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Abstract

This article outlines the content and performance of some of the ScaLAPACK
software. ScaLAPACK is a collection of mathematical software for linear algebra
computations on distributed-memory computers. The importance of developing
standards for computational and message-passing interfaces is discussed. We present
the di�erent components and building blocks of ScaLAPACK and provide initial
performance results for selected PBLAS routines and a subset of ScaLAPACK driver
routines.

1 Introduction

ScaLAPACK is a library of high-performance linear algebra routines for distributed-memory

MIMD machines. It is a continuation of the LAPACK project, which has designed and

produced an e�cient linear algebra library for workstations, vector supercomputers, and

shared-memory parallel computers [3]. Both libraries contain routines for the solution of

systems of linear equations, linear least squares problems, and eigenvalue problems. The

goals of the LAPACK project, which continue into the ScaLAPACK project, are e�ciency,

so that the computationally intensive routines execute as fast as possible; scalability as

the problem size and number of processors grow; reliability, including the return of error

bounds; portability across machines; 
exibility so that users may construct new routines

from well-designed components; and ease of use. Toward this last goal the ScaLAPACK

software has been designed to look as much like the LAPACK software as possible.

Many of these goals have been attained by developing and promoting standards,

especially speci�cations for basic computational and communication routines. Thus,
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LAPACK relies on the Basic Linear Algebra Subroutines BLAS [30, 16, 15], particularly

the Level 2 and 3 BLAS, for computational e�ciency; and ScaLAPACK [5] relies upon

the Basic Linear Algebra Communications Subprograms (BLACS) [20] for e�ciency of

communication and uses a set of parallel BLAS, the PBLAS [9], which themselves call the

BLAS and the BLACS. LAPACK and ScaLAPACK will run on any machine for which the

BLAS and the BLACS are available. A PVM [23] version of the BLACS has been available

for some time, and the portability of the BLACS has recently been further increased by

the development of a version that uses MPI [33].

2 Factors A�ecting ScaLAPACK Performance

Unlike software such as LAPACK, which is designed for sequential computers and shared-

memory systems, the performance of the ScaLAPACK library is sensitive not only to the

characteristics of the distributed-memory computer but also to the parameters of the data

distribution. Choosing these distribution parameters is often perceived by the user as a

di�cult task. These degrees of freedom are, however, the fundamental factor that allows the

ScaLAPACK software to be inherently and potentially highly e�cient for a wide range of

distributed-memory concurrent computers. In this article, we discuss the major factors that

a�ect the performance of the ScaLAPACK driver routines. Also provided are guidelines to

help users in their quest for high performance.

2.1 Processor Performance and Total Performance

The ScaLAPACK routines have been speci�cally designed to allow for an even distribution

of the computational load and thus to achieve the highest possible performance. Therefore,

the overall execution time is strongly related to the rate of 
oating-point operations per

second (
op/s) that the slowest processor in the machine con�guration can achieve.

This behavior can easily be observed if some factor slows a particular processor of

the system. Consider, for instance, a ten-processor machine con�guration. Suppose

that nine of the processors can deliver a peak performance of 100 mega
op/s (M
op/s)

but that the tenth processor can achieve only 20 M
op/s. (On a homogeneous system,

di�erent versions of the operating system and/or memory capacities, I/O tra�c, or simply

another user's program can easily cause such a performance degradation.) On such a

ten-processor machine, the overall ScaLAPACK peak performance is thus limited to 200

M
op/s, whereas the performance of the machine with nine 100-mega
op/s processors is

900 M
op/s. Speci�cally, the most heavily loaded processor controls execution time. The

implications are clear. If a user's code is running on nine unloaded processors and one

processor with a load factor of 5, one can observe no more than a factor of 10
5
speedup.

Similarly, it is possible on some systems to spawn multiple processes on a single

processor. In such a case, performance is limited by the slowest processor, presumably

the one with the most processes. For example, if 10 processes are spawned on 9 identical

processors, the speedup is limited to 10=d10
9
e.

The load of the machine, in addition to the direct e�ect of o�ering a program only a

portion of the total cycles, can have several indirect e�ects. If each processor is individually

scheduled, performance can be arbitrarily poor because signi�cant progress is possible only

when all processes are concurrently scheduled. A loaded machine may also cause one's data

to be swapped out to disk, which can greatly reduce peak performance.
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2.2 ScaLAPACK and the BLAS

The ScaLAPACK software relies as much as possible on the BLAS for e�ciency and

portability. Consequently, the local processor 
op rate can be best approximated (from

the user's viewpoint) by the performance of the BLAS. The user is therefore strongly urged

to use, whenever possible, the most e�cient BLAS implementation available. Not using a

machine-optimized BLAS implementation may substantially lower the peak 
op rate that

the hardware can achieve.

2.3 Data Distribution

The ScaLAPACK software assumes that the user's input data has been distributed on

a two-dimensional grid of processes according to the block cyclic scheme. For a given

number of processes, the parameters of this family of data distributions are the shape of

the process grid and the size of the block used to partition and distribute the matrix entries

over the process grid. These parameters a�ect the number of messages exchanged during

the operation, the aggregated volume of data communicated, and the computational load

balance. These factors have a signi�cant impact on the e�ciency achieved by a ScaLAPACK

driver routine.

Most of the linear algebra algorithms perform a succession of elementary transforma-

tions on rows or columns of a matrix. Therefore, most of the communication operations

performed within a ScaLAPACK routine involve process rows or columns. If one assumes

that there is roughly the same number of of communication operations in both dimensions

of the process grid, then a square two-dimensional process grid clearly o�ers the greatest

scope for the parallelization of the communication operations.

Nevertheless, a few exceptions to this rule exist. First, if the user's interconnection

network physically supports only one processor communicating at a time (e.g., ethernet),

then better performance will be achieved on a one-dimensional process grid. Indeed, the

smaller number of larger messages to be exchanged on a one-dimensional grid prevents the

competition for resources from becoming a critical performance factor. Second, for a small

number (say, eight) of processes, it is often slightly preferable to select a one-dimensional

process grid|simply because there are not enough processes to make a large di�erence.

Most of the computation in the ScaLAPACK routines is performed in a blocked fashion

by using Level 3 BLAS, as is done in LAPACK. The logical computational blocking factor

used within the Level 3 PBLAS may di�er from the distribution block size. Consequently,

the performance of the ScaLAPACK library is not very sensitive to the physical distribution

block size, as long as the extreme case is avoided. Very large distribution blocking factors

do lead to computational imbalance. The chosen logical block size a�ects the amount of

workspace needed on every process. This amount of workspace is typically large enough to

contain a logical block of rows or columns of the distributed matrix operand. Therefore,

the larger the logical block size, the greater the necessary workspace or, put another way,

the smaller the problem that can be solved on a given grid of processes. For Level 3 BLAS

block-partitioned algorithms, one dimension of the matrix operands is locally equal to the

logical block size. Therefore, it is good practice to choose the logical block size to be the

problem size for which the BLAS matrix-multiply routine achieves approximately 90% of

its peak performance.
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2.4 Installation

If the components of the ScaLAPACK library are properly installed, one should obtain

performance results that are consistent with the computation and communication capa-

bilities of the application computer. It is therefore a recommended practice to check the

quality of the installation of the ScaLAPACK components as well as the performance of the

hardware. Testing and timing programs are provided with all of the ScaLAPACK software

components to diagnose installation problems. The above selection method of the distribu-

tion parameters generally achieves within 25% of the best possible performance. A rapid

performance evaluation can be made at this stage to verify that the performance results

obtained are reasonable and coherent. Finer tuning of these parameters can, of course,

improve performance further.

3 Performance, Portability, and Scalability

How can we provide portable software for dense linear algebra computations that is

e�cient on a wide range of modern distributed-memory concurrent computers? Answering

this question|and providing the appropriate software|has been an objective of the

ScaLAPACK project.

The ScaLAPACK software has been designed speci�cally to achieve high e�ciency for

a wide range of modern distributed-memory concurrent computers. Examples of such

machines include the Cray T3D and T3E, the IBM Scalable POWERparallel SP series, the

Intel iPSC and Paragon, the nCube-2/3, networks and clusters of workstations (NoWs and

CoWs), and \piles" of PCs (PoPCs).

For clarity of discussion, we consider this large diversity of architectures under the

single model logical distributed-memory computer representation. This model consists

of p processors that are connected by a message-passing interconnection network. Each

processor has its own memory, called the local memory, which is accessible only to that

processor. The time to access remote memory is longer than the time to access local

memory. Such a computer is often referred to as a Non-Uniform Memory Access (NUMA)

machine.

For the sake of simplicity, we also assume that all processors can be treated equally

in terms of local performance and that the communication rate between two processors

is independent from the processors considered. The local processor performance and the

network performance and connectivity are therefore the main machine factors a�ecting the

performance achieved by the ScaLAPACK drivers.

3.1 The BLAS as the Key to (Trans)portable E�ciency

The total number of 
oating-point operations performed by most of the ScaLAPACK driver

routines for dense matrices can be approximated by the quantity Cf N
3, where Cf is a

constant and N is the order of the largest matrix operand. For solving linear equations or

linear least squares, Cf is a constant depending solely on the selected algorithm. The

algorithms used to �nd eigenvalues and singular values are iterative; hence, for these

operations, the constant Cf truly depends on the input data as well. It is, however,

customary or \standard" to consider the values of the constants Cf for a �xed number

of iterations. The \standard" constants Cf range from 1=3 to 27, as shown in Table 4.

The performance of the ScaLAPACK drivers is thus bounded above by the performance

of a computation that could be partitioned into p independent chunks of Cf N
3=p 
ops each.

This upper bound is referred to hereafter as the peak performance and can be computed as
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the product of Cf N
3=p and the highest reachable local processor 
op rate. Hence, for a

given problem size N and assuming a uniform distribution of the computational tasks, the

most important factors determining the overall performance are the number p of processors

involved in the computation and the local processor 
op rate.

In a serial computational environment, transportable e�ciency is the essential motiva-

tion for developing blocking strategies and block-partitioned algorithms [2, 3, 14, 28]. The

linear algebra package (LAPACK) [3] is the archetype of such a strategy. The LAPACK

software is constructed as much as possible out of calls to the BLAS. These kernels con�ne

the impact of machine architecture di�erences within a small number of routines. The

e�ciency and portability of the LAPACK software are then achieved by combining native

and e�cient BLAS implementations with portable high-level components.

The BLAS are subdivided into three levels, each of which o�ers increased scope for

exploiting parallelism. This subdivision corresponds to three di�erent kinds of basic linear

algebra operations:

� Level 1 BLAS [30]: for vector operations, such as y  �x+ y;

� Level 2 BLAS [16]: for matrix-vector operations, such as y  �Ax+ �y;

� Level 3 BLAS [15]: for matrix-matrix operations, such as C  �AB + �C.

Here, A, B, and C are matrices; x and y are vectors; and � and � are scalars.

The performance potential of the three levels of BLAS is strongly related to the ratio

of 
oating-point operations to memory references, as well as to the reuse of data when it is

stored in the higher levels of the memory hierarchy. Consequently, the Level 1 BLAS cannot

achieve high e�ciency on most modern supercomputers. The Level 2 BLAS can achieve

near-peak performance on many vector processors. On RISC microprocessors, however,

their performance is limited by the memory access bandwidth bottleneck. The greatest

scope for exploiting the highest levels of the memory hierarchy as well as other forms of

parallelism is o�ered by the Level 3 BLAS [3].

The previous reasoning applies to distributed-memory computational environments in

two ways. First, in order to achieve overall high performance, it is necessary to express

the bulk of the computation local to each process in terms of Level 3 BLAS operations.

Second, designing and developing a set of parallel BLAS (PBLAS) for distributed-memory

concurrent computers should lead to an e�cient and straightforward port of the LAPACK

software. This is the path followed by the ScaLAPACK project [8, 19] as well as others

[1, 7, 12, 21]. As part of the ScaLAPACK project, a set of PBLAS has been early designed

and developed [11, 9].

3.2 Block Cyclic Data Layout as the Key to Load Balancing and Software
Reuse

The way the data is distributed over the memory hierarchy of a computer is of fundamental

importance to load balancing and software reuse. The block cyclic data layout allows a

reduction of the overhead due to load imbalance and data movement. Block-partitioned

algorithms are used to maximize the local processor performance.

Since the data decomposition largely determines the performance and scalability of a

concurrent algorithm, a great deal of research [10, 22, 24, 26] has focused on di�erent data

decompositions [4, 6, 27]. In particular, the two-dimensional block cyclic distribution [29]

has been suggested as a possible general-purpose basic decomposition for parallel dense

linear algebra libraries [13, 25, 31], such as ScaLAPACK.
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Block cyclic distribution is bene�cial because of its scalability [18], load balance,

and communication [25] properties. The block-partitioned computation then proceeds in

consecutive order just like a conventional serial algorithm. This essential property of the

block cyclic data layout explains why the ScaLAPACK design has been able to reuse the

numerical and software expertise of the sequential LAPACK library.

3.3 The BLACS as an E�cient, Portable, and Adequate Message-Passing
Interface

The total volume of data communicated by most of the ScaLAPACK driver routines for

dense matrices can be approximated by the quantity Cv N
2, where N is the order of the

largest matrix operand. The number of messages, however, is proportional to N and can

be approximated by the quantity CmN=nb, where nb is the logical blocking factor used in

the computation. Similar to the situation described above, the \standard" constants Cv for

the communication volume depend upon the performed computation and are of the same

order as the 
oating-point-operation constants Cf shown in Table 4.

Developing an adequate message-passing interface specialized for linear algebra opera-

tions has been one of the �rst achievements of the ScaLAPACK project. The Basic Linear

Algebra Communications Subprograms (BLACS) [20] were thus speci�cally designed to

facilitate the expression of the relevant communication operations. The simplicity of the

BLACS interface, as well as the rigor of their speci�cation, allows for an easy port of

the entire ScaLAPACK software. Currently, the BLACS have been e�ciently ported on

machine-speci�c message-passing libraries such as MPL (IBM) and NX (Intel), as well as

more generic interfaces such as PVM and MPI. The BLACS overhead has been shown to

be negligible [20].

The speci�city and limited scope of the BLACS signi�cantly contribute to its ease

of use, portability, and e�ciency. In addition, the BLACS interface provides the user

and library designer with an appropriate level of notation. Indeed, the BLACS operate

on typed two-dimensional arrays. The computational model consists of a one- or two-

dimensional grid of processes, where each process stores matrices and vectors. The BLACS

include synchronous send/receive routines to send a matrix or submatrix from one process

to another, to broadcast submatrices, or to perform global reductions (sums, maxima and

minima). Also included are routines to establish, modify, or query the process grid. The

BLACS provide an adequate interface level for linear algebra communication operations.

For ease of use and 
exibility, the BLACS send operation is locally blocking; that is,

the return from the send operation indicates that the resources may be reused. However,

since this feature depends only on local information, it is unknown whether the receive

operation has been called. Bu�ering is necessary on the sending or the receiving process.

The BLACS receive operation is globally blocking. The Return from the receive operation

indicates that the message has been (sent and) received. On systems natively supporting

globally blocking sends, nonblocking sends coupled with bu�ering are used to simulate

locally blocking sends. This extra bu�ering operation may cause a slight performance

degradation on those systems.

The BLACS broadcast and combine operations feature the ability to select di�erent

virtual network topologies. This easy-to-use built-in facility allows for the expression of

various message scheduling approaches, such as a communication pipeline. This unique

and distinctive BLACS characteristic is necessary for achieving the highest performance

levels on distributed-memory platforms.
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3.4 Parallel E�ciency

An important performance metric is parallel e�ciency. Parallel e�ciency, E(N; p), for a

problem of size N on p processors is de�ned in the usual way [22, 29] by

E(N; p) =
1

p

Tseq(N)

T (N; p)
;

where T (N; p) is the runtime of the parallel algorithm, and Tseq(N) is the runtime of the

best sequential algorithm. For dense matrix computations, an implementation is said to

be scalable if the parallel e�ciency is an increasing function of N2=p, the problem size per

processor. The algorithms implemented in the ScaLAPACK library are scalable in this

sense.

Figure 1 shows the scalability of the ScaLAPACK implementation of the LU factoriza-

tion on the Intel XP/S MP Paragon. The �gure shows the speed in M
op/s of the ScaLA-

PACK LU factorization routine PDGETRF for di�erent machine con�gurations. When

the number of nodes is scaled by a constant factor (2 in the �gure), the same e�ciency or

speed per node is achieved for equidistant problem sizes on a logarithmic scale. In other

words, maintaining a constant memory use per node allows e�ciency to be maintained. In

practice, however, a slight degradation is acceptable. The ScaLAPACK driver routines in

general feature the same scalability behavior up to a constant factor that depends on the

exact number of 
oating-point operations and the total volume of data exchanged during

the computation.
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Fig. 1. LU Performance per Intel Paragon node

The performance of the algorithms implemented in ScaLAPACK is also measured in

mega
op/s per second (or giga
op/s per second). This measurement is appropriate for large

dense linear algebra computations since the computation cost dominates the communication

cost. In the following, the time to execute one 
oating-point operation by one processor is

denoted tf . The time to communicate a message between two processors is approximated

by a linear function of the number of items communicated. The function is the sum of the

time to prepare the message for transmission (tm) and the time taken by the message to
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traverse the network to its destination, that is, the product of its length by the time to

transfer one data item (tv). Alternatively, tm is also called the latency, since it is the time

to communicate a message of zero length. On most modern interconnection networks, the

order of magnitude of the latency varies between a microsecond and a millisecond.

The bandwidth of the network is also referred to as its throughput. It is proportional

to the reciprocal of tv. On modern networks, the order of magnitude of the bandwidth is

a megabyte per second. For a scalable algorithm with N2=p held �xed, one expects the

performance to be proportional to p. The algorithms implemented in ScaLAPACK are

scalable in this sense. It follows that the execution time of the ScaLAPACK drivers can

thus be approximated by

T (N; p) =
Cf N

3

p
tf +

CmN2

p
p

tv +
CmN

nb
tm i:e:; Tseq(N; p) = Cf N

3 tf :

The corresponding parallel e�ciency can then be approximated by

E(N; p) = (1 +
1

nb

Cm tm

Cf tf

p

N2
+
Cv tv

Cf tf

p
p

N
)�1: (1)

Equation 1 illustrates, in particular, that the communication versus computation perfor-

mance ratio of a distributed-memory concurrent computer signi�cantly a�ects parallel ef-

�ciency. The ratio of the latency to the time per 
op (tm=tf ) greatly a�ects the parallel

e�ciency of small problems. The ratio of the network throughput to the 
op rate (tf=tv)

signi�cantly a�ects the parallel e�ciency of medium-sized problems. For large problems,

the processor 
op rate (1=tf ) is the dominant factor contributing to the parallel e�ciency

of the parallel algorithms implemented in ScaLAPACK.

4 ScaLAPACK Strategy

4.1 Software Hierarchy

The ScaLAPACK strategy for combining e�ciency with portability is to construct the

software as much as possible out of calls to the PBLAS for global computation. These

routines in turn rely on the BLAS for local computation and on the BLACS for

communication.

The e�ciency of the ScaLAPACK software depends on e�cient implementations of the

BLAS and the BLACS being provided by computer vendors (or others) for their machines.

Thus, the BLAS and the BLACS form a low-level interface between ScaLAPACK software

and di�erent machine architectures. Above this level, all of the ScaLAPACK software is

portable.

In this article, performance results are presented for three di�erent distributed-memory

concurrent computers: the IBM Scalable POWERparallel 2, the Intel XP/S Paragon, and a

network of SPARC Ultra 1's connected via switched ATM. Table 1 summarizes the relevant

technical features of these machines.

For each machine this table shows the type of processor node, the peak 
op rate per

node, the peak latency, the bandwidth of the interconnection network, and the amount of

physical memory per node. The numbers in parentheses are the relevant and corresponding

numbers that a user program can achieve. For example, the 
op rate in parentheses is the


op rate of the BLAS matrix-multiply. The latency and bandwidth are the corresponding

values achieved by the BLACS. Finally, the amount of memory per node in parentheses is

an approximation of the largest amount of memory available to the user's program.
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Table 1

Machine Characteristics

Machine Node Type Flop Rate Latency Bandwidth Memory per Node

(M
op/s) (�s) (MB/s) (MB)

IBM SP2 Thin 266 (200) 50 (400) 40 (30) 128 (100)

Intel Paragon MP 100 (90) 29 (60) 175 (70) 64 (52)

NoW SPARC Ultra 2 (450) (10)

The performance numbers presented have been obtained on real double precision data

on all the computers. This corresponds to 64-bit 
oating-point arithmetic on all machines

tested.

4.2 Performance of Selected PBLAS Routines

On a distributed-memory concurrent computer consisting of RISC processors, such as the

IBM SP2 or the Intel MP Paragon, the performance of the Level 2 PBLAS is limited

by the rate of data movement between di�erent levels of memory within a processor. In

other words, the performance of the Level 2 BLAS on each processor considerably limits

the performance of the equivalent distributed operation. Table 2 shows the performance

results obtained by the general matrix-vector multiply PBLAS routine PDGEMV.

Table 2

Speed in Mega
op/s of the PBLAS Matrix-Vector Multiply Routines for matrices of order N

with TRANS='N' PDGEMV

Processor Block Values of N

Grid Size 2000 4000 6000 8000 10000

IBM SP2 2� 2 50 177 185 187

4� 4 50 550 683 678 639 710

8� 8 50 1310 2073 1378 1754 2455

Intel MP Paragon 2� 2 32 162

4� 4 32 543 620 666

8� 8 32 1597 2117 2356 2461 2563

NoW SPARC Ultra ATM 2� 2 64 117 126

2� 4 64 218 241

3� 4 64 285 345

This limitation is overcome by the Level 3 PBLAS, which locally perform O( N3

p
p
p
)


oating-point operations on O(N
2

p
) data. The 
op rate achieved by every processor for such

a distributed operation is then much higher. Table 3 shows the performance results obtained

by the general matrix-matrix multiply PBLAS routine PDGEMM for square matrices of

order N .
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Table 3

Speed in Mega
op/s of the PBLAS Matrix-Matrix Multiply Routines PDGEMM for matrices of

order N with TRANSA='N' and TRANSB='N'

Processor Block Values of N

Grid Size 2000 4000 6000 8000 10000

IBM SP2 2� 2 50 755

4� 4 50 2514 2850 3040

8� 8 50 6205 8709 9862 10468 10774

Intel MP Paragon 2� 2 32 330

4� 4 32 1233 1281 1334

8� 8 32 4496 4864 5030 5103 5257

NoW SPARC Ultra ATM 2� 2 64 218 340

2� 4 64 529 734 845

2� 6 64 510 956 1146 1205

5 Solution of Common Numerical Linear Algebra Problems

This section contains performance numbers for selected driver routines. These routines

provide complete solutions for the most common problems of numerical linear algebra and

are the routines users are most likely to call:

� Solve an N by N general system of linear equations with one right-hand side using

PDGESV.

� Solve an N by N symmetric positive de�nite system of linear equations with one

right-hand side using PDPOSV.

� Solve anN byN linear least squares problem with one right-hand side using PDGELS.

item Find the eigenvalues and eigenvectors of an N by N

Data is provided for a variety of distributed-memory concurrent computers. All timings

were obtained by using the machine-speci�c optimized BLAS available on each machine.

For the IBM Scalable POWERparallel 2, the ESSL BLAS were used. In all cases the data

consisted of 64-bit 
oating-point numbers. For each machine and each driver, a range of

problems was run on di�erent number of processors. Di�erent physical distribution block

sizes were tried, with data for the fastest run reported in the tables below. Similarly,

whenever applicable, UPLO=`L' and UPLO=`U' were timed, but times are reported only

for UPLO=`U'. The test matrices were generated with randomly distributed entries. All run

times are reported in seconds, and block size is denoted by nb. The value of the physical

distribution block size as well as the process grid shape was chosen to make N = 2000

optimal. It is not necessarily the best choice for the entire range of problem sizes.

Table 4 presents \standard" 
oating-point operation counts for ScaLAPACK drivers.

5.1 Factorizations for Solving Linear Equations

The LU and Cholesky factorizations are the simplest block algorithms to derive for the

block cyclic layout. Table 5 illustrates the speed of the ScaLAPACK routine for the

LU factorization of a real matrix, PDGETRF. This corresponds to 64-bit 
oating-point

arithmetic on all machines tested. The distribution block size is also used as the partitioning
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Table 4

\Standard" Floating-Point Operation Counts for Some ScaLAPACK Drivers for N by N Matrices

Driver Options Operation

Count

PxGESV 1 Right-hand Side 2=3 �N3

PxPOSV 1 Right-hand Side 1=3 �N3

PxGELS 1 Right-hand Side 4=3 �N3

PxSYEVX Eigenvalues Only 4=3 �N3

PxSYEVX Eigenvalues and Eigenvectors 9 �N3

unit for the computation and communication phases. Table 6 gives similar results for the

Cholesky factorization.

Table 5

Speed in Mega
op/s of PDGETRF for Square Matrices of Order N

Processor Block Values of N

Grid Size 2000 5000 7500 10000 15000

IBM SP2 1� 4 50 426 606

2� 8 50 767 1574 1925 2165

4� 16 50 1026 3182 4433 5730 7151

Intel MP Paragon 1� 4 32 215 283

2� 8 32 479 876 1016

4� 16 32 768 2147 2888 3383 3988

NoW SPARC Ultra ATM 2� 2 64 193 336

2� 4 64 193 491

2� 6 64 207 611 939

The right-looking variants of the LU and Cholesky factorizations were chosen for ScaLA-

PACK because they minimize the total communication volume, that is, the aggregated

amount of data transferred between processors during the operation.

ScaLAPACK provides LU and Cholesky factorizations for band matrices. For small

bandwidth, divide-and-conquer algorithms have been chosen despite their higher cost in

terms of 
oating-point operations. A more detailed performance analysis can be found in

[5].

5.2 QR Factorization

The traditional algorithm for QR factorization is based on the use of elementary House-

holder matrices of the general form

H = I � �vvT ;

where v is a column vector and � is a scalar. This leads to an algorithm with very good

vector performance, especially if coded to use Level 2 PBLAS.

The key to developing a distributed block form of this algorithm is to represent a

product of b elementary Householder matrices of order n as a block form of a Householder
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Table 6

Speed in Mega
op/s of PDPOTRF for Matrices of Order N with UPLO=`U'

Processor Block Values of N

Grid Size 2000 5000 7500 10000 15000

IBM SP2 2� 2 50 471 620

4� 4 50 1106 1830 2129 2323

8� 8 50 1891 4549 5830 6893 8127

Intel MP Paragon 2� 2 32 197 258

4� 4 32 514 830 949 970

8� 8 32 1170 2310 2865 3246 3743

NoW SPARC Ultra ATM 2� 2 64 177 347

2� 4 64 137 408

3� 4 64 114 379 765

matrix . This can be done in various ways. ScaLAPACK uses the following form [32]:

H1H2 : : : Hb = I � V TV T ;

where V is an n by b matrix whose columns are the individual vectors v1; v2; : : : ; vb
associated with the Householder matrices H1;H2; : : : ;Hb, and T is an upper triangular

matrix of order b. Extra work is required to compute the elements of T , but once again this

is compensated for by the greater speed of applying the block form. Table 7 summarizes

results obtained with the ScaLAPACK routine PDGEQRF.

Table 7

Speed in Mega
op/s of PDGEQRF for Square Matrices of Order N

Processor Block Values of N

Grid Size 2000 5000 7500 10000 15000

IBM SP2 1� 4 50 387 594

Intel MP Paragon 1� 4 32 201 255

2� 8 32 528 825 898 930

4� 16 32 1004 2354 2937 3263 3598

NoW SPARC Ultra ATM 2� 2 64 221 352

2� 4 64 219 476

2� 6 64 228 613

6 Conclusions

This article has presented some performance �gures for ScaLAPACK routines. The �gures

are provided for illustration only and should not be regarded as a de�nitive up-to-date

statement of performance. They have been selected from performance �gures obtained in

1995{1996 during the development of version 1.4 of ScaLAPACK. All reported timings were

obtained by using the optimized version of the BLAS available on each machine. For the

IBM computers, the ESSL BLAS were used. The PVM and MPI versions of the BLACS

was used for timings involving clusters of workstations; the BLACS written on top of MPL
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was used for the timings on the IBM SP-2; the BLACS written on top of NX was used for

timings on the Intel Paragon.

Performance is a�ected by many factors that may change from time to time, such as

details of hardware (cycle time, cache size), communication latency, bandwidth, compiler,

and BLAS. To obtain up-to-date performance �gures, one should use the timing programs

provided with ScaLAPACK.

ScaLAPACK is portable across a wide range of distributed-memory environments such

as the IBM SP series, Intel series (Gamma, Delta, Paragon), Cray T3 series, TM CM-5,

clusters of workstations, and any system for which PVM [23] or MPI [33] is available.

Similar to the BLAS and LAPACK, many of the goals of the ScaLAPACK project|

particularly portability|are aided by developing and promoting standards, especially for

low-level communication and computation routines. We have been successful in attaining

these goals, limiting machine dependencies to two standard libraries: the BLAS (Basic

Linear Algebra Subroutines) and the BLACS (Basic Linear Algebra Communication

Subroutines). ScaLAPACK will run on any machine where both the BLAS and the BLACS

are available.

All ScaLAPACK-related software is publicly available on netlib via the URL

http://www.netlib.org/scalapack/index.html.
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