is as before
with real diagonal elements. The �i are called the singular values, the first r columns of V the right
singular vectors and the first r columns of U the left singular vectors.

The SVD and symmetric eigendecompositions are entirely analogous, so that any algorithm for one
has a counterpart for the other. As soon as the final version of the symmetric eigenvalue algorithm has
been developed, we will produce an SVD version. In the meantime, we plan to release an SVD code
based on serial QR iteration, where each processor redundantly runs QR iteration on a bidiagonal matrix,
but updates a subset of the rows of the U and V in an embarrassingly parallel fashion.

3.8 Generalized Symmetric Definite Eigenproblems

The generalized eigenvalue problems are defined as Az = �Bz, or ABz = �z, or BAz = �z, where A
and B are real symmetric or complex Hermitian and B is positive definite. Each of these problems can
be reduced to a standard symmetric eigenvalue problem, using a Cholesky factorization of B as either
B = LLT or B = UTU (LLH or UHU in the Hermitian case).

With B = LLT , we have

Az = �Bz) (L�1AL�T)(LT z) = �(LT z):

Hence the eigenvalues of Az = �Bz are those of Cy = �y, where C is the symmetric matrix C =
L�1AL�T and y = LT z. In the complex case C is Hermitian with C = L�1AL�H and y = LHz.

Table 1 summarizes how each of the three types of problem may be reduced to standard form
Cy = �y, and how the eigenvectors z of the original problem may be recovered from the eigenvectors y
of the reduced problem. The table applies to real problems; for complex problems, transposed matrices
must be replaced by conjugate-transposes.

Table 1: Reduction of generalized symmetric definite eigenproblems to standard problems

Type of Factorization Reduction Recovery of
problem of B eigenvectors

1. Az = �Bz B = LLT C = L�1AL�T z = L�Ty
B = UTU C = U�TAU�1 z = U�1y

2. ABz = �z B = LLT C = LTAL z = L�Ty
B = UTU C = UAUT z = U�1y

3. BAz = �z B = LLT C = LTAL z = Ly
B = UTU C = UAUT z = UTy

4 Heterogeneous Networks

There are special challenges associated with writing reliable numerical software on networks containing
heterogeneous processors. That is, processors which may do floating point arithmetic differently. This
includes not just machines with completely different floating point formats and semantics (e.g. Cray
versus workstations running IEEE standard floating point arithmetic), but even supposedly identical
machines runningwith different compilers or even just different compiler optionsor runtime environment.
The basic problem occurs when making data dependent branches on different processors. The flow of an

11

algorithm is usually data dependent and so slight variations in the data may lead to different processors
executing completely different sections of code.

A simple example of where an algorithm might not work correctly is an iteration where the stopping
criterion depends on the value of the machine precision. If the precision varies from process to process,
different processes may have significantly different stopping criteria. In particular, the stopping criterion
used by the most accurate process may never be satisfied if it depends on data computed less accurately
by other processes.

Many such problems can be eliminated by using the largest machine precision among all participating
processes. In LAPACK routine DLAMCH returns the (double precision) machine precision (as well as
other machine parameters). In ScaLAPACK this is replaced by PDLAMCH which returns the largest
value over all the processes, replacing the uniprocessor value returned by DLAMCH. Similarly, one should
use the smallest overflow threshold and largest underflow threshold over the processes being used. In a
non-homogeneous environment the ScaLAPACK routinePDLAMCH runs the LAPACK routineDLAMCH
on each process and computes the relevant maximum or minimum value. We refer to these machine
parameters as the multiprocessor machine parameters.

It should be noted that if the code contains communication between processes within an iteration, it
will not complete if one process converges before the others. In a heterogeneous environment, the only
way to guarantee termination is to have one process make the convergence decision and broadcast that
decision. Further problems and suggested solutions are discussed in [12, 6].

5 Performance

An important performance metric is parallel efficiency. Parallel efficiency, E(N;P), for a problem of
size N on P processors is defined in the usual way [19] as

E(N;P) =
1
P

Tseq(N)

T (N;P)
(3)

where T (N;P) is the runtime of the parallel algorithm, and Tseq(N) is the runtime of the best sequential
algorithm. An implementation is said to be scalable if the efficiency is an increasing function of N=P ,
the problem size per processor (in the case of dense matrix computations,N = n2, the number of words
in the input).

We will also measure the performance of our algorithm in Megaflops/sec (or Gigaflops/sec). This is
appropriate for large dense linear algebra computations, since floating point dominates communication.
For a scalable algorithm with N=P held fixed, we expect the performance to be proportional to P .

We seek to increase the performance of our algorithms by reducing overhead due to load imbalance,
data movement, and algorithm restructuring. The way the data are distributed over the memory hierarchy
of a computer is of fundamental importance to these factors. We present in this section extensive
performance results on various platforms for the ScaLAPACK factorization and reductions routines.
Figures 5 and 6 show the performance of LU, Cholesky and QR factorizations for various sizes of
matrices and number of processes on an Intel Paragon and IBM SP-2. The number of processes used
in the experiments is specified by a process grid dimension cited next to each curve in the graph. As
can be seen the algorithms show scalability as the size of the problem and the number of processes are
increased.

Performance data for the symmetric positive definite banded solvers is presented in Figure 7. The
execution time reflects three parameters: the execution time of sequential LAPACK banded routines on
each process, the redundancy in operation count of a factor of four caused by fill-in, and the logarithmic
execution time of the reduced system. In Figure 7, we graph execution rate as a function of problem size
while holding the work per process constant. There are two curves in Figure 7: the top curve plots the
actual computational speed of the algorithm using the operation count from the parallel band algorithm,
while the bottom curve plots speed relative to the sequential operation count. The latter curve actually

12

shows slower execution time as the number of processes increases from 1 to 2 and from 2 to 4 due
to the increased operation count incurred by band partition algorithms due to fill-in. Note the almost
linear scalability beyond P=4, with the slight drop-off due to the logarithmic complexity of the block
odd-even reduction. The first curve drops mildly going from P=1 to P=2 and P=4 due to the introduction
of communication versus the P=1 case.

Performance data for the symmetric eigensolver (PDSYEVX) are presented in [13].
The timings in Figure 8 represent a single super iteration (an iteration with multiple bulges) of the

implicit multiple double shift nonsymmetric QR eigenvalue problem (PDLAHQR.) PDLAHQR maintains
similiar accuracy as DLAHQR. Efficiencies are reported as compared to PDLAHQR run on a single node.
Because PDLAHQR uses applies Householder transforms in a block fashion, it is faster than DLAHQR
on a single node. We have seen speed-ups compared to DLAHQR on 144 Paragon nodes actually surpass
144 times the maximum performance of DLAHQR. In each case, a distribution block size between 50
and 125 was chosen, but these were blocked into smaller sets (12-30) for communication, and further
blocked in sets of three for computation. The largest problems run were problems chosen to fill the same
amount of memory, in this case, the Hessenberg matrix and Schur vectors and work buffers all fit into
around 52 Mbytes. The work on the Schur vectors was also included. The number of processes used in
the experiments is specified by a process grid dimension cited next to each curve in the graph. Actual
experiments indicate that overall performance of the code, using standard flop count heuristics such as
found in [21], is sharply underestimated by looking at a single super iteration.

5.1 Choice of Block Size

In the factorization or reduction routines, the work distribution becomes uneven as the computation
progresses. A larger block size results in greater load imbalance, but reduces the frequency of commu-
nication between processes. There is, therefore, a tradeoff between load imbalance and communication
startup cost, which can be controlled by varying the block size. This is illustrated in Figure 9 with a
model of the computational time.

Most of the computation of the ScaLAPACK routines is performed in a blocked fashion using
Level 3 BLAS, as is done in LAPACK. The computational blocking factor is chosen to be the same
as the distribution block size. Therefore, smaller distribution block sizes increase the loop and index
computation overhead. However, because the computation cost ultimately dominates, the influence of the
block size on the overall communication startup cost and loop and index computation overhead decreases
very rapidly with the problem size for a given grid of processes. Consequently, the performance of the
ScaLAPACK library is not very sensitive to the block size, as long as the extreme cases are avoided. A
very small block size leads to BLAS 2 operations and poorer performance. A very large block size leads
to computational imbalance.

One exception is PDLAHQR (the nonsymmetricQR eigenvalue algorithm.) Here, the computational
blocking factor has an upper bound given by the distribution block size. But the distribution block size
corresponds to border communications, and so the algorithm desires block sizes larger than one might
typically require for Level 3 based algorithms. A wise choice is therefore critical to performance and
ultimately redistribution might be necessary for unwise choices.

The chosen block size impacts the amount of workspace needed on every process. This amount
of workspace is typically large enough to contain a block of columns or a block of rows of the matrix
operands. Therefore, the larger the block size, the greater the necessary workspace, i.e the smaller the
largest solvable problem on a given grid of processes. For Level 3 BLAS blocked algorithms, the smallest
possible block operands are of size MB�NB. Therefore, it is good practice to choose the block size to
be the problem size for which the BLAS matrix-multiply GEMM routine achieves 90 % of its reachable
peak.

Determining optimal, or near optimal block sizes for different environments is a difficult task because
it depends on many factors including the machine architecture, speeds of the different BLAS levels,
the latency and bandwidth of message passing, the number of process available, the dimensions of the

13

process grid, the dimension of the problem, and so on. However, there is enough evidence and expertise
for automatically and accurately determining optimal, or near optimal block sizes via an enquiry routine.
Furthermore, for small problem sizes it is also possible to determine if redistributing n2 data items is an
acceptable cost in terms of performance as well as memory usage. In the future, we hope to calculate the
optimal block size via an enquiry routine.

5.2 Choice of Grid Size

The best grid shape is determined by the algorithm implemented in the library and the underlyingphysical
network. A one link physical network will favor Pr = 1 or Pc = 1, where Pr � Pc is the process
grid. This affects the scalability of the algorithm, but reduces the overhead due to message collisions. It
is possible to predict the best grid shape given the number of processes available. The current algorithms
for the factorization or reduction routines can be split into two categories.

If at every step of the algorithm a block of columns and/or rows needs to be broadcast, as in the
LU or QR factorizations, it is possible to pipeline this communication phase and overlap it with some
computation. The direction of the pipeline determines the shape of the grid. For example, the LU , QR
and QL factorizations perform better for “flat” process grids (Pr < Pc). These factorizations share a
common bottleneck of performing a reduction operation along each column (for pivoting in LU , and
for computing a norm in QR and QL). The first implication of this observation is that large latency
message passing perform better on a “flat” grid than on a square grid. Secondly, after this reduction
has been performed, it is important to update the next block of columns as fast as possible. This
is done by broadcasting the current block of columns using a ring topology, i.e, feeding the ongoing
communication pipe. Similarly, the performance of the LQ and RQ factorizations take advantage of
“tall” grids (Pr > Pc) for the same reasons, but transposed.

The theoretical efficiency of the LU factorization can be estimated by (3):

ELU(N;P) =
1

1 + 3P logPr
n2

�
3

+ 3
4n(2Pc + Pr logPr)

�

3

For large n, the last term in the denominator dominates, and it is minimized by choosing a Pr slightly
smaller than Pc. Pc = 2Pr works well on Intel machines. For smaller n, the middle term dominates,
and it becomes more important to choose a small Pr. Suppose that we keep the ratio Pr=Pc constant
as P increases, thus we have Pr = u

p
P and Pc = v

p
P , where u and v are constant [10]. Moreover,

let us ignore the log2(Pr) factor for a moment. In this case, Pr=n and Pc=n are proportional to
p
P=n

and n2 must grow with P to maintain efficiency. For sufficiently large Pr, the log2(Pr) factor cannot be
ignored, and the performance will slowly degrade with the number of processors P . This phenomenon is
observed in practice as shown in Figure 10 for the efficiency of the LU factorization on the Intel Paragon.

The second group of routines are two-sided algorithms as opposed to one-sided algorithms. In these
cases, it is not usually possible to maintain a communication pipeline, and thus square or near square grids
are more optimal. This is the case for the algorithms used for implementing the Cholesky factorization,
the matrix inversion and the reduction to bidiagonal form (BRD), Hessenberg form (HRD), tridiagonal
form (TRD) and the nonsymmetric QR eigenvalue algorithm (HQR). For example, the update phase
of the Cholesky factorization of a lower symmetric matrix physically transposes the current block of
columns of the lower triangular factor.

Assume now that at most P processes are available. A natural question arising is: could we decide
what process grid Pr � Pc � P should be used? Similarly, depending on P , it is not always possible
to factor P = Pr:Pc to create the appropriate grid. For example, if P is prime, the only possible grids
are 1 � P and P � 1. If such grids are particularly bad for performance, it may be beneficial to let
some processors remain idle, so the remainder can be formed into a “squarer” grid [24]. These problems
can be analyzed by a complicated function of the machine and problem parameters. It is possible to
develop models depending on the machine and problem parameters which accurately estimate the impact

14

of modifying the shape of the grid on the total execution time, as well as predicting the necessary amount
of extra memory required for each routine.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
LU performance on the Intel Paragon (mb=nb=20)

Matrix Size

G
fl
o

p
s

32x32

16x32

16x16

8x16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
QR performance on the Intel Paragon (mb=nb=6)

Matrix Size

G
fl
o

p
s

32x32

16x32

16x16

8x16

Figure 5: Intel Paragon LU and QR Performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

8x8

4x8

4x4

LLT performance on thin−node SP−2 (mb=nb=50)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

5

10

15

20

25

30

35
LLT performance on the Intel Paragon (mb=nb=20)

Matrix Size

G
fl
o

p
s

32x32

16x32

16x16

8x16

Figure 6: IBM SP-2 and Intel Paragon Cholesky Factorization

15

10
0

10
1

10
2

10
1

10
2

10
3

Number of processors

ex
ec

ut
io

n
sp

ee
d

(M
flo

p/
s)

Scaled Execution Speed for Banded Scalapack Solver on IBM SP/2

actual Mflop/s

Mflop/s relative

to opcount for

serial algorithm

Work per processor: N=1024, bandwidth=64

Figure 7: Execution speed in Mflop/s for the band algorithm on the IBM SP-2.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

E
ff
ic

ie
n
c
y

Matrix Size

PDLAHQR Efficiency on the Intel MP Paragon Supercomputer

2x2
3x3 4x4 5x5 6x6 7x7 8x8 9x9

Figure 8: Performance of the Parallel QR Algorithm on the Intel MP Paragon for a 2x2 up to a 9x9 grid of
processes.

16

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

matrix order

to
ta

l
M

fl
o
p
s

LU FACT. PREDICTED PERFORMANCE ON 16 (2x8) NODES I860

Predicted (dotted line)

ScaLAPACK (solid line)

nb = 1

nb = 8

nb = 32

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix order

ti
m

e
 d

is
tr

ib
u

ti
o

n

BLOCK SIZE = 40

BANDWITH = 34.00 Mbytes/s

LATENCY = 56.00 us

FLOPS/NODE = 236.00 Mflops

LU PREDICTED TIME DISTRIBUTION ON 64 (4x16) NODES SP2

Latency (dashed)

Bandwith (dotted)

Communication (dashed−dotted)

Computation (solid)

Figure 9: Performance with different blocksizeNB (MB = NB) and prediction of percentage of time to
performance operations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

1

2

3

4

5

6

7

8

9

Matrix Size

G
fl
o

p
s

QR, 8x8
LLT, 8x8

LU, 4x16

BRD, 8x8

TRD, 8x8

Performance comparison of various codes on 64 SP−2 thin nodes

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Matrix Size

E
ff

ic
ie

n
c
y

LU Efficiency on the Intel Paragon MP’s node (r=c=16)

4x164x82x8

Figure 10: IBM SP-2 and Intel Paragon Performance

17

6 Future Directions

Future releases of the ScaLAPACK library will extend the flexibility of the PBLAS and increase the
functionality of the library to include routines for the solution of general banded linear systems, gen-
eral and symmetric positive definite tridiagonal systems, rank-deficient linear least squares problems,
generalized linear least squares problems, and the singular value decomposition. Finally, general sparse
and out-of-core prototype routines are being investigated, as well as an HPF [23, 25] interface for the
ScaLAPACK library. An extensive discussion of alternative approaches for scalable parallel software
libraries of the future can be found in [8].

7 Conclusions

ScaLAPACK is portable across a wide range of distributed-memory environments such as the IBM SP
series, Intel series (Gamma, Delta, Paragon), Cray T3 series, TM CM-5, clusters of workstations, and
any system for which PVM [20] or MPI [33] is available. Similar to the BLAS and LAPACK, many
of the goals of the ScaLAPACK project, particularly portability, are aided by developing and promoting
standards, especially for low-level communication and computation routines. We have been successful
in attaining these goals, limiting most machine dependencies to two standard libraries called the BLAS,
or Basic Linear Algebra Subroutines, and BLACS, or Basic Linear Algebra Communication Subroutines.
ScaLAPACK will run on any machine where both the BLAS and the BLACS are available.

All ScaLAPACK-related software is publically available on netlib via the URL:

http://www.netlib.org/scalapack/index.html

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, S. Ostrouchov, and D. Sorensen. “LAPACK Users’ Guide, Second Edition”.
SIAM, Philadelphia, PA, 1995.

[2] E. Anderson, Z. Bai, and J. J. Dongarra. Generalized QR Factorization and its Applications. Linear
Algebra and Its Applications, pages 162–164:243–273, 1992.

[3] Z. Bai and J. Demmel. Design of a parallel nonsymmetric eigenroutine toolbox, Part I. In
Proceedings of the Sixth SIAM Conference on Parallel Proceesing for Scientific Computing. SIAM,
1993. Long version available as UC Berkeley Computer Science report all.ps.Z via anonymous ftp
from tr-ftp.cs.berkeley.edu, directory pub/tech-reports/csd/csd-92-718.

[4] Z. Bai, J. Demmel, J. Dongarra, A. Petitet, H. Robinson, and K. Stanley. The spectral decompo-
sition of nonsymmetric matrices on distributed memory computers. LAPACK Working Note #91
Technical report UT CS–95–273, University of Tennessee, 1995.

[5] Z. Bai, J. Demmel, and M. Gu. Inverse free parallel spectral divide and conquer algorithms for
nonsymmetric eigenproblems. Num. Math., 1996. to appear.

[6] L. S. Blackford, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, A. Petitet, H. Ren,
K. Stanley, R. C. Whaley. Practical experience in the dangers of heterogeneous computing. LAPACK
Working Note #112 Technical report UT CS–96–330, University of Tennessee, 1996.

[7] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the benefits of mixed data and task parallelism.
In Symposium on Parallel Algorithms and Architectures (SPAA), July 1995.

[8] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memory computers
– design issues and performance. LAPACK Working Note #95 Technical report UT CS–95–283,
University of Tennessee, 1995.

18

[9] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley. A proposal for a set
of parallel basic linear algebra subprograms. LAPACK Working Note #100 Technical report UT
CS–95–292, University of Tennessee, 1995.

[10] J. Choi, J. Dongarra, R. Pozo, and D. Walker. “ScaLAPACK: A Scalable Linear Algebra Library for
DistributedMemory Concurrent Computers”. Technical Report UT CS-92-181, LAPACK Working
Note #55, University of Tennessee, 1992.

[11] J. Choi, J. Dongarra, and D. Walker. “Parallel Matrix Transpose Algorithms on Distributed Con-
current Computers”. Technical Report UT CS-93-215, LAPACK Working Note #65, University of
Tennessee, 1993.

[12] J. Demmel, J. J. Dongarra, S. Hammarling, S. Ostrouchov, and K. Stanley. The dangers of
heterogeneous network computing: Heterogenous networks considered harmful. In Proceedings
Heterogeneous Computing Workshop ’96, pages 64–71. IEEE, 1996.

[13] J. Demmel and K. Stanley. “The Performance of Finding Eigenvalues and Eigenvectors of Dense
Symmetric Matrices on Distributed Memory Computers”. In Proceedings of the Seventh SIAM
Conference on Parallel Proceesing for Scientific Computing. SIAM, 1994.

[14] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. “A Set of Level 3 Basic Linear Algebra
Subprograms”. ACM Transactions on Mathematical Software, 16(1):1–28, 1990.

[15] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. “An Extended Set of Fortran Basic Linear
Algebra Subprograms”. ACM Transactions on Mathematical Software, 14(1):1–32, 1988.

[16] J. Dongarra and L. Johnsson. Solving banded systems on a parallel processor. Parallel Computing,
5:219–246, 1987.

[17] J. Dongarra and D. W. Walker. The Design of Linear Algebra Libraries for High Performance Com-
puters. Technical Report UT CS-93-192, LAPACK Working Note #58, University of Tennessee,
1993.

[18] J. Dongarra and R. C. Whaley. “A User’s Guide to the BLACS v1.0”. Technical Report UT
CS-95-281, LAPACK Working Note #94, University of Tennessee, 1995.

[19] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. “Solving Problems on
Concurrent Processors”, volume 1. Prentice Hall, Englewood Cliffs, N.J, 1988.

[20] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM : Parallel
Virtual Machine. A Users’ Guide and Tutorial for Networked Parallel Computing. The MIT Press
Cambridge, Massachusetts, 1994.

[21] G. Golub and C. F. Van Loan. “Matrix Computations - 2nd Edition”. Johns Hopkins University
Press, Baltimore, MD, 1989.

[22] S. Hammarling. The numerical solution of the general Gauss-Markov linear model. In T. S. Durrani
et al., editor, Mathematics in Signal Processing. Clarendon Press, Oxford, 1986.

[23] High Performance Forum. “High Performance Fortran Language Specification”. Technical Report
CRPC-TR92225, Center for Research on Parallel Computation, Rice University, Houston, TX, May
1993.

[24] W. Hsu, G. Thanh Nguyen, and X. Jiang. “Going Beyond Binary”.
http://www.cs.berkeley.edu/ xjiang/cs258/project 1.html, 1995. CS 258 Class project.

[25] Koebel, C., Loveman, D., Schreiber, R., Steele, G., Zosel, M.: The High Performance Fortran
Handbook. The MIT Press, Cambridge, Massachusetts, 1994.

[26] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. “Basic Linear Algebra Subprograms for Fortran
Usage”. ACM Transactions on Mathematical Software, 5(3):308–323, 1979.

[27] Message Passing Interface Forum. “MPI: A Message-Passing Interface standard”. International
Journal of Supercomputer Applications, 8(3/4), 1994.

19

[28] B. De Moor and P. Van Dooren. Generalization of the singular value and QR decompositions. SIAM
J. Matrix Anal. Appl., 13:993–1014, 1992.

[29] C. Paige. Fast numerically stable computations for generalized linear least squares problems. SIAM
J. Num. Anal., 16:165–179, 1979.

[30] C. Paige. Some aspects of generalized QR factorization. In M. Cox and S. Hammarling, editors,
Reliable Numerical Computations. Clarendon Press, Oxford, 1990.

[31] B. Parlett, I. Dhillon, and V. Fernando. Private Communication, 1995.

[32] ScaLAPACK Users’ Guide. http://www.netlib.org/scalapack/scalapack ug.ps. To be published by
SIAM.

[33] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. J. Dongarra. MPI: The Complete
Reference. MIT Press, Cambridge, Massachusetts, 1996.

20

