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Abstract

Traditionally multi-variate normal distributions have been the staple of data modeling in
most domains. For some domains, the model they provide is either inadequate or incorrect
because of the disregard for the directional components of the data. We present a generative
model for data that is suitable for modeling directional data (as can arise in text and gene
expression clustering). We use mixtures of von Mises-Fisher distributions to model our data
since the von Mises-Fisher distribution is the natural distribution for directional data. We
derive an Expectation Maximization (EM) algorithm to find the maximum likelihood estimates
for the parameters of our mixture model, and provide various experimental results to evaluate
the “correctness” of our formulation. In this paper we also provide some of the mathematical
background necessary to carry out all the derivations and to gain insight for an implementation.

1 Introduction

Traditional statistical approaches involve multi-variate data drawn from Rp, and little or no signifi-
cance is attached to the directional nature of the observed data. For many phenomena or processes
it makes more sense to consider the directional components of the data involved, rather than just
the magnitude alone. For example, modeling wind current directions, modeling geomagnetism, and
measurements derived from clocks and compasses all seem to require a directional model [MJ00]. A
much wider array of fields and contexts in which directional data arises is enlisted in [MJ00], and
the interested reader is urged to atleast gloss over that information.

A fundamental distribution on the circle called the von Mises distribution was first introduced
by von Mises [vM18]. We address the issue of modeling data using the von Mises-Fisher (vMF)
distribution [MJ00], which is a generalization (to higher dimensions) of the von Mises distribution.
We concentrate on using the vMF distribution as it is a distribution that arises naturally for direc-
tional data—akin to the multivariate Normal distribution ([MJ00, pp. 171-172]). Furthermore, it
has been observed that in high dimensional text data, cosine similarity performs much better than
a Euclidean distance metric1 [DFG01]. This observation suggests following a directional model for
the text data rather than ascribing significance to a magnitude based (or traditional) model.

∗Revised 7th June, 2003.
1Empirically cosine similarity has been observed to outperform Euclidean or Mahalanobis type distance measures

in information retrieval tasks.
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Another application domain for the vMF model is modeling gene micro-array data (gene ex-
pression data). Gene expression data has been found to have unique directional characteristics that
suggest the use of a directional model for modeling it. Recently Dhillon et. al (see [DMR03])
have found that gene expression data yields interesting diametric clusters. Intuitively these clusters
could be thought of as data pointing in opposite directions, hinting at the underlying importance of
directional orientation2.

For text data, one byproduct of using a generative model like a mixture of vMF distributions,
is the ability to obtain a soft-clustering of the data. The need for soft-clustering comes to the
foreground when the text collections to be clustered can have documents with multiple labels. A
more accurate generative model can also serve as an aid for improved classification for text data,
especially where more meaningful soft labels are desired3.

Organization of this report

The remainder of this report is organized as follows. Section 2 presents the multi-variate von Mises-
Fisher distribution. Section 3 carries out the maximum likelihood estimation of parameters for
data drawn from a single vMF distribution. Section 4 derives and presents the EM algorithm for
estimating parameters for data drawn from a mixture of vMFs. In section 5 we show the results
of experimentation with simulated mixtures of vMF distributions. Section 6 concludes this report.
Some useful mathematical details are furnished by Appendices A and B. Appendix A provides
mathematical background that is useful in general for understanding the derivations and Appendix
B offers a brief primer on directional distributions.

2 The von Mises-Fisher Distribution

A p-dimensional unit random vector x (‖x‖ = 1) is said to have p-variate von Mises-Fisher distri-
bution Mp(µ, κ) if its probability density is:

cp(κ)eκµ
Tx, x ∈ Sp−1, (2.1)

where ‖µ‖ = 1, κ ≥ 0, Sp−1 is the p dimensional unit hypersphere (also denoted as Sp in some
literature), and cp(κ) the normalizing constant is given by (see B.2)

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
. (2.2)

For more details the interested reader is urged to look at Appendix B.

2.1 Example vMF distribution

In two dimensions (on the circle S0), the probability density assumes the form

g(θ;µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ), 0 ≤ θ < 2π. (2.3)

This is called the von Mises distribution. Figure 1 shows a plot of this density with mean at 0
radians and for κ ∈ {0, 0.3, 1, 4, 20}.

From the figure we can see that as κ increases the density becomes more and more concentrated
about the mean direction. Thus κ is called the concentration parameter.

2Most clustering algorithms for gene expression data use Pearson correlation, which equals cosine similarity of
transformed vectors, and thus our directional model should fit it well.

3Though given the nature of high-dimensional sparse data and models based on some member of the exponential
family of distributions, the ability to obtain useful soft-label remains difficult without explicitly imposing “softness”
constraints.
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Figure 1: von Mises distribution for various κ (κ = 0, 0.3, 1, 4, 20).

3 Maximum Likelihood Estimates for von Mises-Fisher Dis-
tributions

Let D = {x1,x2, . . . ,xn} be the set of sample unit vectors following Mp(µ, κ). Since each xi ∈ D is
assumed to be independent the likelihood is

p(x1, . . . ,xn|κ,µ) =

n∏

i=1

cp(κ)eκµ
Txi . (3.1)

Thus the log-likelihood is
L (κ,µ) = n ln cp(κ) + κµT r, (3.2)

where r =
∑
i xi is the resultant vector. Differentiating (3.2) w.r.t µ subject to the constraint

µTµ = 1 we get
κr = 2λµ, (3.3)

where λ is a Lagrange multiplier. Let µ̂ denote the m.l.e. for µ. From (3.3) and the fact that
µ̂T µ̂ = 1 we conclude that µ̂ = r/‖r‖. Let us write ‖r‖ = nR̄, where R̄ denotes the average
resultant length.

Differentiating (3.2) w.r.t κ we obtain

nc′p(κ)

cp(κ)
+ nR̄ = 0. (3.4)

For brevity, let us write s = p/2− 1. From (2.1),

c′p(κ) =
sκs−1

αIs(κ)
− κsI ′s(κ)

αI2
s (κ)

, (3.5)

where α = (2π)s+1 is a constant. We thus simplify c′p(κ)/cp(κ) to be

s

κ
− I ′s(κ)

Is(κ)
. (3.6)

Using the fact that (see for e.g., [AS74])

κIs+1(κ) = κI ′s(κ)− sIs(κ), (3.7)
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we obtain
−c′p(κ)

cp(κ)
=
Is+1(κ)

Is(κ)
=

Ip/2(κ)

Ip/2−1(κ)
= Ap(κ). (3.8)

Using (3.4) and (3.8) we find that the m.l.e. for κ is given by

κ̂ = A−1
p (R̄). (3.9)

Since Ap(κ) is the ratio of Bessel functions we cannot obtain a closed form functional inverse. Hence
to solve for A−1

p (R̄) we have to resort to numerical or asymptotic methods.
For large values of κ the following approximation is well known ([AS74], Chapter 9):

Ip(κ) ≈ 1√
2πκ

eκ
(

1− 4p2 − 1

8κ

)
. (3.10)

Using (3.10) we obtain

Ap(κ) ≈
(

1− p2 − 1

8κ

)(
1− (p− 2)2 − 1

8κ

)−1

. (3.11)

Now using the fact that κ is large, expanding the second term using the binomial theorem and
ignoring terms that have squares or higher powers of κ in the denominator we are left with

Ap(κ) ≈
(

1− p2 − 1

8κ

)(
1 +

(p− 2)2 − 1

8κ

)
. (3.12)

On again ignoring terms containing κ2 in the denominator we finally have

Ap(κ) ≈ 1− p− 1

2κ
. (3.13)

Hence for large κ we obtain

κ̂ =
1
2 (p− 1)

1− R̄ . (3.14)

We can write Ip(κ) as (A.8),

Ip(κ) =
∑

k≥0

1

Γ(k + p+ 1)k!

(κ
2

)2k+p

. (3.15)

For small κ we use only the first two terms of this series, ignoring terms with higher powers of κ to
get

Ip(κ) ≈ κp

2p p!
+

κ2+p

2p+2 (1 + p)!
. (3.16)

Using (3.16) and on simplifying Ap(κ) we obtain

Ap(κ) ≈ κ

p
, (3.17)

so that,
κ̂ = pR̄. (3.18)

See [MJ00] for conditions under which the approximations for κ̂ are valid, at least for p = 2, 3.
These approximations for κ do not really take into account the dimensionality of the data and

thus for high dimensions (when κ is big by itself but κ/p is not very small or very big) these estimates
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fail to yield sufficient accuracy. We have found that the following seems to yield a very reasonable
approximation most of the time (Appendix B gives a derivation):

κ̂ =
R̄p− R̄3

1− R̄2
. (3.19)

While implementing the calculation of Ap(κ) on a computer it pays to implement it as a continued
fraction. To solve for κ we can use the approximation given by (3.19) as a starting point and then
do a couple of Newton-Raphson iterations to improve our guess, though most often we do not really
need very accurate approximations of κ and (3.19) suffices. Some further details can be found in
Appendix B.

4 EM for a vMF mixture

In this section we derive the mixture-density parameter update equations for a mixture of von
Mises-Fisher distributions. First we obtain the maximum likelihood estimates (m.l.e.) assuming
complete data and then adapt to the incomplete data case viewing the problem in an Expectation
Maximization (EM) framework. The Maximum Likelihood Estimates are derived using the method
given in §10.3 of [DHS00].

4.1 Maximum Likelihood Estimates

Suppose that we are given a set D = {x1,x2, . . . ,xn} of n unlabeled samples drawn independently
from the mixture density:

p(x|Θ) =

c∑

j=1

p(x|ωj , θj)P (ωj), (4.1)

where ω1, . . . , ωc are the c classes from which data can come. The full parameter vector Θ is fixed
but unknown. Since the xi are assumed to be independent the likelihood can be written as

p(D |Θ) =

n∏

k=1

p(xk|Θ). (4.2)

The M.L.E. Θ̂ is that value of Θ that maximizes p(D |Θ). Now let L (D |Θ) be the log-likelihood
given by

L (D |Θ) =

n∑

k=1

ln p(xk|Θ). (4.3)

Note that Θ = (θ1, . . . , θc)
T is the total parameter vector; θi is the parameter vector for class i. We

can write the gradient of the log-likelihood w.r.t. θi as,

∇θiL (Θ) =
n∑

k=1

1

p(xk|Θ)
∇θi




c∑

j=1

p(xk|ωj , θj)P (ωj)


 . (4.4)

Now if we assume that θi is functionally independent of θj then we can simplify the above equations.
First let us introduce the posterior probability (using Bayes’ rule):

P (ωi|xk,Θ) =
p(ωi,xk|Θ)

p(xk|Θ)
=
p(xk|ωi,Θ)P (ωi)

p(xk|Θ)
. (4.5)
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Using this posterior probability we see that the m.l.e. θ̂i must satisfy:

n∑

k=1

P (ωi|xk,Θ)∇θi ln p(xk|ωi, θ̂i) = 0 i = 1, . . . , c. (4.6)

If the priors are also unknown then maximizing (4.6), subject to the condition

c∑

j=1

P̂ (ωj) = 1, (4.7)

we obtain the following m.l.e. for them:

P̂ (ωi) =
1

n

n∑

k=1

P̂ (ωi|xk, Θ̂). (4.8)

4.1.1 Maximum Likelihood for vMF mixture

The derivation given in the previous section applies to any probability density. Assuming that each
sample xk comes from a von Mises-Fisher distribution, i.e.

p(xk|ωi, θi) = cp(κi)e
κiµ

T
i xk , (4.9)

we can solve the above maximum likelihood equations to obtain values of the parameters (κi,µi) for
i = 1, . . . , c. We maximize the log-likelihood w.r.t. µi subject to the constraint µTi µi = 1 to obtain:

µ̂i =

∑n
k=1 P̂ (ωi|xk, Θ̂)xk

‖∑n
k=1 P̂ (ωi|xk, Θ̂)xk‖

. (4.10)

Writing −c′p(κi)/cp(κi) = Ap(κi) as usual, we obtain the following m.l.e. equation for κi:

Ap(κ̂i) =

∑n
k=1 P̂ (ωi|xk, Θ̂)µ̂Ti xk∑n

k=1 P̂ (ωi|xk, Θ̂)
. (4.11)

Hence we obtain κ̂i by calculating A−1
p (·) for the above argument (see Section 3).

In all these equations the value of the posterior probability is given by:

P̂ (ωi|xk, Θ̂) =
cp(κi)e

κiµ
T
i xk P̂ (ωi)∑c

j=1 cp(κj)e
κjµTj xk P̂ (ωj)

. (4.12)

From these equations it seems that the posterior probability is large when: cp(κi) is large and
when κiµ

T
i xk is large. We could thus use these in an explicit objective function while iteratively

calculating the m.l.e. for the parameters.

4.2 Parameter estimation using EM

For unlabeled data points the class to which a given data point belongs is not known. In the
presence of such incomplete data we have to take resort to an Expectation Maximization scheme for
calculating the m.l.e. for parameters. We have the following probabilistic model

p(x|Θ) =
c∑

j=1

αjp(x|θj), (4.13)

6



where the αj ’s are the so called “mixing” parameters (or class priors) and Θ is the parameter vector
for the mixture model. The incomplete-data log-likelihood expression for this density from the data
D is given by:

L (D |Θ) = ln

n∏

k=1

p(xk|Θ). (4.14)

Now if we consider D to be incomplete, but assume the existence of unobserved data items
Y = {yi}ni=1, whose values inform us which component density generated each data item, the
problem becomes easier. That is to say that each yi here corresponds to some ωj as discussed in
the previous section. We let, yi = k if the ith sample xi was generated by the mixture component
corresponding to ωk. Thus we can look at the m.l.e. derivation in the previous section in a manner
similar to the one given by [Bil97]. After some tedious algebra we essentially reach the same equations
as given in the previous section. The scheme to perform the calculations is an EM algorithm that
proceeds by iterative updates to estimate the parameters of the assumed distribution on data.

Algorithm Estimate αj ,µj , κj for 1 ≤ j ≤ c

0: Initialize all αj ,µj , κj , P (ωj |xk, θ)
2. repeat
3. for k = 1 to N do
4. for j = 1 to c do

5. p(xk|ωj ,Θ) = cp(κj)e
κjµ

T
j xk

P̂ (ωj |xk, Θ̂) =
p(xk|ωj ,Θ)αj∑c
l=1 p(xk|ωl,Θ)αl

6. end
7. end
8. for j = 1 to c do

9. nj =
∑n
k=1 P̂ (ωj |xk, Θ̂)

α̂j = nj/n

rj =
∑n
k=1 P̂ (ωj |xk, Θ̂)xk

µ̂j = rj/‖rj‖
κ̂j = A−1

p (‖rj‖/nj)
10. end
11. until stopping criteria met.

Figure 2: EM algorithm for a mixture of vMF distributions.

4.3 Implementation Details

The above algorithm was implemented in MATLAB and its source is available upon request. The
calculation of κ̂j in step 9 above is implemented using the approximation given by (3.19).

There are various ways in which we could initialize our EM algorithm. An easy and effective
method is to initialize the original guesses of the mean directions by using a spherical k-means type
algorithm [DM01], and calculate the initial values of the parameters from the clustering obtained.

5 Experiments

This section discusses some of the experiments performed and the results obtained. We tested our
algorithm on data sampled from simulated mixtures of vMFs.
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5.1 Simulation of vMF mixtures

This information is adapted from Chapter 10 of [MJ00]. For κ > 0, the associated vMF distribution
has a mode at the mean direction µ, whereas when κ = 0 the distribution is uniform. The larger
the value of κ, the greater is the clustering around the mean direction.

Since the vMF density depends on x only through µTx, this distribution is rotationally symmetric
about µ. Further in the tangent normal decomposition:

x = tµ+ (1− t2)1/2ζ, (5.1)

t is invariant under rotation about µ while ζ is equivariant (i.e. any such rotation Q takes ζ to Qζ).
Thus the conditional distribution ζ|t is uniform on Sp−2. It follows that ζ and t are independent
and ζ is uniform on Sp−2. Further (see [MJ00]), we see that the marginal density of t is:

(
κ
2

) p
2−1

Γ(p−1
2 )Γ( 1

2 )I p−1
2

(κ)
eκt(1− t2)

p−3
2 , (5.2)

on the interval [−1, 1].

function mixsamp(n, d, M)
In: n points to sample; d dimensionality, M mixture data structure
Out: M modified mixture, L label of each sampled point.

1. L← zeros(n,1);
2. P ← rand(1,n);
3. X ← zeros(n,d);
4. cp← 0; {Cumulative sum of priors}
5. cs← 0; {Cumulative sum of number of sampled points}
6. for j ← 1 to k

ns← sum(P ≥ cp and P < cp+M.P (ωj));
κ←M.κ(j);
X (ns+ 1 : cs+ ns, :)← vsamp(M.µj , κ, ns);
L(cs+ 1 : cs+ ns)← j;
cp← cp+M.P (ωj);
cs← cs+ ns;

7. end
8. M.X ←X

Figure 3: Simulating a mixture of vMFs.

From the facts that ζ and t are independent and that ζ is uniformly distributed on Sp−2 it
follows that the simulation of a vMF is easy. If ζ and t are generated independently from the
uniform distribution on Sp−2 and from (5.2) respectively then

x = tµ+ (1− t2)1/2ζ,

is a pseudo-random unit vector with the Mp(µ, κ) distribution. Further information about this can
be found in [Woo94]. We used the matlab Statistics Toolbox for aiding our implementation of
Wood’s algorithm ([Woo94]). Figure 4 gives Wood’s algorithm (slight adaptation) that we used
to simulate a single vMF distribution. Figure 3 gives the algorithm used to simulate a mixture of
vMF distributions with given parameters. The algorithm in Figure 3 makes use of the algorithm in
Figure 4.
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function vsamp(µ, κ, n)
{Adapted from [Woo94]}
In: µ mean vector for vMF, κ parameter for vMF
In: n, number of points to generate
Out: S the Set of n vMF(µ, κ) samples

1. d← dim(µ)

2. t1 ←
√

4κ2 + (d− 1)2

3. b← (−2κ+ t1)/(d− 1)
4. x0 ← (1− b)/(1 + b)
5. S ← zeros(n, d)

6. m← (d− 1)/2
7. c← κx0 + (d− 1) log(1− x2

0)
8. for i← 1 to n

t← −1000
u← 1
while (t < log(u))

z ← β(m,m) {β(x, y) gives a beta random variable}
u← rand {rand gives a uniformly distributed random number.}
w ← (1−(1+b)z)

(1−(1−b)z)
t← κw + (d− 1) log(1− x0w)

end
v← urand(d− 1) {urand(p) gives a p-dim vector from unif. distr. on sphere.}
v← v/‖v‖
S(i, 1 : d− 1)←

√
1− w2vT

S(i, d) = w
9. end

{ We now have n samples from vMF([0 0 . . . 1]T , κ) }
10. Perform an orthogonal transformation on each sample in S

The transformation has to satisfy Qµ = [0 0 . . . 1]T

11. return S.

Figure 4: Algorithm to simulate a vMF
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5.2 Experiment 1

In this section we discuss briefly some experiments carried out with the aim of verifying the accuracy
of m.l.e. for parameters of a single vMF distribution. A consequence of the experiments is the
verification of the vMF simulation algorithm given in Figure 4.

5.2.1 Experiment 1.1

This experiment deals with estimating parametes of a three-dimensional vMF distribution. The
results are are summarized in Table1. The true mean and true concentration are denoted by µ

µ κ n µ̂Tµ κ̂
[.7071 .7071 0]′ 4 100 .9994 4.1568
[.7071 .7071 0]′ 10 1000 .9998 10.4561

[.1543 .6172 .7715]′ 15 1000 1.000 15.2949

Table 1: MLE for single vMF with p = 3

and κ respectively, n denotes the number of samples and µ̂, κ̂ denote the estimated parameters.
These results clearly indicate that the m.l.e. for κ and µ are quite accurate, and in the presence
of large amounts of sample data m.l.e. approximate the true parameters quite well. Note that the
calculations for κ were done using an approximation, but that does not lead to too much inaccuracy.

5.2.2 Experiment 1.2

This experiment is in similar vein to experiment 1.1, except that we tried it for 20-dimensional
simulated data. Table 2 summarizes the results. These experiments lend confidence to our belief in

µ κ n µ̂Tµ κ̂
Random vector 10 100 0.9739 10.2989
Random vector 10 1000 0.9983 10.2506

Table 2: MLE for vMF distribution with p = 20

both the simulation and the MLE. Next we shall discuss MLE for simulated mixtures of vMFs.

5.3 Experiment 2

We provide a detailed example of clustering for a two component mixture of vMFs on a circle to
illustrate the performance of our EM algorithm. The dataset that we considered was a small dataset
of 50, two-dimensional points drawn from a mixture of two vMF distributions. The mean direction
for each component was set to some random vector and κ was set to 4.

Figure 5(a) shows a plot of the points. From the plot we observe that there are two clusters of
points (which is natural because the data was sampled from a mixture of two vMFs). Most points
belong to either one component or the other. Some of the points seem to have mixed membership to
each component. As we shall soon see, our EM algorithm figures out these points and assigns them
fractionally to either component. The components as recovered by EM algorithm are illustrated in
Figure 5(b).

From Figure 5(b), we can see that the points that we would have visually assigned to both
components, have been given a mixed membership. This assignment seems to concur with our
notion of a “correct” assignment. More precisely, in Figure 5(b), a point that has a probability
exceeding 0.10, of membership to either component, is called a point with mixed membership. Thus
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(a) Dataset for experiment 2. (b) Components recovered by EM.

Figure 5: Illustration of experiment 2.

we have been able to recover both components and also glean useful information about points with
a mixed membership.

5.4 Experiment 3

For this experiment we simulated three-dimensional directional data drawn from mixtures of two
and three vMFs. The mean directions were chosen randomly as were the concentration parameters
κ. For ease of presentation we have chosen to present results for 3 and higher dimensions in the
tabular format given below. In Table 3, c denotes the number of components, P (ω) denotes the true

c P (ω) P̂ (ω) avg µ̂Tµ avg |κ̂−κ|κ

2 0.55, 0.45 0.5424, 0.4576 0.9959 0.06
3 0.32 0.39 0.29 0.29 0.40 0.31 0.9965 0.05

Table 3: Parameter Estimation for vMF mixtures on a sphere.

priors and P̂ (ω) denotes estimated priors. Other symbols denote the usual quantities as described
earlier. Though not included in this report we have available various other sets of simulated mixtures
of vMFs on the sphere (for c = 5, 6, 10, 12, 15, 20) and the results are similar in quality to the ones
reported in Table 3.

5.5 Experiment 4

This experiment focused on running the EM algorithm to estimate the parameters of a mixture
of vMF distributions on a hypersphere (p = 20) where the number of components in the mixture
was 5. From Table 4, it seems that the estimated priors and means are quite good. The estimated
κ’s do not seem to be that good. This behavior seems to be a manifestation of the approximation
for kappa and a fallout of the limited number of simulated data points. Various problems arising
due to numerical difficulties, compound the error as the algorithm progresses leading to somewhat
unsatisfactory results.
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Cluster P (ω) P̂ (ω) κ κ̂ µTµ
1 0.165 0.193 11.1 14.1 0.89
2 0.200 0.192 8.6 9.1 0.85
3 0.185 0.181 7.0 9.9 0.87
4 0.210 0.204 8 7.3 0.85
5 0.240 0.230 15.0 15.5 0.96

Table 4: Estimated parameters for mixture of 5 vMFs with p = 20

5.6 Experiment 5

This experiment focused on running the EM algorithm to learn the parameters of a mixture of vMF
distributions on a hypersphere (p = 20) where the number of components in the mixture was 20.
The results of estimated parameters for Experiment 5 as given in Table 5 are reasonably good.

maxµT µ̂ avgµT µ̂ max |κ−κ̂||κ| avg |κ−κ̂||κ| max |P (ω)−P̂ (ω)|
|P (ω)| avg |P (ω)−P̂ (ω)|

|P (ω)|
0.978 0.913 0.043 0.037 0.053 0.036

Table 5: Estimated parameters for Experiment 5

5.7 Experiment 6

We simulated a mixture with 5000 points, each in 1000 dimensions and having 4 components. The
mean direction of each component was set to some random vector, and κ for each component was
also set to a random number of in the range [p/2..2p] (p = 1000). The mixing weights for each
component were: (.2576, .2440, .2398, .2586).

maxµT µ̂ avgµT µ̂ max |κ−κ̂||κ| avg |κ−κ̂||κ| max |P (ω)−P̂ (ω)|
|P (ω)| avg |P (ω)−P̂ (ω)|

|P (ω)|
0.999 0.998 0.003 0.002 0.002 0.001

Table 6: Performance for Experiment 6

These results seem to be excellent and we do not notice tremendous errors for this seemingly
complex dataset and the reason is that these results were produced by a ‘C’ implementation of our
EM algorithm as described previously. The ‘C’ implementation uses extended precision arithmetic
to overcome some of the numerical difficulties posed by the vMF distribution in high dimensions.

6 Conclusions

In this report we discussed the need for a directional model for certain types of data and proposed
a mixture model capable of providing the needed model. The mixture model was a mixture of vMF
distributions. We also saw how to compute the m.l.e. parameters for a single vMF distribution and
mentioned the interesting numerical problems that arise when calculating kappa, the concentration
parameter.

We derived m.l.e. equations for a mixture of vMF distributions and gave an EM algorithm to
estimate m.l.e. MLE parameters. We verified our algorithms by running them on simulated data
and described the technical difficulties encountered while doing so.

We observe that for data sampled from a mixture of von Mises-Fisher distributions we get fairly
good estimates upon running our EM algorithm. For high dimensional data, numerical difficulties
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prevent us from getting very accurate results with a limited precision implementation. The extended
precision implementation was able to get around these difficulties and yield excellent results even
for high dimensional data.

One of the reasons is numerical difficulty in calculations due to Bessel functions of high order.
The second, though more intrinsic difficulty is with the model itself. In very high dimensions we
encounter very large values of κ. This leads to clustering decisions being made totally based on κ,
something that is not desirable. Kappa captures the concentration, but we would prefer to give more
preference to decisions based on the mean direction. Traditional spherical K-means already does
that (though it must be noted again that it is a degenerate case of the more general vMF model).
Also we note in passing that the “curse of dimensionality” leads to computational difficulties even
in our case.

Further capabilities of the model that we have presented in this report need to be evaluated
by applying to common domains like text clustering and gene expression data clustering. The
investigation of such applications is part of our future work.
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A Mathematical background

To get a sound understanding of all the derivations performed in this report one needs some back-
ground. This Appendix provides the mathematical background required to derive some fundamental
properties of the von Mises-Fisher distribution and also to supplement the understanding of the m.l.e.
calculations for a mixture of vMFs.

A.1 Transformation to polar coordinates

Suppose we have an n vector x that we wish to translate to polar coordinates. We want to effect the
transformation x = u(r,θ), where θ = (θ1, . . . , θn−1) and r = ‖x‖. The co-ordinate transformation
is generalized as below

xk ← r sin θ1 · · · sin θk−1 cos θk, 1 ≤ k < n,

xn ← r sin θ1 · · · sin θn−1.

We can re-express this generalization in the following inductive way: If z1, . . . , zn−1 are the co-
ordinates in n−1 dimensional space and x1, . . . , xn are the co-ordinates in n-dimensional space, and
x = u(θ) is the transformation to polar co-ordinates in n− 1-space. Then we define (for n > 3):

xi = zi for 1 ≤ i ≤ n− 2,

xn−1 = zn−1 cos θn−1,

xn = zn−1 sin θn−1.

The base case for the induction is z1 = r cos θ1 and z2 = r sin θ1. It is easy to verify that ‖x‖ = r
and ‖z‖ = r as desired.

We know from vector calculus that: dx = |det J|dθ where J is the Jacobian matrix for the
co-ordinate transformation and is given by

J =




∂x1

∂r
∂x1

∂θ1
· · · ∂x1

∂θn−1
∂x2

∂r
∂x2

∂θ1
· · · ∂x2

∂θn−1

∂x3

∂r

...
... ∂x3

∂θn−1

... · · · · · ·
...

∂xn
∂r

∂xn
∂θ1

· · · ∂xn
∂θn−1



.

The determinant of the Jacobian of the transformation is (where si = sin θi and ci = cos θi):

|J| = rn−1

∣∣∣∣∣∣∣∣∣∣∣

c1 −s1 0 · · · 0
s1c2 c1c2 −s1s2 · · · 0
s1s2c3 c1s2c3 · · · · · · 0

...
...

...
...

...∏n−1
i=1 si c1

∏n−1
i=2 si · · · · · · cn−1

∏n−2
i=1 si

∣∣∣∣∣∣∣∣∣∣∣

. (A.1)

To calculate this determinant let us first define the following:

Dn(k) =

∣∣∣∣∣∣∣∣∣∣∣∣

ck −sk 0 · · · 0
skck+1 ckck+1 −sksk+1 · · · 0

sksk+1ck+2 cksk+1ck+2 · · · · · · 0
...

...
...

...
...∏n+k−2

i=k si ck
∏n+k−2
i=k+1 si · · · ct

∏n+k−2
i=k

i6=t
si cn+k−2

∏n+k−3
i=k si

∣∣∣∣∣∣∣∣∣∣∣∣

.
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Then it is clear that the determinant of the Jacobian (A.1) is given by rn−1Dn(1). Expanding Dn(k)
along ck and −sk and we get the following:

Dn(k) = ck

∣∣∣∣∣∣∣∣∣

ckck+1 −sksk+1 · · · 0
cksk+1ck+2 −sksk+1sk+2 · · · 0

...
...

...
...

ck
∏n+k−2
i=k+1 si · · · · · · cn+k−2

∏n+k−3
i=k si

∣∣∣∣∣∣∣∣∣

+ sk

∣∣∣∣∣∣∣∣∣

skck+1 −sksk+1 · · · 0
sksk+1ck+2 −sksk+1sk+2 · · · 0

...
...

...
...∏n+k−2

i=k si · · · · · · cn+k−2

∏n+k−3
i=k si

∣∣∣∣∣∣∣∣∣
.

(A.2)

Taking out ck common from the first term and sk from the second term and noting the fact that
c2k + s2

k = 1 we see that (A.2) reduces to:

Dn(k) =

∣∣∣∣∣∣∣∣∣

ck+1 −sksk+1 · · · 0
sk+1ck+2 −sksk+1sk+2 · · · 0

...
...

...
...∏n+k−2

i=k+1 si · · · · · · cn+k−2

∏n+k−3
i=k si

∣∣∣∣∣∣∣∣∣
.

Since all but the first column contain an sk, we factor it out yielding

Dn(k) = sn−2
k Dn−1(k + 1). (A.3)

Also by direct evaluation we know that D3(j) = sj . Hence on iterating (A.3) we conclude that:

Dn(k) = sn−2
k sn−3

k+1 · · · sk+n−3 =

n+k−2∏

j=k+1

sn+k−1−j
j−1 .

Since we know that |J | = rn−1Dn(1) we get the following:

|J | = rn−1
n∏

j=2

sinn−j θj−1.

For our case we have r = 1 and hence we can write:

dx1 dx2 · · · dxn =
n∏

j=2

sinn−j θj−1dθj−1.

A.2 Some integrals and functions

In this section we gloss over some functions and integrals that prove to be useful while studying
directional distributions.

A.2.1 The Gamma Function

We state and prove a few properties about the Gamma function that are useful for understanding
some of the derivations associated with vMF distributions.

Leonhard Euler was the first to obtain the following generalization of the factorial function (see
[Knu98])

n! = lim
m→∞

mnm!

(n+ 1)(n+ 2) · · · (n+m)
.
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A. M. Legendre introduced the notation: n! = Γ(n+ 1) = nΓ(n) where

Γ(x) =
x!

x
= lim
m→∞

mxm!

x(x+ 1)(x+ 2) · · · (x+m)
. (A.4)

We now prove that

Γ(x) =

∫ ∞

0

e−ttx−1 dt.

Our proof is based upon Ex. 1.2.5-19 of [Knu98]. We denote by Γm(x) the quantity after the limit
sign in equation (A.4) and we demonstrate that

∫ m

0

(
1− t/m

)m
tx−1 dt = Γm(x).

We can rewrite the integral above as (make the substitution y = t/m):

Im(x) =

∫ 1

0

mx(1− y)myx−1 dy.

Integrating by parts we find

Im(x) = mx

[
(1− y)myx

x

∣∣∣∣
1

0

+
m

x

∫ 1

0

(1− y)m−1yx dy

]
,

=
mx+1

x

∫ 1

0

(1− y)m−1yx dy.

We can see that if we inductively assume

Γm−1(x) = mx

∫ 1

0

(1− y)m−1yx−1 dy,

then we may write xIm(x) = Γm−1(x+1). Hence using induction we can show that Im(x) = Γm(x).
Now we note the fact that as m→∞, (1− t/m)m → e−t. This limit enables us to write

Γ(x) =

∫ ∞

0

e−ttx−1 dt.

Note: The proof that xΓm(x) = Γm−1(x+ 1) follows easily from the defintion of Γm(x).
From either this integral or from the limiting definition we can verify the familiar property:

Γ(x+ 1) = xΓ(x). An important special case that comes up quite often is the value of Γ(1/2). We
shall evaluate it directly here. First we need a lemma:

Lemma A.1 ∫ ∞

0

e−u
2

du =
√
π/2.

Proof The integral in question is,

I =

∫ ∞

−∞
e−u

2

du,

I2 =

∫ ∞

−∞

∫ ∞

−∞
e−(u2+v2) du dv.
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Now put u = r cos θ and v = r sin θ. So we get,

I2 =

∫ 2π

0

dθ

∫ ∞

0

e−r
2

r dr,

= π.

Hence, I =
√
π. It is easy to see that the integral under consideration is just half of I hence the

lemma is true.

Now we calculate the value of Γ(1/2).

Γ(1/2) =

∫ ∞

0

e−tt−1/2 dt.

We substitute t = u2 so that dt = 2u du. Hence we have:

Γ(1/2) =

∫ ∞

0

e−u
2 1

u
2udu = 2

∫ ∞

0

e−u
2

du.

But using Lemma A.1 we can conclude that: Γ(1/2) =
√
π.

A.2.2 The sinn x integral

There are two ways that we show how to evaluate the following integral:
∫ π

0

sinn x dx, n > −1.

The first way is to type: Integrate[Sin[x]^n,{x,0,π}] in Mathematica and it will give back the
answer: √

π Γ( 1+n
2 )

Γ(1 + n
2 )

.

If one does not have recourse to Mathematica or some other such symbolic algebra system we could
perform the integration as shown below.

In =

∫ π

0

sinn x dx

=
[
− sinn−1 x cosx

]π
0

+ (n− 1)

∫ π

0

sinn−2 x cos2 x dx

= (n− 1)

∫ π

0

sinn−2 x dx− (n− 1)

∫ π

0

sinn x dx

nIn = (n− 1)In−2.

By direct calculation we know that I2 = π/2. So upon iteration we find out that

In =
(n− 1)(n− 3) · · · (n− 2k + 1)

n(n− 2) · · · (n− 2k)

π

2
; 2k = n− 2.

We can write this as:

In =
(n−1

2 )(n−3
2 ) · · · (n−2k+1

2 )
n
2 (n−2

2 ) · · · (n−2k
2 )

π

2
; 2k = n− 2.

Since we know that Γ(x+ 1) = xΓ(x) we can write

In =
Γ(n+1

2 )

Γ(n+2
2 )

π

2× Γ(3/2)
.
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Using the fact that Γ(3/2) =
√
π/2 we conclude that

In =

√
π Γ( 1+n

2 )

Γ(1 + n
2 )

.

In as given by the above equation is defined only for n > −1.

A.2.3 Useful formulae

The following differential equation gives rise to these modified Bessel functions:

z2w′′(z) + zw′(z)− (z2 + r2)w(z) = 0. (A.5)

This equation has solutions of the form: w(z) = c1Ir(z) + czKr(z) where Kr(z) is the modified
Bessel Function of the second kind.

The following two recurrence relations involving the derivative of the Bessel function are very
useful in practice.

κI ′p(κ) = pIp(κ) + κIp+1(κ), (A.6)

κI ′p(κ) = κIp−1(κ)− pIp(κ). (A.7)

A standard definition of the modified Bessel function of order p and argument κ is

Ip(κ) =
∑

r≥0

1

Γ(p+ r + 1)r!

(κ
2

)2r+p

. (A.8)

Yet another definition is

Ip(κ) =
2−pκp

Γ(p+ 1/2)Γ(1/2)

∫ π

0

eκ cos θ sin2p θdθ, (A.9)

which is equivalent to

Ip(κ) =
1

2π

∫ 2π

0

cos pθeκ cos θdθ. (A.10)

Finally, we can also write the above is a form that might be suitable for numerical integration
procedures as follows:

Ip(κ) =
2−pκp

Γ(p+ 1/2)Γ(1/2)

∫ 1

−1

eκt(1− t2)p−1/2dt. (A.11)

The following ratio is of principal importance to us,

Ap(κ) =
Ip/2

Ip/2−1
. (A.12)

Another equivalent form can be derived using (A.11),

Ap(κ) =

∫ 1

−1
t2eκt(1− t2)(p−3)/2dt

∫ 1

−1
eκt(1− t2)(p−3)/2dt

. (A.13)

We can obtain the following asymptotic representation for Ap(κ),

κ

p
− κ3

p2 (2 + p)
+

2κ5

p3 (2 + p) (4 + p)
+

(−12− 5 p) κ7

p4 (2 + p)
2

(4 + p) (6 + p)
+

2 (24 + 7 p) κ9

p5 (2 + p)
2

(4 + p) (6 + p) (8 + p)
+O(κ)

10
;

(A.14)
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in fact we can write Ap(κ) as a convergent power series if κ/p < 1.
We are also interested in the derivative of Ap(κ). We claim that the derivative of Ap(κ), w.r.t.

κ is given by,

A′p(κ) = 1−Ap(κ)2 − p− 1

κ
Ap(κ). (A.15)

Proof Let s = p/2− 1. Then we have,

A′p(κ) =
I ′s+1(κ)

Is(κ)
− Is+1(κ)

Is(κ)

I ′s(κ)

Is(κ)
. (A.16)

Now we make use of (A.7) to obtain

I ′s+1(κ)

Is(κ)
= 1− s+ 1

κ

Is+1(κ)

Is(κ)
, (A.17)

and we use (A.6) to write
I ′s(κ)

Is(κ)
=
s

κ
+
Is+1(κ)

Is(κ)
. (A.18)

We know that Ap(κ) = Is+1(κ)
Is(κ) hence we conclude that

A′p(κ) = 1−Ap(κ)2 −
(
s

κ
+
s+ 1

κ

)
Ap(κ). (A.19)

Putting in p/2− 1 for s we get the desired conclusion.

If we invert the power series representation for Ap(κ) we obtain the following approximation for κ:

p R̄

(
1 +

p R̄2

2 + p
+

p2 (8 + p) R̄4

(2 + p)
2

(4 + p)
+

p3 (120 + p (14 + p)) R̄6

(2 + p)
3

(4 + p) (6 + p)
+
p4 (24 + p) (448 + p (112 + p (6 + p))) R̄8

(2 + p)
4

(4 + p)
2

(6 + p) (8 + p)

)
.

(A.20)

This estimate for κ does not really take into account the dimensionality of the data and thus for high
dimensions (when κ is big by itself but κ/p is not very small or very big) it fails to yield accurate
approximations. Note that Ap(κ) is a ratio of Bessel functions that differ in their order by just one,
so we can use a well known continued fraction expansion for representing Ap(κ). For notational
simplicity let us write the continued fraction expansion as:

A2s+2(κ) =
Is+1

Is
=

1
2(s+1)
κ +

1
2(s+2)
κ +

· · · . (A.21)

The continued fraction on the right is well known [Wat96]. Equation (A.21) and Ap(κ) = R̄, allow
us to write:

1

R̄
≈ 2(s+ 1)

κ
+ R̄.

Thus we can solve for κ to obtain the approximation,

κ ≈ (2s+ 2)R̄

R̄− R̄2
. (A.22)

Since we made an approximation above, we incur some error, so we add a correction term (determined
empirically) to the approximation of κ and obtain Equation (A.23),

κ̂ =
R̄p− R̄3

1− R̄2
(A.23)
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The above approximation can be generalized to include higher order terms in R̄ to yield more
accurate answers.4 For p = 2, 3 highly accurate approximations can be found in [Hil81]. In most
cases this estimate for κ is good enough because as far as inference is concerned a very accurate
estimate does not buy us much. (The relative error between the true κ and this estimate has been
found to be consistently lower than 0.05%)

For solving Ap(κ) − R̄ = 0, we can use (A.15) in any numerical method that may require the
evaluation of the derivative of Ap(κ) (such as Newton’s method). In practice however, for very high
dimensions (large p), Newton’s iteration does not work that well because of numerical difficulties.
In such cases, one could resort to other methods for improving the solution. Note that, again for
practical purposes one does not really need very accurate calculations of κ. It is more of an academic
numerical problem to find a good κ using an efficient and accurate root finder.

B Directional Distributions

The developments in this section are dependent upon the material presented in Appendix A. Thus,
the reader who has not read Appendix A is advised to at least glance through it before proceeding
with this appendix. Following the treatment in [MJ00], we will denote the probability element of x
on a unit hyper-sphere by dSp−1. The Jacobian of the transformation from (r, θ) to x is given by

dSp−1 = ap(θ) dθ, (B.1)

where we have (see Appendix A),

ap(θ) =

p−1∏

j=2

sinp−j θj−1. (B.2)

B.1 Uniform Distribution

If a direction x is uniformly distributed on Sp−1 (unit hyper-sphere) then its probability element is
cp dS

p−1. The p.d.f. of θ is given by: cpap(θ) (See Appendix A for a proof). Now we know that

∫
cpap(θ)dθ = 1, (B.3)

hence using (B.2) we can write this as

cp

∫ 2π

0

dθp−1

p−1∏

j=2

∫ π

0

sinp−j θj−1 = 1. (B.4)

Using the fact that (for n > 0, see Appendix A for a proof)

∫ π

0

sinn x dx =

√
πΓ(n+1

2 )

Γ(n+2
2 )

, (B.5)

we can easily solve equation (B.4) to give

cp =
Γ(p/2)

2πp/2
.

4Note that if one really wants more accurate approximations, it is better to use (A.23) as a starting point and then

perform a couple of Newton-Raphson iterations, because it is easy to evaluate A′p(κ) = 1−Ap(κ)2 − p−1
κ
Ap(κ).

20



B.2 The von Mises-Fisher distribution

A unit random vector x is said to have p−variate von Mises-Fisher distribution if its p.e. is:

cp(κ)eκµ
Tx dSp−1, x ∈ Sp−1 ⊆ Rp. (B.6)

Where ‖µ‖ = 1 and κ ≥ 0. We will derive the value of cp the normalizing constant using the fact
that: ∫

x∈Sp−1

cp(κ)eκµ
′x dx = 1. (B.7)

To evaluate the integral above we make the transformation y = Qx, where y1 = µTx and Q is
an orthogonal transformation. x = Q−1y so dx = | ∂∂yQ−1y|dy. But since Q is an orthogonal

transformation we have dx = dy. It is easy to see that the first row of the matrix Q is µT . We now
make the transformation to polar co-ordinates: y = u(θ). Using Equations (B.1) and (B.2) we can
rewrite the integral above as:

∫ 2π

0

dθp−1

∫ π

0

eκ cos θ1 sinp−2 θ1dθ1

p−1∏

j=3

∫ π

0

sinp−j θj−1dθj−1. (B.8)

Using Eq. (B.5) we can rewrite the above integral as:

I = 2π × J1 × π
p−3

2
Γ(p−2

2 )

Γ(p−1
2 )

Γ(p−3
2 )

Γ(p−2
2 )
· · · Γ(1)

Γ( 3
2 )
, (B.9)

where J1 is given by:

J1 =

∫ π

0

eκ cos θ1 sinp−2 θ1dθ1. (B.10)

But we know from (A.9) that:

I p−2
2

(κ) =
(κ

2

) p−2
2 J1

Γ(p−1
2 )Γ( 1

2 )
. (B.11)

Hence on combining (B.9) and (B.11) and using the fact that Γ( 1
2 ) =

√
π we see that the integral

under question evaluates to:

I =
(2π)p/2

κp/2−1
Ip/2−1(κ), (B.12)

where Ir(κ) is the modified Bessel Function as given by Eq. (A.9). We see that cp(κ) = I−1 and
hence we have:

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
. (B.13)
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