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Abstract
A wide variety of distortion functions are used for cluster-
ing, e.g., squared Euclidean distance, Mahalanobis distance
and relative entropy. In this paper, we propose and ana-
lyze parametric hard and soft clustering algorithms based
on a large class of distortion functions known as Bregman
divergences. The proposed algorithms unify centroid-based
parametric clustering approaches, such as classical kmeans
and information-theoretic clustering, which arise by special
choices of the Bregman divergence. The algorithms main-
tain the simplicity and scalability of the classical kmeans
algorithm, while generalizing the basic idea to a very large
class of clustering loss functions. There are two main con-
tributions in this paper. First, we pose the hard clustering
problem in terms of minimizing the loss in Bregman infor-
mation, a quantity motivated by rate-distortion theory, and
present an algorithm to minimize this loss. Secondly, we
show an explicit bijection between Bregman divergences and
exponential families. The bijection enables the development
of an alternative interpretation of an efficient EM scheme for
learning models involving mixtures of exponential distribu-
tions. This leads to a simple soft clustering algorithm for all
Bregman divergences.

1 Introduction

Data clustering is a fundamental “unsupervised” learn-
ing procedure that has been extensively studied across
varied disciplines over several decades [14]. It has pro-
duced several parametric clustering methods which par-
tition the data into a pre-specified number of parti-
tions with a cluster representative corresponding to ev-
ery cluster, such that a well-defined cost function involv-
ing the data and the representatives is minimized. For
hard clustering, wherein the partitions are disjoint, the
most well-known and widely used algorithm of this type
is the iterative relocation scheme of Euclidean kmeans

[14]. The popularity of this algorithm stems from its
simplicity and scalability. The corresponding soft 1 clus-
tering algorithm obtained by applying EM [9] to a mix-
ture model of Gaussians with identical, isotropic covari-
ances, is also popular and can be scaled to large data
sets [6].

Underlying both hard and soft Euclidean kmeans

is a Gaussian “noise” model, which corresponds to a
squared-Euclidean distortion function [15]. This dis-
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1In soft clustering, data points can have non-zero probabilities

of belonging to multiple partitions.

tortion function is also implicit in several other scal-
able techniques in the data mining literature. How-
ever, in many data mining applications, this distortion
function is not a good match with the data, and conse-
quently kmeans performs poorly as compared to other
approaches [25]. In fact, in such situations kmeans often
becomes a convenient strawman to show the superior-
ity of a competing technique! This has also led to the
search for more appropriate distance functions for spe-
cific applications [1, 25].

Is it possible to devise an algorithm which has the
simplicity and scalability of kmeans but can cater to a
much larger class of distortion functions? A hint to-
wards an affirmative answer to this question is provided
by the Linde-Buzo-Gray (LBG) algorithm [17] based on
the Itakura-Saito distance, which has been used in the
signal-processing community for clustering speech data.
The more recent information theoretic clustering algo-
rithm [10] for clustering probability distributions also
has a flavor similar to kmeans. This algorithm uses the
KL-divergence as the distortion function and is well-
suited for various clustering tasks in the analysis of high-
dimensional text data.

Our question can now be posed as: what class of dis-
tortion functions admit an iterative relocation scheme
where a global objective function based on the distortion
with cluster centroids is progressively decreased? In this
paper, we give a precise answer to this question: we
show that such a scheme works for arbitrary Bregman
divergences. In fact, it can be shown [4] that such a
scheme only works for Bregman divergences. The scope
of this result is vast since Bregman divergences include
a large number of useful loss functions such as square
loss, KL divergence, logistic loss, Mahalanobis distance,
Itakura-Saito distance, hinge loss, etc.

We pose the hard clustering problem as one of ob-
taining an optimal quantization in terms of minimizing
the loss in Bregman information, a quantity motivated
by rate-distortion theory. A simple analysis then yields
a version of the loss function that readily suggests a nat-
ural algorithm to solve the clustering problem for arbi-
trary Bregman divergences. Partitional hard clustering
to minimize the loss in mutual information, a topic of
recent study [10], is seen to be a special case of our
approach. Thus, this paper unifies several parametric



partitional clustering approaches.
Further, we present a fundamental theoretical result

by showing that there exists a bijection between Breg-
man divergences and exponential families. Since genera-
tive model-based soft clustering algorithms typically use
mixtures of exponential distributions to model data, we
revisit EM for mixture model estimation for this class
of problems. We show that, with proper representa-
tion, the bijection gives an alternative interpretation of
a well known efficient EM scheme [22] applicable in this
case. The scheme simplifies the computationally inten-
sive maximization-step of the EM algorithm, resulting
in a general soft-clustering algorithm for all members
of the exponential family, e.g., Poisson, Bernoulli, Bi-
nomial and Multinomial models. Both hard and soft
clustering versions have essentially the same scalability
as kmeans. Moreover they can be readily adapted to
mixed data types, where different distortion functions
within the family of Bregman divergences are appro-
priate for different subsets of features. This makes our
theory and techniques suitable for a much wider class
of data mining applications.

The remainder of this article is organized as follows.
We introduce the concept of Bregman information to
motivate the Bregman hard clustering problem and
propose an algorithm to solve this clustering problem
in section 2. In section 3, we establish a connection
between exponential families and Bregman divergences
and use it develop a soft Bregman clustering algorithm
in section 4. In section 5, we present some experimental
results that illustrate the usefulness of the Bregman
clustering algorithm. In section 6, we discuss related
work. Finally, in section 7, we present concluding
remarks.

A word about the notation: bold faced variables,
e.g., x,µ, etc., represent vectors, sets are represented by
calligraphic upper-case alphabets, e.g., X ,Y, etc., and
enumerated as {xi}ni=1 where xi are the elements of the
set. R,R++ and Rd denote the set of reals, the set of
positive reals and the d-dimensional real vector space
respectively. ‖x‖ denotes the L2 norm. Probability
density functions are denoted by lower case alphabets,
e.g., p, q, etc. Probability measure on a set is denoted
by ν. If a random variable X is distributed as p, we
denote this by X ∼ p. Expectation of functions of a
random variable X ∼ p are denoted by Ep[·] when the
random variable is clear from the context. The inverse
of a function f is denoted by f−1.

2 Bregman Hard Clustering

In this section, we introduce a new concept called the
Bregman information of a random variable based on
ideas from Shannon’s rate-distortion theory. Then, we

motivate the Bregman hard clustering problem as a
quantization problem that involves minimizing the loss
in Bregman information and show its equivalence to a
more direct formulation, i.e., the problem of finding a
partitioning and a representative for each of the parti-
tions such that the expected Bregman divergence of the
points from their representatives is minimized. We also
propose a clustering algorithm that is a generalization of
the kmeans algorithm and is guaranteed to converge to a
local minimum of the Bregman hard clustering problem.

We begin by defining Bregman divergence [21]. Let
φ : S 7→ R be a strictly convex function defined on
a convex set S ⊆ Rd, such that φ is differentiable
on int(S), the interior of S [23]. The Bregman
divergence Dφ : S × int(S) 7→ [0,∞) is defined as
Dφ(x,y) = φ(x)− φ(y)− 〈x− y,∇φ(y)〉, where ∇φ is
the gradient of φ. Table 1 contains a list of some convex
functions and their corresponding Bregman divergences.
Bregman divergences have several interesting and useful
properties, such as non-negativity, convexity in the first
argument, etc. For details see [3] and [5].

2.1 Bregman Information The dual formulation
of Shannon’s celebrated rate distortion problem [13]
involves finding a coding scheme with a given rate, such
that the expected distortion between the source random
variable and the decoded random variable is minimized.
The achieved distortion is called the distortion-rate
function, i.e., infimum distortion achievable for a given
rate. Now consider a simple coding scheme for a
random variable X that takes values in a finite set X =
{xi}ni=1 ⊂ S ⊆ Rd (S is convex), following a discrete
probability measure ν and the distortion function is a
Bregman divergence Dφ. The encoding scheme involves
representing the random variable by a constant vector
s, i.e., codebook size is one, or rate is zero. The solution
to the rate-distortion problem in this case is the trivial
assignment. The corresponding distortion-rate function
is given by Eν [Dφ(X, s)] that depends on the choice of
the representative s and can be further optimized by
picking the right representative. We call this optimal
distortion-rate function, i.e.,

(2.1) min
s∈S

Eν [Dφ(X, s)] = min
s∈S

n∑

i=1

νi Dφ(xi, s),

the Bregman information of the random variable X
for the Bregman divergence, Dφ and denote it by Iφ(X).
The optimal s that achieves the minimal distortion will
be called the Bregman representative or, simply the
representative of X. The following theorem states that
this representative always exists, is uniquely determined
and, surprisingly, does not depend on the choice of the
Bregman divergence.



Table 1: Bregman divergences corresponding to some convex functions.

Domain φ(x) Dφ(x,y) Divergence

R x2 (x− y)2 Square loss

R++ x log x x log(x
y

)− (x− y)

{0, 1} x log x+ (1− x) log(1− x) x log( x
y

) + (1− x) log( 1−x
1−y ) Logistic loss 2

R++ − log x x
y
− log(x

y
)− 1 Itakura-Saito distance

R \ {0} |x| max{0,−2 sign(y)x} Hinge loss

Rd ‖x‖2 ‖x− y‖2 Squared Euclidean distance

Rd xTAx (x− y)TA(x− y) Mahalanobis distance 3

d-Simplex
Pd
j=1 xj log xj

Pd
j=1 xj log(

xj
yj

) KL-divergence

Rd+
Pd
j=1 xj log xj

Pd
j=1 xj log(

xj
yj

)−Pd
j=1(xj − yj) Generalized I-divergence

Theorem 1 Let X be a random variable taking values
in X = {xi}ni=1 ⊂ S ⊆ Rd following ν. Given a
Bregman divergence Dφ : S × int(S) 7→ [0,∞), the
problem

min
s∈S

Eν [Dφ(X, s)]

has a unique minimizer given by s∗ = µ = Eν [X].

Proof. The function we are trying to minimize is
Jφ(s) = Eν [Dφ(X, s)] =

∑n
i=1 νiDφ(xi, s). We prove

the required result by showing that for ∀s ∈ S,

Jφ(s)− Jφ(µ) =

n∑

i=1

νiDφ(xi, s)−
n∑

i=1

νiDφ(xi,µ)

= φ(µ)− φ(s)− 〈(
n∑

i=1

νixi)− s,∇φ(s)〉

+〈(
n∑

i=1

νixi)− µ,∇φ(µ)〉

= φ(µ)− φ(s)− 〈µ− s,∇φ(s)〉
= Dφ(µ, s) ≥ 0,

with equality only when s = µ by the strict convexity of
φ [3]. Hence, µ is the unique minimizer of the function,
Jφ. Now, we argue that µ ∈ S. Since X ⊂ S and S is a
convex set, co(X ) ⊂ S, where co(X ) is the convex hull
of X . But µ = Eν [X] ∈ co(X ), so µ ∈ S.

The above result shows that the representative, i.e.,
the minimizer of the expected Bregman divergence, is
always the expectation of the set. Interestingly, the
converse of theorem 1 is also true, i.e., for all random
variables X, if Eν [X] minimizes the expected distortion

2x log(x
y

) + (1 − x) log( 1−x
1−y ) = log(1 + exp(−f(x)g(y))), i.e.,

logistic loss where f(x) = 2x− 1 and g(y) = log( y
1−y )

3It is the Mahalanobis distance when A is the inverse of the

covariance matrix. In general, A is positive definite.

of the elements of the set to a fixed point for a distortion
function F (x, y), then, under mild conditions, it can be
shown that F (x, y) is a Bregman divergence [4]. Thus,
Bregman divergences are exhaustive with respect to the
property proved in theorem 1.

Using theorem 1, we can now give a more direct
definition of the Bregman information as follows:

Definition 1 Let X be a random variable taking values
in X = {xi}ni=1 ⊂ S following ν. Let µ = Eν [X] =∑n
i=1 νixi and let Dφ : S × int(S) 7→ [0,∞) be a

Bregman divergence. Then, Bregman Information
of X in terms of Dφ is defined as

Iφ(X) = Eν [Dφ(X,µ)] =

n∑

i=1

νiDφ(xi,µ) .

To start appreciating the potential of such a treatment,
we note that the elements of X can be quite general.
For instance, the elements can be probability distribu-
tions, functionals, operators or just plain vectors.
Example 1: One simple example of Bregman informa-
tion is the variance. Let X = {xi}ni=1 be a set in Rd,
and consider the uniform measure, i.e., νi = 1

n , over X .
The Bregman information of X with squared Euclidean
distance as the Bregman divergence is given by

Iφ(X) =

n∑

i=1

νiDφ(xi,µ) =
1

n

n∑

i=1

‖xi − µ‖2

which is just the sample variance.

Example 2: Another example involves a set of prob-
ability distributions, which can also be interpreted as
conditional distributions given a random variable. In
particular, we show that if random variables (U, V )
are jointly distributed according to {{p(ui,vj)}ni=1}mj=1,
then the mutual information I(U ;V ) is the Bregman
information of a random variable taking values in the



set of conditional distributions {p(V |ui)}ni=1 following
{p(ui)}ni=1, with KL-divergence as the Bregman diver-
gence. By definition,

I(U ;V ) =

n∑

i=1

m∑

j=1

p(ui,vj)

(
log

p(ui,vj)

p(ui)p(vj)

)

=

n∑

i=1

p(ui)

m∑

j=1

p(vj |ui)
(

log
p(vj |ui)
p(vj)

)

=
n∑

i=1

p(ui)KL( p(V |ui) ‖ p(V ) ).

Consider a random variable Zu that takes values in
the set of probability distributions Zu = {p(V |ui)}ni=1

following the probability measure {νi}ni=1 = {p(ui)}ni=1

over this set. For Zu, the mean distribution is given by

µ = Eν [p(V |u)] =
n∑

i=1

p(ui)p(V |ui) = p(V ) .

∴ I(U ;V ) =

n∑

i=1

p(ui)KL( p(V |ui) ‖ p(V ) )

=
n∑

i=1

νiDφ(p(V |ui),µ) = Iφ(Zu),

i.e., mutual information is a special case of Breg-
man information. Further, for a random variable Zv

taking values in the set of probability distributions
Zv = {p(U |vj)}mj=1 following the probability measure
νj = p(vj) over this set, one can similarly show that
I(U ;V ) = Iφ(Zv). The Bregman information of Zv

and Zu can also be interpreted as the Jensen-Shannon
divergence of the sets Zu and Zv [10].

2.2 Clustering Formulation If X is a random vari-
able with large Bregman information, it may not suffice
to have a single representative for X if a low quanti-
zation error is desired. In such a situation, partition-
ing the set X into k relatively homogeneous groups,
each with its own Bregman representative, such that
the set M of these representatives along with the in-
duced measure on M preserve Bregman information of
X, seems a natural goal. The Bregman hard clus-
tering problem is thus to find a partitioning of X , or,
equivalently, the set of representatives M, such that if
M is a random variable taking values in M following
the induced measure for the corresponding partitions of
X , the loss in Bregman information due to quantization,
Lφ(M) = Iφ(X)− Iφ(M), is minimized. This loss func-
tion can be re-written in a form that suggests a natural
solution to this problem.

Theorem 2 Let X be a random variable taking values
in X = {xi}ni=1 ⊂ S ⊆ Rd following ν. Let {Xh}kh=1

be a partitioning of X and let πh =
∑

xi∈Xh νi be the

induced measure π on the partitions. Let {Xh}kh=1 be
random variables taking values in {Xh}kh=1 following
{ν|πh}kh=1 respectively. IfM = {µh}kh=1 denotes the set
of representatives, and M be a random variable taking
values in M following π, then

Lφ(M) = Iφ(X)− Iφ(M) = Eπ[Iφ(Xh)]

=

k∑

h=1

πh
∑

xi∈Xh

νi
πh

Dφ(xi,µh).

Proof. Let µ = Eν [X]. After some algebra [5], it can
be shown that

Iφ(X) =

n∑

i=1

νiDφ(xi,µ) =

k∑

h=1

∑

xi∈Xh
νiDφ(xi,µ)

=
k∑

h=1

πh
∑

xi∈Xh

νi
πh
Dφ(xi,µh) +

k∑

h=1

πhDφ(µh,µ)

= Eπ[Iφ(Xh)] + Iφ(M) .

Rearranging terms completes the proof.

Hence, the Bregman clustering problem of minimizing
the loss in Bregman information can be written as

(2.2) min
M

Lφ(M) = min
M

k∑

h=1

∑

xi∈Xh
νiDφ(xi,µh).

Thus, the loss in Bregman information is minimized if
the set of representatives M is such that the expected
Bregman divergence of points in the original set X to
their corresponding representatives is minimized.

2.3 Clustering Algorithm Eq. 2.2 suggests a nat-
ural algorithm (Algorithm 1) to solve the Bregman
hard clustering problem. It is easy to see that clas-
sical kmeans, the LBG algorithm [17] and the infor-
mation theoretic clustering algorithm [10] are special
cases of Bregman hard clustering for squared Euclidean
distance, Itakura-Saito distance and KL-divergence re-
spectively. For all these cases, the induced partitions
are known to have linear separators. It is easy to see
that this is true for all Bregman divergences since the
locus of points that are equidistant to two fixed points
in terms of a Bregman divergence is always a hyper-
plane. The following theorems prove the convergence of
the Bregman hard clustering algorithm.

Proposition 1 The Bregman hard clustering algorithm
(Algorithm 1) monotonically decreases the loss function
in (2.2).



Algorithm 1 Bregman hard-clustering

Input: Set X = {xi}ni=1 ⊂ S ⊆ Rd, probability measure ν
over X , Bregman divergence Dφ : S × int(S) 7→ R, num.
of clusters k.

Output: M∗ = argmin
M

Pk
h=1

P
xi∈Xh νiDφ(xi,µh) where

M = {µh}kh=1, corresponding partitioning {Xh}kh=1 of X .
Method:

Initialize {µh}kh=1 at random with µh ∈ S
repeat
{The Assignment Step}
Set Xh ← ϕ, h = 1, · · · , k
for i = 1 to n do
Xh ← Xh ∪ {xi}
where h = h∗(xi) = argmin

h′
Dφ(xi,µh′)

end for
{The Re-estimation Step}
for h = 1 to k do
πh ←

P
xi∈Xh νi

µh ←
P

xi∈Xh
νi
πh

xi
end for

until convergence

Proof. Let {X (t)
h }kh=1 be the partitioning of X after the

tth iteration. Let M(t) = {µ(t)
h }kh=1 be the correspond-

ing set of cluster representatives and M (t) be the corre-
sponding random variable. Then,

Lφ(M (t)) =
k∑

h=1

∑

xi∈X (t)
h

νiDφ(xi,µ
(t)
h )

≥
k∑

h=1

∑

xi∈X (t)
h

νiDφ(xi,µ
(t)
h∗(xi)

)

≥
k∑

h=1

∑

xi∈X (t+1)
h

νiDφ(xi,µ
(t+1)
h )

= Lφ(M (t+1)),

where the first inequality follows trivially from the
criteria used for the assignment of each of the points in
the assignment step, and the second inequality follows
from the re-estimation procedure using Theorem 1.
Note that if equality holds, i.e., if the loss function value
is equal at consecutive iterations, then the algorithm
terminates.

Proposition 2 The Bregman hard clustering algorithm
(Algorithm 1) terminates in a finite number of steps
at a partition that is locally optimal, i.e., the total loss
cannot be decreased by either (a) reassignment of points
to different clusters or by (b) changing the means of any
existing clusters.

Proof. The result follows since the algorithm monoton-
ically decreases the objective function value, and the
number of distinct clusterings is finite.

3 Bijection with Exponential Families

We now turn our attention to soft clustering with Breg-
man divergences. To this end, we establish a bijection
between Bregman divergences and exponential families
in this section. We also list examples of Bregman diver-
gences obtained from some popular exponential families.
The bijection will be used to develop the Bregman soft
clustering algorithm in section 4.

It has been observed in the literature [3, 11] that
exponential families and Bregman divergences have
certain relationships that can be exploited for several
learning problems. We provide a constructive proof of
an explicit bijection between Bregman divergences and
exponential families. This result is useful as it enables
us to obtain the appropriate divergence for any given
exponential family. To present the bijection result, we
need to review the following background material.

3.1 Exponential families Consider a family F of
probability densities on a measurable space (Ω,B) where
B is a σ-algebra on the set Ω [12]. Suppose every
probability density, pθ ∈ F , is parameterized by d real-
valued variables θ = {θj}dj=1 so that

F = {pθ = f(ω;θ)|ω ∈ B,θ ∈ Γ ⊆ Rd}.

Then, F is called a d-dimensional parametric model on
(Ω,B). Let H : B 7→ G be a (B-G measurable) function
that transforms any random variable U : B 7→ R to
a random variable V : G 7→ R with V = H(U).
Then, given the probability density pθ of U , this
function uniquely determines the probability density qθ
governing the random variable V .

Definition 2 If ∀ω ∈ B, pθ(ω)/qθ(ω) exists and does
not depend on θ, then H is called a sufficient statistic
for the model F .

If a d-dimensional model F = {pθ|θ ∈ Γ} can be ex-
pressed in terms of (d+ 1) real-valued linearly indepen-
dent functions {C,H1, · · · , Hd} on B and a function ψ
on Γ as

f(ω;θ) = exp





d∑

j=1

θjHj(ω)− ψ(θ) + C(ω)



 ,

then F is called an exponential family, and θ is called
its natural parameter. It can be easily seen that



if x ∈ Rd is such that xj = Hj(ω), then the density
function g(x;θ) given by

g(x;θ) = exp





d∑

j=1

θjxj − ψ(θ)− λ(x)



 ,

for a uniquely determined function λ(x), is such that
f(w;θ)/g(x;θ) does not depend on θ. Thus, x is a
sufficient statistic for the family. For our analysis, it is
convenient to work with the sufficient statistic x and
hence, we redefine exponential families in terms of the
probability density of the sufficient statistic variable in
Rd, noting that the original σ-algebra B can actually be
quite general.

Definition 3 A multivariate parametric family Fψ of
distributions {p(ψ,θ)|θ ∈ Γ ⊆ Rd} is called an exponen-
tial family if the probability density is of the form

p(ψ,θ)(x) = exp(〈x,θ〉 − ψ(θ)− λ(x)).

The function ψ(θ) is known as the log partition
function or the cumulant function and it uniquely
determines the exponential family Fψ. Further, given
an exponential family Fψ, the log-partition function, ψ
is uniquely determined up to a constant additive term.
It can be shown [2] that Γ is a convex set in Rd and ψ is
a strictly convex and differentiable function on int(Γ).

3.2 Expectation parameters and Legendre du-
ality Consider a d-dimensional real random variable X
following an exponential family density p(ψ,θ) specified
by the natural parameter θ ∈ Γ. The expectation of
X with respect to p(ψ,θ), also called the expectation
parameter, is given by

(3.3) µ = µ(θ) = Ep(ψ,θ)
[X] =

∫

Rd
xp(ψ,θ)(x)dx.

It can be shown [2] that the expectation and natural
parameters have a one-one correspondence with each
other and span spaces that exhibit a dual relationship.
To specify the duality more precisely, we first define
Legendre conjugates [23]. The Legendre conjugate ψc

of the function ψ is given by

ψc(s) = sup
θ
{〈s,θ〉 − ψ(θ)}.

As ψ is a strictly convex and differentiable function over
its domain Γ, we can obtain the θ corresponding to the
supremum by setting the gradient of the corresponding
function to zero, i.e.,

∇(〈s,θ〉 − ψ(θ)) |θ=θ∗ = 0⇒ s = ∇ψ(θ∗)

From the above equation, we can see that the conjugate
function is well defined on the gradient space of the
function ψ, say Γc. Further, the strict convexity of ψ
implies that ∇ψ is monotonic and hence, is a bijection
from Γ to Γc. Hence, for every s ∈ Γc, there exists
a θ = θ(s) ∈ Γ and for every θ ∈ Γ, there exists a
s = s(θ) ∈ Γc such that s = ∇ψ(θ). It is, therefore,
possible to define the inverse function (∇ψ)−1 : Γc 7→ Γ
and write the conjugate function ψc in a closed form as

ψc(s) = 〈(∇ψ)−1(s), s〉 − ψ((∇ψ)−1(s)).

It can be shown [23] that the function ψc is also a
strictly convex and differentiable function on its domain
and that the pairs (ψ,Γ) and (ψc,Γc) are Legendre
conjugates of each other. This is stated more formally
below.

Definition 4 [23] Let ψ : Γ 7→ R be a strictly convex,
differentiable function, then the Legendre conjugate of
(ψ,Γ) is given by (ψc,Γc) where Γc is the image of Γ
under the gradient mapping ∇ψ and ψc : Γc 7→ R is a
strictly convex, differentiable function given by

ψc(s) = 〈(∇ψ)−1(s), s〉 − ψ((∇ψ)−1(s)).

Further, (ψ,Γ) is the Legendre conjugate of (ψc,Γc).
The gradient functions ∇ψ : Γ 7→ Γc and ∇ψc : Γc 7→ Γ
are both continuous, one-one functions and also form
inverses of each other.

Let us now look at the relationship between θ and the
expectation parameter µ defined in (3.3). Differenti-
ating the identity

∫
p(ψ,θ)(x)dx = 1 with respect to θ

gives us µ = µ(θ) = ∇ψ(θ), i.e., the expectation pa-
rameter µ is the image of the natural parameter θ un-
der the gradient mapping ∇ψ. Let S be the expectation
parameter space, θ(µ) = (∇ψ)−1(µ) be the natural pa-
rameter corresponding to µ and the function φ : S 7→ R
be defined as

(3.4) φ(µ) = 〈θ(µ),µ〉 − ψ(θ(µ)).

Then, the pairs (ψ,Γ) and (φ, S) form Legendre con-
jugates of each other, i.e., φ = ψc and S = Γc and
the mappings between the dual spaces are given by the
Legendre transformation,

(3.5) µ(θ) = ∇ψ(θ) and θ(µ) = ∇φ(µ).

3.3 Bijection Theorem We are now ready to state
the connection between exponential families of distri-
butions and Bregman divergences. As mentioned ear-
lier, connections between Bregman divergences and ex-
ponential families have been observed earlier in the lit-
erature. In particular, [11] showed that the negative log-
likelihood of an exponential distribution can be written



as the sum of a Bregman divergence and a function that
does not depend on the parameters, i.e.,

(3.6) − log p(x|θ) = Dφ(x,µ) + f(x).

This result was used later on by [7] to extend PCA to
exponential families. We make the relationship between
Bregman divergences and exponential families exact
by showing that there is actually a bijection between
Bregman divergences and exponential families. More
precisely, we show that for a given exponential family,
Dφ and f in (3.6) are uniquely determined (one-one);
further, there is an exponential family corresponding to
every Bregman divergence (onto). Note that the duality
between expectation and natural parameters mentioned
in [11], [3], and [7] is basically the Legendre duality and
the bijection result follows using properties of Legendre
conjugates.

Theorem 3 Let (φ, S) and (ψ,Γ) be Legendre conju-
gates of each other. Let Dφ : S × int(S) 7→ R be the
Bregman divergence derived from φ. For θ ∈ Γ, let
p(ψ,θ) be the exponential probability density derived us-
ing ψ(θ) as the log-partition function with θ as the nat-
ural parameter. Let µ be the corresponding expectation
parameter. Then,

(3.7) p(ψ,θ)(x) = exp(−Dφ(x,µ))fφ(x),

where fφ : S 7→ R is a uniquely determined function.
Hence, there is a bijection between exponential densities
p(ψ,θ)(x) and Bregman divergences Dφ(x,µ).

Proof. We prove the bijection between the exponential
densities p(ψ,θ) and the Bregman divergences Dφ(·,µ)
by first showing that each exponential density p(ψ,θ)

corresponds to a unique Bregman divergence Dφ(·,µ)
(one-one) and then arguing that there exists an expo-
nential density corresponding to every Bregman diver-
gence (onto). By definition,

p(ψ,θ)(x) = exp(〈x,θ〉 − ψ(θ)− λ(x))

= exp(〈x,∇φ(µ)〉+ (φ(µ)− 〈µ,∇φ(µ)〉)
− λ(x)) (using (3.4) and (3.5))

= exp(−{φ(x)− φ(µ)− 〈(x− µ),∇φ(µ)〉}
+{φ(x)− λ(x)})

= exp(−Dφ(x,µ)) fφ(x).

We observe that p(ψ,θ) uniquely determines the log-
partition function ψ to a constant additive term so that
the gradient space of all the possible functions ψ is
the same and the corresponding conjugate functions,
φ differ only by a constant additive term. Hence, the
Bregman divergence Dφ(x,µ) derived from any of these

conjugate functions will be identical, i.e., the mapping
is one-one, since linear additive terms to a convex
function do not change the corresponding Bregman
divergence [5]. This also implies that fφ is a uniquely
determined function on S.

Now, consider any Bregman divergence Dφ(·,µ) on
S. There exists at least one strictly convex, differen-
tiable function φ on S that generates this divergence.
The Legendre conjugates of (φ, S), i.e., (ψ,Γ) are well-
defined. Hence, there exists an exponential density
p(ψ,θ) that is related to Dφ(·,µ) by (3.7), i.e., the map-
ping is onto. That completes the proof.

Tables 2 and 3 shows the various functions of interest
for some popular exponential distribution families. For
all the cases shown in the table, x is itself the sufficient
statistic.

4 Bregman Soft Clustering

Using the bijection between exponential families and
Bregman divergences, we first pose the Bregman soft
clustering problem as a parameter estimation problem
for mixture models based on exponential distributions.
Then, we revisit the Expectation-Maximization (EM)
framework for estimating mixture densities and develop
the Bregman soft clustering algorithm (Algorithm 3).
We also present the Bregman soft clustering algorithm
for a set with a probability measure. Finally, we show
how the hard clustering algorithm can be interpreted as
a special case of the soft clustering algorithm.

4.1 Soft Clustering as Mixture Density Esti-
mation Given a set X = {xi}ni=1 drawn indepen-
dently from a stochastic source, consider the problem
of modeling the source using a single parametric expo-
nential distribution. This is the problem of maximum
likelihood estimation, or, equivalently, minimum neg-
ative log-likelihood estimation of the parameter(s) of
the parametric density belonging to a given exponen-
tial family. Now, from the bijection theorem (theorem
3), minimizing the negative log-likelihood is the same as
minimizing the corresponding expected Bregman diver-
gence. Using Theorem 1, we conclude that the optimal
distribution is the one with µ = E[X] as the expectation
parameter where the expectation is over the empirical
distribution. Further, note that the minimum negative
log-likelihood ofX under a particular exponential model
with log-partition function ψ is the Bregman informa-
tion of X, i.e., Iφ(X), up to additive constants, where
φ is the Legendre dual of ψ.

Now, consider the problem of modeling the stochas-
tic source with a mixture of k densities of the same
exponential family. This also yields a soft clustering



Table 2: Various functions of interest for some popular exponential distributions

Distribution p(x; θ) θ ψ(θ)

1-D Gaussian4 1√
(2πσ2)

exp(− (x−a)2

2σ2 ) a
σ2

σ2

2 θ
2

1-D Poisson λxe−λ
x! logλ eθ

1-D Bernoulli qx(1− q)1−x log( q
1−q ) log(1 + eθ)

1-D Binomial4 N!
(x)!(N−x)!

qx(1− q)N−x log( q
1−q ) N log(1 + eθ)

1-D Exponential λ exp(−λx) −λ − log(−θ)
d-D Sph. Gaussian4 1√

(2πσ2)d
exp(− ‖x−a‖2

2σ2 ) a
σ2

σ2

2 ‖θ‖2

d-D Multinomial4 N!Qd
j=1

(xj)!

Qd
j=1(qj)

xj [log(
qj
qd

)]d−1
j=1 N log(1 +

Pd−1
j=1 e

θj )

Table 3: Various functions of interest for some popular exponential distributions (contd.)

Distribution p(x; θ) µ φ(µ) Dφ(x,µ)

1-D Gaussian 1√
(2πσ2)

exp(− (x−a)2

2σ2 ) a 1
2σ2 µ

2 1
2σ2 (x− µ)2

1-D Poisson λxe−λ
x! λ µ log µ− µ x log( xµ )− (x− µ)

1-D Bernoulli qx(1− q)1−x q µ log µ+ (1− µ)log(1− µ) x log( xµ ) + (1− x) log( 1−x
1−µ )

1-D Binomial N!
(x)!(N−x)!

qx(1− q)N−x Nq µ log( µN ) + (N − µ)log(N−µN ) x log( xµ ) + (N − x) log(N−xN−µ )

1-D Exponential λ exp(−λx) 1/λ − lnµ− 1 x
µ − ln

ş
x
µ

ť
− 1

d-D Sph. Gaussian 1√
(2πσ2)d

exp(− ‖x−a‖2
2σ2 ) a 1

2σ2 ‖µ‖2 1
2σ2 ‖x− µ‖2

d-D Multinomial N!Qd
j=1

xj !

Qd
j=1 q

xj
j [Nqj ]

d−1
j=1

Pd
j=1 µj log(

µj
N )

Pd
j=1 xj log(

xj
µj

)

where clusters correspond to the components of the mix-
ture model, and the soft membership of a data point
in each cluster is proportional to the probability of the
data point being generated by the corresponding density
function. Thus, the Bregman soft clustering prob-
lem can be stated to be that of learning the maximum
likelihood parameters Θ = {µh, πh}kh=1 of a mixture
model of the form

(4.8) p(x|Θ) =
k∑

h=1

πhfφ(x) exp(−Dφ(x,µh)),

where the last equality follows from the bijection theo-
rem (theorem 3). The above problem is a special case
of the general maximum likelihood parameter estima-
tion problem for mixture models and can be solved by
applying the EM algorithm. Note that, by the bijection
between Bregman divergences and exponential families,
(4.8) encompasses the soft clustering problem for all ex-
ponential families.

4.2 EM for Mixture Models based on Bregman
Divergences Algorithm 2 describes the well known ap-
plication of EM for mixture density estimation. This
algorithm has the property that the likelihood of the
data, LX (Θ) is non-decreasing at each iteration. Fur-
ther, if there exists at least one local maximum for the

4The variance σ and the number of trials N are assumed to be

constant for the distributions.

likelihood function, then the algorithm will converge to
a local maximum of the likelihood. For a detailed proof
and other related results, please see [18].

As stated earlier, the Bregman soft clustering prob-
lem is to estimate the maximum likelihood parameters
for a mixture model of the form given in (4.8). Apply-
ing the EM algorithm to this problem gives us locally
optimal parameters Θ∗ for this mixture model. The
resulting mixture model also provides a soft clustering
of the dataset based on the Bregman divergence Dφ.
Hence, we call this application of the EM algorithm the
Bregman soft clustering algorithm. The Bregman di-
vergence viewpoint gives an alternative interpretation
of a well known efficient EM scheme applicable to mix-
ture of exponential distributions [22]. This significantly
simplifies the algorithm, especially the computationally
intensive M-step. The resulting update equations look
very similar to those for learning mixture models of unit
variance Gaussians. However, note that these equations
are applicable to mixtures of any exponential distribu-
tions, and, as mentioned earlier, x denotes the sufficient
statistic vector in the general case.

The following proposition shows how theorems 1
and 3 can be used to simplify the M-step of the
clustering algorithm. Note that proposition 3 has
appeared in various forms in the literature (see, for
example, [22, 18]). We give an alternative proof using
results involving Bregman divergences developed in the
earlier sections.



Algorithm 2 EM for Mixture Density Estimation [18]

Input: Set X = {xi}ni=1 ⊂ S ⊆ Rd, num. of clusters k.
Output: Θ∗, local maximizer of
LX (Θ) =

∏n
i=1(

∑k
h=1 πhph(xi|θh)) where Θ =

{θh, πh}kh=1, soft partitioning {{p(h|xi)}kh=1}ni=1.
Method:

Initialize {θh, πh}kh=1 with some θh ∈ S,
πh ≥ 0,

∑k
h=1 πh = 1

repeat
{The Expectation Step}
for i = 1 to n do

for h = 1 to k do
p(h|xi)← πhph(xi|θh)Pk

h′=1
πh′ph′ (xi|θh′ )

end for
end for
{The Maximization Step}
for h = 1 to k do
πh ← 1

n

∑n
i=1 p(h|xi)

θh ← argmax
θ

∑n
i=1 log(ph(xi|θ))p(h|xi)

end for
until convergence
return Θ∗ = {θh, πh}kh=1

Proposition 3 For a mixture model with density given
by (4.8), the maximization step for the density parame-
ters in the EM algorithm (Algorithm 2), ∀h, 1 ≤ h ≤ k,
reduces to:

(4.9) µh =

∑n
i=1 p(h|xi)xi∑n
i=1 p(h|xi)

.

Proof. The maximization step for the density parame-
ters in the EM algorithm, ∀h, 1 ≤ h ≤ k, is given by

θh = argmax
θ

n∑

i=1

log(ph(xi|θ))p(h|xi).

For the given mixture density, the component densities,
∀h, 1 ≤ h ≤ k, are given by

ph(x|θh) = fφ(x) exp(−Dφ(x,µh)).

Substituting the above into the maximization step,
we obtain the update equations for the expectation
parameters µh: ∀h, 1 ≤ h ≤ k,

µh = argmax
µ

n∑

i=1

log(fφ(xi) exp(−Dφ(xi,µ)))p(h|xi)

= argmax
µ

n∑

i=1

(log(fφ(xi))−Dφ(xi,µ))p(h|xi)

Algorithm 3 Bregman Soft Clustering

Input: Set X = {xi}ni=1 ⊂ S ⊆ Rd, Bregman
divergence Dφ, num. of clusters k.

Output: Θ∗, local maximizer of∏n
i=1(

∑k
h=1 πhfφ(xi) exp(−Dφ(xi,µh))) where

Θ = {µh, πh}kh=1, soft partitioning {{p(h|xi)}kh=1}ni=1

Method:
Initialize {µh, πh}kh=1 with some µh ∈ S, πh ≥ 0, and∑k
h= πh = 1

repeat
{The Expectation Step}
for i = 1 to n do

for h = 1 to k do
p(h|xi)← πh exp(−Dφ(xi,µh))Pk

h′=1
πh′ exp(−Dφ(xi,µh′ ))

end for
end for
{The Maximization Step}
for h = 1 to k do
πh ← 1

n

∑n
i=1 p(h|xi)

µh ←
Pn
i=1 p(h|xi)xiPn
i=1 p(h|xi)

end for
until convergence
return Θ∗ = {µh, πh}kh=1

= argmin
µ

n∑

i=1

Dφ(xi,µ)p(h|xi)

(as fφ(x) is independent of µh)

= argmin
µ

n∑

i=1

Dφ(xi,µ)
p(h|xi)∑n
i′=1 p(h|xi′)

,

so that the weights on the divergences form a valid
probability measure (i.e. sum to 1). From Theorem
1, we know that the expected Bregman divergence is
minimized by the expectation of x,

argmin
µ

n∑

i=1

Dφ(x,µ))p(h|xi) =

∑n
i=1 p(h|xi) xi∑n
i=1 p(h|xi)

.

Therefore, the update equation for the parameters is a
weighted averaging step,

µh =

∑n
i=1 p(h|xi)xi∑n
i=1 p(h|xi)

, ∀h, 1 ≤ h ≤ k.

The update equations for the posterior probabilities (E-
step) ∀x ∈ X , ∀h, 1 ≤ h ≤ k, are given by

p(h|x) =
πh exp(−Dφ(x,µh))

∑k
h′=1 πh′ exp(−Dφ(x,µh′))

as the fφ(x) factor cancels out. The prior update
equations are independent of the parametric form of the



densities and remain unaltered. Hence, for a mixture
model with density given by (4.8), the EM algorithm
(Algorithm 2) reduces to the Bregman soft clustering
algorithm (Algorithm 3).

So far, we considered the Bregman soft clustering
problem for a set X where all the elements are equally
important and assumed to have been independently
sampled from some particular exponential distribution.
In practice, it might be desirable to associate weights
with the individual samples and optimize a weighted
log-likelihood function. A slight modification to the
M-step of the Bregman soft clustering algorithm is
sufficient to address this new optimization problem.
The E-step remains same and the new update equations
for the M-step ∀h, 1 ≤ h ≤ k, are given by

πh =

n∑

i=1

νip(h|xi),(4.10)

µh =

∑n
i=1 νip(h|xi)xi∑n
i=1 νip(h|xi)

.(4.11)

Finally, we note that the Bregman hard clustering
algorithm is a limiting case of the above soft clustering
algorithm. For every convex function φ and positive
constant β, βφ is also a convex function with the
corresponding Bregman divergence Dβφ = βDφ (see
[5]). In the limit, when β → ∞, both the E and
M steps of the soft clustering algorithm reduce to the
assignment and re-estimation step of the hard clustering
algorithm. Further, this view suggests the possibility of
designing annealing schemes for Bregman soft clustering
interpreting 1/β as the temperature parameter.

5 Experiments

There are a number of experimental results in existing
literature [17, 10, 20, 16] that illustrate the usefulness
of Bregman divergences and the Bregman clustering
algorithms in specific domains. The classical kmeans

algorithm, which is a special case of the Bregman hard
clustering algorithm for the squared Euclidean distance
has been successfully applied to a large number of
domains where a Gaussian distribution assumption is
valid. Besides this, there are at least two other domains
where special cases of Bregman clustering methods have
been shown to provide good results.

The first is the text-clustering domain where the
information-theoretic clustering algorithm [10] and the
EM algorithm based on the Naive-Bayes model [20],
which are, respectively, special cases of the Bregman
hard and soft clustering algorithms for KL-divergence
have been shown to provide superior results to other
existing algorithms on large real datasets such as the
20-Newsgroups, Reuters and Dmoz datasets. This is to

be expected as text documents can be effectively mod-
eled using multinomial distributions whose correspond-
ing Bregman divergence is just the KL-divergence be-
tween the word distributions. Recently, [16] showed that
a convex combination of KL-divergence and squared
Euclidean distance seems to give even better perfor-
mance on this domain. We note that [16] essentially uses
a Bregman divergence derived from a convex function
that is convex combination of two convex functions [23],
and hence, is a special case of the proposed Bregman
clustering framework.

Speech coding is another domain where a special
case of the Bregman clustering algorithm based on the
Itakura-Saito distance, namely the Linde-Buzo-Gray
(LBG) algorithm [17], has been widely and successfully
applied. Again, this is to be expected as speech power
spectra tend to follow exponential family density of
the form p(x) = λe−λx, whose corresponding Bregman
divergence is the Itakura-Saito distance.

Since special cases of Bregman clustering algo-
rithms have already been known to provide substan-
tial improvements over other existing methods in cer-
tain domains, we do not experimentally re-evaluate the
Bregman clustering algorithms against other methods.
Instead, we only focus on showing that the quality of the
clustering depends on the match between the data char-
acteristics and the choice of Bregman divergence used
for clustering.

In order to do this, we performed two experiments
using datasets of increasing level of difficulty. For
our first experiment, we created three 1-dimensional
datasets of 100 samples each, based on mixture models
of Gaussian, Poisson and Binomial distributions respec-
tively. All the mixture models had three components
with equal priors centered at 10, 20 and 40 respectively.
The standard deviation, σ of the Gaussian densities was
set to 5 and the number of trials N of the Binomial dis-
tribution was set to 100 so as to make the three mod-
els somewhat similar to each other. The datasets were
then each clustered using three versions of the Bregman
hard clustering algorithm corresponding to the Breg-
man divergences obtained from the Gaussian (kmeans),
Poisson and Binomial distributions respectively. The
quality of the clustering was measured in terms of the
normalized mutual information6 [24] between the pre-
dicted clusters and the original clusters and the results
were averaged over 10 trials. Table 4 shows the normal-
ized mutual information values for the different diver-
gences and datasets. From the table, we can see that
clustering quality depends on the choice of Bregman

6It is meaningless to compare the clustering objective function

values as they are different for the three versions of the Bregman

clustering algorithm.



divergence and is significantly better when the appro-
priate Bregman divergence is used.

Table 4: Clustering results for the first set of datasets

Model DGaussian DPoisson DBinomial

Gaussian 0.70± 0.033 0.63± 0.043 0.64± 0.035
Poisson 0.69± 0.063 0.73± 0.057 0.69± 0.059
Binomial 0.77± 0.061 0.75± 0.048 0.83± 0.046

The second experiment involved a similar kind
of comparison of clustering algorithms for multi-
dimensional datasets drawn from multivariate Gaussian,
Binomial and Poisson distributions respectively. The
datasets were sampled from mixture models with 15
overlapping components and had 2000 10-dimensional
samples each. The results of the Bregman clustering al-
gorithms shown in table 5 lead to the same conclusion as
before, i.e., the choice of the Bregman divergence used
for clustering is crucial for obtaining good quality.

Table 5: Clustering results for the second set of datasets

Model DGaussian DPoisson DBinomial

Gaussian 0.73± 0.005 0.66± 0.007 0.67± 0.005
Poisson 0.79± 0.013 0.82± 0.014 0.80± 0.013
Binomial 0.82± 0.006 0.83± 0.011 0.85± 0.012

6 Related Work

This work is largely inspired by three broad and over-
lapping ideas. First, considering the clustering problem
from an information theoretic viewpoint is very insight-
ful. Such considerations occur in several techniques,
from classical vector quantization to information the-
oretic clustering [10] and the information bottleneck
method [26]. In particular, the information theoretic
clustering [10] approach solved the problem of distri-
butional clustering with a formulation involving loss in
Shannon’s mutual information. In this paper, we have
significantly generalized that work by proposing tech-
niques for obtaining optimal quantizations by minimiz-
ing loss in Bregman information corresponding to arbi-
trary Bregman divergences.

Second, our soft clustering approach is based on the
relationship between Bregman divergences and expo-
nential distributions and the suitability of Bregman di-
vergences as distortion or loss functions for data drawn
from exponential distributions. It has been previously
shown [3] that the KL-divergence, which is the most
natural distance measure for this parameter space, be-
tween two members pθ and pθ̃ of an exponential family,
is always a Bregman divergence. In particular, it is the
Bregman divergence Dψ(θ, θ̃) corresponding to the cu-
mulant function ψ of the exponential family. In our
work, we extend this concept to say that the Bregman
divergence of the Legendre conjugate of the cumulant
function is, in some sense, a natural distance function
for the data drawn according to that exponential family.

The third broad idea is that many learning algo-
rithms can be viewed as solutions for minimizing loss
functions based on Bregman divergences. Elegant tech-
niques for the design of algorithms and the analysis of
relative loss bounds in the online learning setting exten-
sively use this framework [3]. In the unsupervised learn-
ing setting, use of this framework typically involves de-
velopment of alternate minimization procedures [8]. For
example, [21, 27] analyze and develop iterative alter-
nate projection procedures for solving unsupervised op-
timization problems involving objective functions based
on Bregman divergences under various kinds of con-
straints. Further, [7] develops a generalization of PCA
for exponential families using loss functions based on the
corresponding Bregman divergences and proposes alter-
nate minimization schemes for solving the problem.

There has also been work on learning algorithms
that involve minimizing loss functions based on distor-
tion measures that are somewhat different from Breg-
man divergences. For example, [19] presents the convex-
kmeans clustering for distortion measures that are al-
ways non-negative and convex in the second argument,
using the notion of a generalized centroid. Bregman di-
vergences, on the other hand, are not necessarily convex
in the second argument and also, the minimizer of the
Bregman clustering loss function always happens to be
the actual centroid, i.e., the expectation of the set.

7 Conclusion

In this paper, we presented hard and soft clustering
algorithms minimizing loss functions involving Breg-
man divergences. This analysis presents a unified view
of an entire class of parametric clustering algorithms.
First, in the hard-clustering framework, we show that
a kmeans type iterative relocation scheme solves the
Bregman hard-clustering problem for all Bregman di-
vergences. Further, from a related result, we see that
Bregman divergences are the only distortion functions
for which such a centroid-based clustering scheme is pos-
sible. Secondly, using insights from existing literature,
we show that there is a bijection between Bregman di-
vergences and exponential families. This result is useful
in developing an alternative interpretation of the EM
algorithm for learning mixtures of exponential distri-
butions, eventually resulting in a set of Bregman soft-
clustering algorithms.

As discussed in the paper, special cases of this anal-
ysis have been discovered and widely used by researchers
in applications ranging from speech coding to text clus-
tering. There are four salient features of this framework
that make these results particularly useful for data-
mining applications. First, the computational complex-
ity of the entire class of Bregman clustering algorithms



is linear in the data-points. Hence, the algorithms are
extremely scalable and appropriate for large-scale data-
mining tasks. Secondly, the modularity of the proposed
class of algorithms is evident from the fact that only
one component in the proposed schemes, viz the Breg-
man divergence used in the assignment step, needs to
be changed to get an algorithm for a new loss function.
This simplifies the implementation and application of
this class of algorithms to various data types. Thirdly,
the algorithms discussed are applicable to mixed data
types that are commonly encountered in data-mining.
Since the linear combination of convex functions with
non-negative coefficients is always convex [23], one can
have different convex functions appropriately chosen for
different sets of features. The Bregman divergence cor-
responding to any linear combination of the component
convex functions can now be used to cluster the data.
This vastly increases the scope of the proposed tech-
niques. Finally, because of the similarity of Bregman
hard clustering to kmeans, existing techniques that em-
ploy kmeans in various settings such as data stream clus-
tering, privacy preserving clustering, etc., can be easily
extended to the general framework of Bregman cluster-
ing.
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