
Adaptive Website Design using Caching Algorithms

Justin Brickell
Department of Computer

Sciences
University of Texas at Austin

Austin, TX, USA
jlbrick@cs.utexas.edu

Inderjit S. Dhillon
Department of Computer

Sciences
University of Texas at Austin

Austin, TX, USA
inderjit@cs.utexas.edu

Dharmendra S. Modha
IBM Almaden Research

Center
San Jose, CA, USA

dmodha@us.ibm.com

ABSTRACT
Visitors enter a website through a variety of means, includ-
ing web searches, links from other sites, and personal book-
marks. In some cases the first page loaded satisfies the vis-
itor’s needs and no additional navigation is necessary. In
other cases, however, the visitor is better served by content
located elsewhere on the site found by navigating links. If
the path between a user’s current location and his eventual
goal is circuitous, then the user may never reach that goal or
will have to exert considerable effort to reach it. By mining
site access logs, we can draw conclusions of the form “users
who load page p are likely to later load page q.” If there is
no direct link from p to q, then it would be advantageous
to provide one. The process of providing links to users’
eventual goals while skipping over the in-between pages is
called shortcutting. Existing algorithms for shortcutting re-
quire substantial offline training, which make them unable
to adapt when access patterns change between training ses-
sions. We present improved online algorithms for shortcut
link selection that are based on a novel analogy drawn be-
tween shortcutting and caching. In the same way that cache
algorithms predict which memory pages will be accessed in
the future, our algorithms predict which web pages will be
accessed in the future. Our algorithms are very efficient and
are able to consider accesses over a long period of time, but
give extra weight to recent accesses. Our experiments show
significant improvement in the utility of shortcut links se-
lected by our algorithm as compared to those selected by
existing algorithms.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology; H.2.8
[Database Management]: Database Applications—Data
Mining

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEBKDD’06, August 20, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-444-8 ...$5.00.

Keywords
Data Mining, Adaptive Web Sites, Caching, Pattern Mining,
Access Logs, Shortcutting

1. INTRODUCTION
As websites increase in complexity, they run headfirst into

a fundamental tradeoff: the more information that is avail-
able on the website, the more difficult it is for visitors to
pinpoint the specific information that they are looking for.
A well-designed website limits the impact of this tradeoff, so
that even if the amount of information is increased signifi-
cantly, locating that information becomes only marginally
more difficult. Typically, site designers ease information
overload by organizing the site content into a hierarchy of
topics, and then providing a navigational tree that allows
visitors to descend into the hierarchy and find the informa-
tion they are looking for. In their paper on adaptive web-
site design [?], Perkowitz and Etzioni describe these static,
master-designed websites as “fossils cast in HTML.” They
claim that a site designer’s a priori expectations for how a
site will be used and navigated are likely to inaccurately re-
flect actual usage patterns, especially as the site adds new
content over time. As it is infeasible for even the most ded-
icated site designer to understand the goals and access pat-
terns of all site visitors, Perkowitz and Etzioni proposed
building websites that mine their own access logs in order
to automatically determine helpful self-modifications.

One example of a helpful modification is shortcutting, in
which links are added between unlinked pages in order to al-
low visitors to reach their intended destinations with fewer
clicks. Typically a limit N is imposed on the maximum
number of outgoing shortcuts on any one particular page.
The shortcutting problem can then be thought of as an op-
timization problem to choose the N shortcuts per page that
minimize the number of clicks needed for future visitors to
reach their goal pages. These shortcuts may be modified
at any time based on past accesses in order to account for
anticipated changes in the access patterns of future visi-
tors. Finding an optimal solution to this problem would
require an exact knowledge of the future and a precise way
of determining each user’s goal. However, shortcutting al-
gorithms must provide shortcuts in an on-line framework,
so the shortcuts must be chosen without knowledge of fu-
ture accesses. Rather than solving the optimization problem
exactly, shortcutting algorithms use heuristics and analyze
past accesses in order to provide good shortcuts.

In this paper, we draw a novel analogy between shortcut-
ting algorithms, which maintain an active set of shortcuts on



each page, and caching algorithms, which maintain an ac-
tive set of items in cache. The goal of caching algorithms—
maximizing the fraction of future accesses for items in the
active set—is analogous to the goal of shortcutting algo-
rithms. The main contribution of this paper is the Cache-
Cut algorithm for shortcutting. By using replacement poli-
cies developed for caching applications, CacheCut is able
to run with less memory than other shortcutting algorithms,
while producing better results. A second contribution is the
FrontCache algorithm, which uses the same caching tech-
niques in order to select pages to promote on the front page
with direct links.

The remainder of this paper is organized as follows. In
Section ?? we discuss related work in adaptive website prob-
lems. In Section ?? we give definitions for terms that are
used throughout the remainder of the paper. Section ??
gives a formulation of the shortcutting problem and presents
two shortcutting algorithms from existing literature. In Sec-
tion ?? we detail our CacheCut algorithm for shortcutting,
and also describe the FrontCache algorithm for promot-
ing pages with links on the front page. Section ?? describes
our experimental setup and the results of our experiments.
Finally, in Section ??, we offer some concluding thoughts
and suggest directions for future work.

2. RELATED WORK
Perkowitz and Etzioni [?] issued the original challenge

to the AI community to build adaptive web sites that
learn visitor access patterns from the access log in order
to automatically improve their organization and presen-
tation. Their follow-up paper [?] presented several global
adaptations that affect the presentation of the website to
all users. One adaptation from their paper is “index page
synthesis,” in which new pages are created containing col-
lections of links to related but currently unlinked pages. In
his thesis [?], Perkowitz presents the shortcutting problem
as a global adaptive problem, in which links are added
to each page to ease the browsing experience of all site
visitors. Ramakrishnan et al. [?] have also done work in
global adaptation; they observe that frustrated users who
cannot find the content they are looking for are apt to
use the “back” button. The authors scan the access log
looking for these “backtracks” to identify documents that
are misclassified in the site hierarchy, and correct these
misclassifications.

Other work has explored adaptations that are individual,
rather than global; sometimes this is referred to as personal-
ization. It is increasingly common for portals to allow users
to manually customize portions of their front pages [?]. For
instance, a box with local weather information can be pro-
vided based on zip code information stored in a client cookie.
The Newsjunkie system [?] provides personalized newsfeeds
to users based on their news preferences. Personalization is
easy when users provide both their identity and their desired
customizations, but more difficult when the personalization
must take place automatically without explicit management
on the part of the user. The research community has made
some stabs at the more difficult problem. Anderson and
Horvitz [?] automatically generate a personal web page that
contains all of the content that the target user visits dur-
ing a typical day of surfing. Frayling et al. [?] improve the
“back” button so that it jumps to key pages in the naviga-
tion session. Eirinaki and Vazirgiannis [?] give a survey of

the use of web mining for personalization.
Operating at a level between global adaptations and in-

dividual adaptations are group adaptations. The mixture-
model variants of the MinPath algorithm [?] are examples
of group-based shortcutting algorithms. When suggesting
shortcuts to a website visitor, they first classify that visi-
tor based on browsing behavior, and then provide shortcuts
that are thought to be useful to that class of visitors. Classi-
fying users requires examining the “trails” or “clickstreams”
in the access log, which are the sequences of pages accessed
by individual visitors. Other researchers have investigated
trails without the intention of adapting a website. Banerjee
and Ghosh [?] use trails to cluster users. Cooley et al. [?]
discover association rules to find correlations such as “60%
of clients who accessed page A also accessed page B.” Yang
et al. [?] conduct temporal event prediction, in which they
also estimate when the client is likely to access B.

Our work follows the global model of shortcutting seen
in [?], in which shortcutting is viewed as a global adapta-
tion that adds links to each page that are the same for every
visitor. Like Perkowitz’ algorithm, when choosing shortcuts
for a page p we pay close attention to the number of times
other pages q are accessed after p within a trail; however,
our algorithm provides improvements in the form of reduced
memory requirements and higher-quality shortcuts. A re-
lated work by Yang and Zhang [?] sought to create an im-
proved replacement policy for website caching by analyzing
the access log. In contrast, our work uses existing caching
policies to create an improved website.

3. DEFINITIONS
Before describing CacheCut and other shortcutting al-

gorithms from the literature, we provide some definitions
that we will use throughout the paper.

Site Graph. The site graph of a website with n unique
pages is a directed n-node graph G = (V,E) where epq ∈ E
if and only if there is a link from page p to page q.

Shortcut. A shortcut is a directed connection between
web pages p and q that were not linked in the original site
graph, i.e., epq 6∈ E.

Shortcut Set. The shortcut set Sp of a page p is a set
of pages {q1, ..., qN} such that there is a shortcut from p to
each qi ∈ Sp.

Access Log. The access log records all requests for con-
tent on the website. Common webservers like Apache pro-
duce an access log automatically. In its raw form, the access
log contains information that is not needed by shortcutting
algorithms. We strip away this unnecessary information and
formally consider the access log to be a sequence of tuples
of the form

〈client, page, time, referrer〉,

where client is the identity of the client accessing the web-
site, page is the page requested by the client, and time is the
time of access. Some shortcutting algorithms also use the
referrer field, which is the last page the client loaded before
loading the current page. This information is self-reported
by the client and tends to be unreliable, so we prefer not to
use it.

Trail. A trail is a sequence of pages {p1, p2, ..., pk}; we
also assume there is a function Time such that Time(pi)
returns the time at which page pi was accessed within the
trail. A trail represents a single visit to the website by a sin-



gle client, starting at page p1 at time Time(p1)and ending
at page pk at time Time(pk). In order to determine which
sequences of page requests constitute a single visit, we re-
quire that Time(pk) − Time(p1) < 10min. Of course, it is
possible to change the 10 minute value.

Note that there need not necessarily be a link in the orig-
inal site graph between page pi and page pi+1. This is in
contrast to other definitions of trails, which use the refer-
rer field in order to require that the trail be a sequence of
clicks. We adapt the more inclusive definition because there
are many ways for a user to navigate from pi to pi+1 with-
out following a direct link. For instance, the user could have
navigated to an external site with a link to pi+1, typed in
the address for pi+1 manually, or followed a link on pi−1 af-
ter using the “back” button. If visitors to page p often visit
q later in the session, this is good evidence that a shortcut
from p to q would be useful, regardless of how those visitors
found their way from p to q.

Trail-Edge. The set of trail-edges ET of a trail T is the
set of forward edges in the site graph spanned by T . If
T = {p1, p2, ..., pk}, then ET =

Sk−1
i=1

Sk
j=i+1 eij ; note that

|ET | =
`|T |

2

´
. In a sense, E is the set of edges that could be

useful to the client in moving from page p1 to page pk. Some
of these edges are available as links on the site graph, while
others may become available as shortcuts. A user does not
need to have all trail-edges available to successfully navigate
a trail, but each edge that is available increases the number
of ways to navigate from page p1 to page pk.

4. SHORTCUTTING
Shortcutting adds links to the site graph that allow users

to quickly navigate from their current location to their goal
page. If a user on page A wishes to visit page E, he may find
that there is no way to navigate to E without first loading
intermediate pages B, C, and D. Providing a direct link
from A to E would save him 3 clicks. If we transformed the
site graph G into a complete graph by adding every possible
link, then any user could reach any page in a single click.
However, this is an impractical transformation because a hu-
man visitor cannot make sense of a webpage with hundreds
of thousands of links. This is representative of a general
tradeoff that we encounter whenever adding links to pages.
Pages become more accessible when they have more inlinks,
but become more confusing when they have more outlinks.
We typically address this tradeoff by limiting the number of
shortcut links per page to N , a small value such as 5 or 10.

With the restriction of N shortcuts per page in place, an
optimal shortcutting algorithm is one that chooses the N
shortcuts for each page p that minimize the number of clicks
required for site visitors to navigate to their goal page. If we
could look into the future and read the minds of site visitors,
then each time a visitor loaded a page p, we could choose
the shortcuts on p based on that visitor’s goal. In this case,
only a single shortcut is needed for page p—a shortcut to
the visitor’s goal page Since it is not possible to look into the
future, algorithms for shortcut selection must instead mine
the web access log for access patterns of past visitors, and
then provide shortcuts that would have been helpful to past
visitors with the assumption that they will also be useful to
visitors in the future.

4.1 Evaluating the quality of a shortcutting
algorithm

The goal of shortcutting is to reduce the number of clicks
that a visitor must make in order to reach his goal page.
The shortcutting algorithm must provide shortcuts to the
visitor on-line, without any knowledge of where the visitor
will go in the future; at the time of suggestion it is impossi-
ble to determine whether any of the provided shortcuts will
be useful to the visitor. Once a visitor’s trail is complete,
however, it is possible to examine the trail in its entirety
and evaluate the quality of the shortcuts provided at each
page in the trail.

Ideally we could evaluate the quality of shortcuts by com-
paring the number of clicks needed to reach the goal page
both before and after shortcutting. Unfortunately, knowl-
edge of an entire trail is not enough to determine which page
was the goal. It is possible that the last page of the trail is
the goal page, as is the case when visitors leave the web site
after reaching their goals. However, it is also possible for
visitors to deliberately load several distinct goal pages dur-
ing their sessions, or to reach their goals midway through
their sessions and then browse aimlessly, or to never reach
their goals at all.

The shortcut evaluation used in [?] makes the assumption
that the last page in a trail is the goal page, even though this
assumption may be incorrect for many trails. Rather than
make any such assumption about goal pages, we will sim-
ply assume that any shortcut that allows a visitor to jump
ahead in his trail is useful. Then we evaluate the quality
of a shortcutting algorithm for a trail T by determining the
fraction of trail-edges available to the visitor as shortcuts or
links. Formally, let ET be the set of trail edges of T , let E
be the set of edges of the site graph G, and let Sp be the set
of shortcuts on page p at the time that page p was visited.
Then a trail edge epq ∈ ET is available if either epq ∈ E or
q ∈ Sp. We define the trail-edge hit ratio of a shortcutting
algorithm for a trail T as the fraction of trail-edges that are
available:

HitRatio(T ) =
|available trail-edges of T |

|trail-edges of T | . (1)

The hit ratio ranges from 0 (if none of the pages in the
trail are linked or shortcutted) to 1 (if every trail-edge is
provided as either a link or a shortcut). Note that the hit
ratio will generally increase as we increase the number of
shortcuts per page, N . To evaluate the overall success of a
shortcutting algorithm, we take a suitably large access log
with many thousands of trails and compute the average trail
edge hit ratio:

AverageHitRatio(Trails) =

P
T∈Trails HitRatio(T )

|Trails| , (2)

where Trails is the set of trails in the access log.

4.2 Perkowitz’ shortcutting algorithm
In [?], Perkowitz gives a simple algorithm that we call

PerkowitzShortcut for selecting shortcuts; this algo-
rithm is shown in Algorithm ??. PerkowitzShortcut is
periodically run offline to update all of the shortcuts on
the website, and these shortcuts remain in place until the
next time that an update is performed. For every page
p, the algorithm counts the number of times other pages
are accessed after p in the same trail, and then it adds
shortcuts on p to the N pages most frequently accessed



after p. PerkowitzShortcut is simple and intuitive;
however, it theoretically requires n2 memory, which can
be prohibitive. In practice, the memory requirements of
Perkowitz are closer to O(n) when a sparse representation
of the count array C is used.

Because the shortcuts are updated offline and no informa-
tion is retained from the previous time the update was run,
there is a tradeoff when choosing how frequently to update.
If the updates are too frequent, then there is inadequate
time for the probability distribution to settle. In particular,
pages p that are infrequently accessed may have poorly cho-
sen shortcuts (or no shortcuts at all, if the algorithm never
sees a session that loads p). If the updates are too infrequent,
then the algorithm will be unable to adapt to changes in vis-
itor access patterns. Our algorithm CacheCut presented in
Section ?? improves on PerkowitzShortcut by using less
memory and providing higher-quality shortcuts.

Inputs:
G = (V,E) The n× n site graph
L The access log (divided into trails)
N The number of shortcuts per page

Output:
A shortcut set Sp for each page p

PerkowitzShortcut(G,L,N)

1: Initialize an n × n array of counters C. Cpq represents
how often users who visit page p later go on to visit page
q.

2: For each trail T in the access log, and for each page p in
T , find all pages q that occur after p in T . If epq 6∈ E,
then increment Cpq.

3: For each page p, find the N largest values Cpq, and select
these to be the shortcut set Sp. Output all shortcut sets.

Algorithm 1: A basic shortcutting algorithm for generat-
ing shortcuts from the current page to popular destinations

4.3 The MinPath algorithm
The MinPath [?] algorithm is a shortcutting algorithm

developed to aid wireless devices in navigating complicated
websites. Wireless devices benefit from shortcuts more than
traditional clients because they have small screens and high
latency, so each additional page that must be loaded and
scrolled requires substantial effort on the part of the site
visitor. Although designed with wireless devices in mind,
MinPath is a general purpose shortcutting algorithm that
can suggest shortcuts to any type of client.

Unlike PerkowitzShortcut and our algorithm Cache-
Cut, MinPath does not associate shortcuts with each
page on the website. Instead, it examines the trail prefix
〈p1, ..., pi〉 that has brought a visitor to the current page pi.
Based on the prefix, MinPath returns a set of shortcuts
specifically chosen for the individual visitor. This approach
requires significantly more computation each time that
shortcuts are suggested to visitors, but has the potential
to provide shortcuts that are more personalized to the
individual visitor.

MinPath works in two stages. In the first stage, which
occurs offline, MinPath learns a model of web usage. In the
second stage, which occurs offline, MinPath uses its model
to estimate the expected savings of web pages, where the
expected savings of a page q is the estimated probability

that the user will visit page q multiplied by the savings in
clicks required to navigate from the current page to q. For
example, suppose that a user is currently at page p and the
web usage model calculates that there is a 0.3 chance of that
user visiting page q. If it takes 3 clicks to navigate from p
to q (e.g.p → a → b → q), then the expected savings is
0.3 · (3 − 1) = 0.6 because a shortcut from p to q would
reduce the number of clicks from 3 to 1. After computing
the expected savings for all possible destinations from the
current page, MinPath presents the user with N shortcuts
having the highest expected savings.

The web usage models learned by MinPath estimate the
quantity

Pr(pi = q|〈p0, p1..., pi−1〉),

which is the probability that a user currently at page pi−1

will click on the link to page q given that he has arrived
at pi−1 by the trail 〈p0, p1..., pi−1〉. This probability is 0 if
there is no direct link from pi−1 to q; otherwise, a probability
estimate is learned from observed traffic. In [?], the authors
present several different techniques for learning the web us-
age models, including a näıve Bayes mixture model and a
Markov model. In the first stage of the MinPath algorithm,
sophisticated machine learning techniques are acceptable for
the learning stage because this stage occurs offline and its
complexity does not affect the amount of time needed gen-
erate a set of shortcuts (which is done by evaluating the
model in real-time). That being said, the evaluation of the
model in the second stage does consume a nontrivial amount
of time, especially in comparison to other shortcutting al-
gorithms that only need to look up the shortcuts associated
with the current page. The evaluation routine calls for a
depth-first traversal of the site graph starting at the current
page up to a maximum depth d. When MinPath is called on
portions of the site graph with particularly high out-degree
this can lead to very long evaluation time. The MinPath
authors state that during their tests it took MinPath an
average of 0.65 seconds to evaluate the web usage model
and return shortcuts each time a visitor loaded a page; if
MinPath were deployed on a web server intended to serve
tens of thousands of requests per second the server would
struggle to keep up.

5. THE CACHECUT ALGORITHM
In the CacheCut algorithm, we associate with each page

p a cache Cp of size L which stores web pages q that have
been accessed after p within a trail. It is not possible to store
information about every page accessed after p, so Cache-
Cut must carefully choose which L pages to store in each
cache. Our ultimate goal is to select the shortcuts on page
p from the contents of cache Cp, so we want to store those
pages q which are likely to be accessed after p many times
again in the future. When a page q is accessed after p that
is not currently in Cp, we add it to Cp because it is likely to
be accessed again. If Cp is full, then we must select one of
its elements to remove and replace with q. We refer to the
methodology we use to select the element to be replaced as
a replacement policy.

The main insight in the CacheCut algorithm is that re-
placement policies designed for traditional caching problems
are well suited as replacement policies for shortcut caches.
We can draw an analogy between traditional caching and
shortcut caching:



• Users (site visitors) are analogous to processes.

• Web pages are analogous to pages in memory.

• The shortcut set is analogous to a cache.

Replacement policies for traditional caching applications are
heuristics that attempt to throw out the item that is least
likely to be accessed in the future, so that the fraction of fu-
ture accesses that are for objects currently residing in cache
is maximized. If we substitute the traditional caching terms
for their shortcutting analogs, we see that the goal for cache
replacement heuristics is identical to the goal for shortcut
replacement heuristics, because we want to maximize the
fraction of accesses that come after p that are for pages cur-
rently in Cp.

Cache replacement policies are evaluated based on their
hit ratio, which is the fraction of total accesses that are for
objects that were in the cache at the time of access. Put
in shortcutting terminology, the hit ratio for a trail T with
trail-edges ET becomes:

HitRatio(T ) =
|{epq ∈ ET |q ∈ Cp}|

|ET |
.

If we think of the cache Cp as containing the shortcuts for
page p in addition to a permanent set of the original links
on page p, then this is identical to the evaluation equation
for shortcutting algorithms given in equation (??).

5.1 Batched caching
The simplest way of using a caching algorithm to select

shortcuts would be to have the shortcut set for page p di-
rectly correspond to the cache Cp for page p. To implement
a shortcutting algorithm in this way we would set the cache
size L equal to the number of shortcuts N , and each time
a page q ∈ Cp was replaced with a page r, we would im-
mediately replace the shortcut from p to q with a shortcut
from p to r. When evaluated based on hit ratio this scheme
performs well, but it is impractical as a deployed shortcut-
ting scheme because the shortcut set changes too frequently
Each visitor who passes through page p updates the cache
Cp with every subsequent page access in the same trail. If
there are thousands of site visitors, then the caches may
update very frequently, which would be confusing to a vis-
itor expecting the shortcuts to remain the same when he
refreshes the page.

Our solution is to not have the shortcut sets and the caches
be in direct correspondence. We update the cache Cp as
usual with every in-trail access that occurs after p. However,
instead of immediately updating the shortcuts on p, they are
left alone. Periodically (say, once every 2 hours) the contents
of Cp become the shortcuts on p. This method allows us to
continue using unmodified out-of-the-box cache replacement
policies, while relieving site visitors from the annoyance of
having the shortcut set change too frequently.

5.2 Increasing the size of the underlying cache
Once we have decided to not have the cache Cp and the

set of shortcuts on p in direct correspondence, we are freed
from the restriction that they need to be the same size. By
allowing the cache size L to be greater than the number of
shortcuts N , we may keep track of data (such as hit count)
about more than N items, which enables a more intelligent
choice of shortcuts. If L = N , then any page accessed imme-
diately before the periodic update of shortcuts will become

a shortcut for the next time period, even if it’s a rarely ac-
cessed page. With L > N , we can exclude such a page in
favor of a page that is more frequently accessed.

Allowing L > N is beneficial, but it adds the additional
challenge of choosing which N of the L pages in Cp will be-
come the shortcuts on page p. A simple selection policy that
performs well in practice is to maintain a hit count for each
item in Cp, and then to choose the N items most frequently
accessed during the previous time period. The hit counts
are reset each time period, so this selection criteria is based
entirely on popularity during the previous time period.

In order to expand the selection criteria to consider ac-
cesses during all past time periods, we introduce α-history
selection. The α-history selection scheme has a parameter
0 ≤ α < 1; higher α means that less emphasis is placed on
recent popularity, and more emphasis is placed on total past
popularity. The scheme works as follows: for a page q ∈ Cp,
let Ap(q) be the number of times page q was accessed after
page p within a trail during the previous time period. Let
Hp(q) be the historical “score” of page q in the shortcut set
Sp. Initially, Hp(q) = 0 for all q ∈ Sp. At the end of each
time period when selecting new shortcuts, first update the
scores as:

Hp(q) =


αHp(q) + (1− α)Ap(q) for q ∈ Cp

0 for q 6∈ Cp
.

Now when choosing the shortcuts for page p, we pick the
top N pages from Cp using the Hp scores. The α-history se-
lection scheme allows us to consider the popularity of pages
in past time periods, but exponentially dampens the influ-
ence of the old hits based on their age. Note that Hp(q) and
Ap(q) information is discarded the moment that a page q
is replaced in cache Cp; this ensures that memory usage is
still proportional to the cache size when α-history selection
is used. As an additional enhancement, we can weight the
Ai values by the total number of hits in time period i so
that hits that occur during unpopular times (nighttime) are
not dominated by hits that occurred earlier during popular
times (daytime). All of our experiments use this enhance-
ment. Note that the PerkowitzShortcut algorithm is
equivalent to setting L = n, the number of web pages, and
α = 0.

5.3 CacheCut implementation
The CacheCut algorithm, presented in Algorithms ??

and ?? makes use of the following subroutines:

• Cache(Page p). Returns the cache associated with
page p.

• RecordAccess(Cache C, page p, time t). Informs
the cache C of a request for page p at time t. Page p
is then placed in the cache C, and it is the responsi-
bility of C’s replacement policy to remove an item if
C is already at capacity. The time t is used by some
replacement policies, such as least recently used, to
determine which item should be replaced.

• SetHits(Cache C, page p, int x). For a page p as-
sumed to be in cache C, sets the hit count to x.

• GetHits(Cache C, page p). If p is currently in cache
C, returns the hit count of p. Otherwise, returns 0.

• SetScore(Cache C, page p, float x). For a page p
assumed to be in cache C, sets the score to x.



Inputs:
G The site graph
T Observed trail 〈p0, ..., pk〉

UpdateTrailCaches(G,T )

1: for i = 0 to k − 1 do
2: Cpi ← Cache(pi)
3: for j = i to k do
4: if there is no link in G from pi to pj then
5: RecordAccess(Cpi , pj ,Time(pj))
6: hits = GetHits(Cpi , pj)
7: SetHits(Cpi , pj , hits+ 1)
8: end if
9: end for

10: end for

Algorithm 2: This routine is called each time a trail com-
pletes in the access log, in order to update the caches with
the new information from that trail.

• GetScore(Cache C, page p). If p is currently in cache
C, returns the score of p. Otherwise, returns 0.

When CacheCut is initialized, every page is associated
with an empty cache. As visitors complete trails, the caches
of pages along the trails are modified; this takes place in the
UpdateTrailCaches routine given in Algorithm ??. For
each trail-edge epq, two actions are taken. First, the cache
Cp is informed of a hit on page q, and the replacement pol-
icy chooses an element of Cp to replace with q. Second, a
hit count for page q in cache Cp is incremented. Some re-
placement policies may maintain their own hit counts, but
this hit count is used for the α-selection scoring.

Although the caches update with the completion of every
trail, the shortcut sets are not updated until a call is made to
UpdateShortcuts, which is shown in Algorithm ??. Up-
dateShortcuts is periodically called in order to choose the
shortcut sets Sp from the caches Cp. This is done using α-
selection scoring, as described in Section ??. The hit counts
for each page are reset each time that UpdateShortcuts
is called, but some information about prior hit counts is
retained in the score.

Inputs:
P Set of web pages {p1, .., pn}
N Number of shortcuts per page
α History weighting parameter

UpdateShortcuts(P,N, α)

1: for all pages p in P do
2: Cp ← Cache(p)
3: for all pages q in Cp do
4: newScore ← α · GetScore(Cp, q) + (1 − α) ·

GetHits(Cp, q)
5: SetScore(Cp, q, newScore)
6: SetHits(Cp, q, 0)
7: end for
8: S ← top N pages in Cp by GetScore(Cp, q)
9: Set shortcuts of page p to be S

10: end for

Algorithm 3: This routine is run periodically to choose
the shortcuts for page pi from the cache Ci. The shortcuts
are scored by a combination of their previous score and their
number of recent hits, and the top N are chosen.

5.4 Promoting Pages on the Front Page
The front page of a website serves a special role as a portal

to the website’s entire content. It is a common point of first
entry for visitors to the website, and it provides links and
other navigational devices to help visitors access all content
found on the website. A well-designed front page directs
visitors to popular content, so that new visitors who are
unfamiliar with the website can quickly find the most useful
content pages.

The CacheCut algorithm provides a set of shortcuts for
every page including the front page. However, it does not
treat the front page differently than other pages, so the
shortcuts for the front page are chosen considering only
pages that are accessed after the front page within a trail.
Because of the front page’s special role, it is useful to se-
lect a more inclusive set of shortcuts for the front page. Our
goal for selecting shortcuts for the front page will be to max-
imize the total fraction of all page accesses that are for pages
linked from the front page.

In order to select shortcuts for the front page we created
an algorithm FrontCache that is a modification of the
CacheCut algorithm. It maintains a single cache which is
updated whenever any web page in the web site is loaded—
no attention is paid to trails, and in fact there is no need to
determine the identity of the client loading the page. Ev-
ery few hours shortcuts are selected for the front page from
this cache. Since only a single cache is maintained, there
is no need to save on memory, and it is appropriate to use
cache sizes much larger than the size of the shortcut set.
We found, for instance, that a cache of size 80 or more is
useful when choosing 10 shortcuts. To choose which items
in the cache become shortcuts, α-history selection is used,
as in CacheCut.

6. EXPERIMENTAL RESULTS

Experimental setup and implementation details
For our experiments, we collected web access log data span-
ning April 17 to May 16, 2005 from the University of Texas
Computer Sciences department website, which has about
120,000 unique web pages. The access log originally in-
cluded requests for data such as images, movies, and dy-
namic scripts (asp, jsp, cgi). These data are often loaded as
a component to a page rather than as an individual page,
which confuses trail analysis because loading a single page
can cause multiple sequential requests (such as for the page
itself and its 3 images). To address this issue, we removed all
requests for content other than html pages, text documents,
and Adobe Acrobat documents.

Approximately one-third of the page requests came from
automated non-human visitors. Because these robots and
spiders access the website in a manner distinct from human
visitors, we were able to identify and remove their accesses.

Since trails of length 1 and 2 cannot be improved (assum-
ing that the length 2 trail spans a static link), we restricted
our dataset to include only trails of length 3 or greater. Once
we performed all the various data cleaning steps, we were
left with 89,086 trails with an average length of 7.81 pages.
MinPath requires a separate training and testing set, and
the access transactions in the training set should logically
occur before the transactions in the test set, so when eval-
uating MinPath we made the first two-thirds of the log



training data and the last one-third test data. The other
algorithms train for their future shortcuts at the same time
that they are evaluating their present shortcuts, so we were
able to use the entire access log as test data.

The MinPath algorithm has several parameters; in order
to simplify our testing we used a fixed configuration, varying
only the number of shortcuts produced. We used the “un-
conditional model” of web site usage because it was easy to
implement (our attempt to obtain the MinPath software
from the authors of [?] was unsuccessful). This model had
the worst performance of those presented in [?], but its per-
formance was within 20% of the best model, so we feel that
it gives a good understanding of the capabilities of Min-
Path. We did not group pages together by URL hierarchy
(effectively making the URL usage threshold equal to 0%),
but our training data had 900,000 page requests, (more than
7 times larger than in [?]), which increased the number of
pages with accurate usage estimations.

6.1 Choosing the best parameters for Cache-
Cut

The CacheCut algorithm has several different parame-
ters that can affect performance. They are:

• N , the number of shortcuts per page.

• L, the size of the underlying cache.

• alg, the underlying cache replacement policy.

• α, the history preference parameter.

In this section we examine the tradeoffs allowed by each of
these parameters, and investigate how they affect the per-
formance of the CacheCut algorithm as evaluated by the
formula given in equation (??).

The number of shortcuts per page.
In terms of AverageHitRatio, it is always beneficial to add
more shortcuts. As discussed in the introduction, if we allow
N to become arbitrarily large, then AverageHitRatio will be
1 since every trail-edge will either be a link or a shortcut. A
site designer who wishes to use CacheCut for automated
shortcutting will need to choose a value for N that provides
a good tradeoff between shortcutting performance, and the
link clutter on each webpage. Figure ?? shows how perfor-
mance increases with the number of shortcuts. The rela-
tionship appears to be slightly less than logarithmic.

The size of the underlying cache.
As the size of the underlying cache L increases from N to
2N , the performance increases substantially. This is because
the algorithm is able to retain information about more good
pages; when L = N if the algorithm has N good pages
in the cache Cp, it is forced to replace one of them with
a bad page q when q is accessed after p, and then it loses
all of its accumulated data about the good page. The gain
as L continues to increase beyond 2N is marginal, and it
appears that there is little reason to increase L beyond 5N .
Figure ?? shows how performance varies with the size of the
cache.

Underlying cache replacement policies.
We tested the following four cache replacement policies:

10
0

10
1

10
2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of shortcuts

F
ra

ct
io

n 
of

 tr
ai

l−
ed

ge
s 

av
ai

la
bl

e 
as

 li
nk

s

Figure 1: AverageHitRatio vs. Number of shortcuts.
The more shortcuts that are added to each page, the
more likely it is that a trail-edge will be available as
a link or shortcut. Here GDF is used with L = 80 and
α = 0.9. With no shortcuts (original links only) the
hit ratio is 0.23.

• Least Recently Used (LRU)
Least Recently Used is a classic cache replacement pol-
icy. We associate each item in the cache with its last
time of access. The item that was accessed least re-
cently is chosen for replacement.

• Least Frequently Used (LFU)
Least Frequently Used is another classic cache replace-
ment policy. We associate each item in the cache with
the number of times it has been accessed since being
placed in the cache. The item that was accessed the
fewest times is chosen for replacement.

• Adaptive Replacement Cache (ARC)
The Adaptive Replacement Cache policy is a recent
algorithm described in detail in [?]. The basic idea is to
maintain two lists, L1 and L2. L1 maintains pages that
have been seen only once recently, while L2 maintains
pages that have been seen at least twice recently. The
algorithm is therefore able to capture both recency and
frequency. If there are c pages cached in total, then k
(where k ≤ c) are kept in L1 and c− k are kept in L2.
The parameter k changes with time.

• Greedy Dual Size Frequency (GDF)
The Greedy Dual Size Frequency policy is described in
detail in [?]. It is a state-of-the-art caching algorithm
for web proxies that considers recency and frequency,
as well as the size of the page. For our application we
only store links to pages, so we ignore the page size be-
cause it is irrelevant. GDF is a synthesis between LRU
and LFU. Like those policies, it keeps cached pages in
a priority queue, but it keys the pages by a function
of their recency and frequency.

As seen in Figure ??, the greatest variation in performance
between cache replacement policies occurs when L is equal
to N , or only slightly larger than N . GDF has the best
performance, and LRU has the worst. The poor performance



0 50 100 150 200 250 300 350

0.57

0.58

0.59

0.6

0.61

0.62

0.63

Size of underlying cache

F
ra

ct
io

n 
of

 tr
ai

l−
ed

ge
s 

av
ai

la
bl

e 
as

 li
nk

s

5 shortcuts
10 shortcuts

Figure 2: AverageHitRatio vs. Size of cache. Increas-
ing the cache size beyond the size of the shortcut
set increases the fraction of trail-edges available as
shortcuts. Here GDF is used with α = 0.9.

of LRU is explained by its lack of consideration of frequency.
Because traffic patterns are fairly consistent over time, it’s
important not to throw out pages that were accessed very
often in the past in favor of pages that have been accessed
recently, but only infrequently.

The differences between the other three replacement poli-
cies are very slight, and become negligible as L increases.
Regardless of what replacement policy is used for the cache,
the same scoring system is used to choose which N cache
elements become shortcuts. As L becomes large, it grows in-
creasingly likely that the N top-scoring pages will be present
in all caches, no matter which replacement policy is used. If
enough memory is available to support a large L, it would
probably be best to use LFU because it is extremely efficient
and performs just as well as the more elaborate GDF and
ARC policies.

The history preference parameter.
When choosing the shortcuts on a page p, the history pref-
erence parameter α allows us to choose what weight will be
given to recent accesses Ap and historic popularity Hp. For
a detailed discussion, see Section ??. If α = 0, then the
score is entirely determined by the recent popularity Hp(q).
In this case CacheCut behaves in the same way as Perko-
witzShortcut, except that it keeps track of counts for a
subset of pages rather than for all pages. If α = 1 then
the algorithm fails to work properly, because the scores will
always be equal to 0 since the history, which is initialized
to 0, will never be updated. Figure ?? shows how the value
of α affects the quality of shortcuts. Values of α very close
to 1 do very well, which suggests that usage patterns on the
website are somewhat consistent over time.

6.2 Comparing CacheCut to other shortcut-
ting algorithms

We ran several tests to compare CacheCut to Perko-
witzShortcut, MinPath, and a baseline algorithm that
selects N shortcuts for each page entirely at random. In
the comparisons we chose the best parameters for Cache-

5 10 15 20 25 30 35 40
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

Size of underlying cache

F
ra

ct
io

n 
of

 tr
ai

l−
ed

ge
s 

av
ai

la
bl

e 
as

 li
nk

s

lru
lfu
arc
gdf

Figure 3: AverageHitRatio vs. Replacement policy.
GDF is the best replacement policy, but for large
values of L all four policies perform nearly identi-
cally. Here α = 0.9.

Cut that we found in the previous experiments. They were
L = 80, the GDF replacement policy, and α = 0.9. For
PerkowitzShortcut we allowed the time between updates
to be quite large, 72 hrs, because doing so produced the best
results. Since MinPath requires separate training and test-
ing phases, we partitioned the data as two-thirds training
set and one-third test set.

We evaluate the performance of the 4 shortcutting algo-
rithms using three different criteria:

• Fraction of trails with at least one useful short-
cut. If a site visitor encounters a single shortcut to
a desired destination, then the the shortcutting al-
gorithm was useful to that visitor. Among all trails
of length 3 or greater, we find the fraction that have
at least one trail-edge available as a shortcut. This
comparison is presented in figure ??, and CacheCut
clearly outperforms the other algorithms. Adding ran-
dom shortcuts is barely more useful than having no
shortcuts at all, which is not surprising for a website
with 120,000 nodes. It is also noteworthy that with
only 5 shortcuts per page, about 75% of visitors that
can have their trail enhanced (i.e., those with trail
lengths of 3 or greater) are provided a useful shortcut
by the CacheCut algorithm.

• Average fraction of trail-edges available as
shortcuts or links. This is the AverageHitRatio
criteria motivated in this paper. The results are given
in figure ??, and once again CacheCut shows the
best performance.

• Average trail length after shortcutting. In [?]
when introducing MinPath, the authors state that the
goal of their algorithm is to reduce the number of clicks
required for a visitor to get from their initial page to
their goal page. Because there is no accurate way of
determining which page in a trail is the goal page,
they assume that the last page in the trail is the goal
because after loading it the visitor left the site. Sup-
pose that a visitor’s access to the web site is a trail



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.35

0.4

0.45

0.5

0.55

0.6

0.65

alpha

F
ra

ct
io

n 
of

 tr
ai

l−
ed

ge
s 

av
ai

la
bl

e 
as

 li
nk

s

Figure 4: AverageHitRatio vs. α. Increasing α to
nearly 1 increases performance, but performance
drops off precipitously when α is too close to 1. Here
GDF is used with L = 20 and N = 5.

of length t ≥ 3 pages. By applying shortcutting, we
could reduce this length to as few as 2 pages (if there
was a direct shortcut from the first page to the last).
To determine the length of trails after shortcutting, we
assume that at each page, users choose whatever avail-
able shortcut leads furthest along their trail; if there
are no trail-edges available as shortcuts then the user
goes to the next page in their original trail.

If a trail has a loop, then evaluating with this scheme
may inappropriately attribute a decrease in trail length
to the shortcuts. For instance, if a trail of length 7 has
page p as both its second page and its seventh page,
then regardless of the shortcutting algorithm used we
would report the length after shortcutting as 2 for a
“savings” of 5 pages. To get around this problem, we
removed from consideration all trails with loops. The
average trail lengths for the different shortcutting algo-
rithms are shown in figure ??. Even though MinPath
was designed to minimize this value, it is still outper-
formed by CacheCut.

6.2.1 Timing tests
The amount of time that shortcutting algorithms require

is just as important as the quality of shortcuts, because a
shortcutting algorithm that requires too much time will be
impractical to deploy. In order to compare runtimes, we
used each algorithm to generate 5 shortcuts per page on the
portion of the access log used to test MinPath; this portion
of the log had 29,249 trails and 1,267,921 trail-edges. The
results are shown in Table ??.

PerkowitzShortcut requires less time than Cache-
Cut, which is understandable because CacheCut must
perform a cache replacement for each trail-edge, whereas
PerkowitzShortcut needs only to increment a count
in its array. MinPath required substantially more time
than the other two algorithms, because it must evaluate
its web-usage model each time a visitor loads a page in
order to determine what shortcuts to suggest. The amount
of time required to evaluate the model is related to the

Random Perkowitz MinPath CacheCut
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Shortcutting algorithm

F
ra

ct
io

n 
of

 tr
ai

ls
 w

ith
 a

 u
se

fu
l s

ho
rt

cu
t

5 shortcuts
10 shortcuts

Figure 5: Trails aided by shortcutting. The fraction
of trails that have at least one trail-edge available as
a shortcut.

Unmodified Random Perkowitz MinPath CacheCut
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shortcutting algorithm

F
ra

ct
io

n 
of

 tr
ai

l−
ed

ge
s 

av
ai

la
bl

e 
as

 li
nk

s

5 shortcuts
10 shortcuts

Figure 6: Edges available as shortcuts. The fraction
of trail edges available as shortcuts, averaged over
all trails.

out-degree of the current page and its offspring, and is
very long compared to the constant-time lookup the other
algorithms need to suggest shortcuts.

7. CONCLUSIONS AND FUTURE WORK
Shortcutting algorithms add direct links between pages

in order to reduce the navigational effort necessary for site
visitors to find their desired content. If there was some way
to know with absolute certainty what each user’s goal page
was, then it would be easy to provide a link to that page.
Since this is not possible, we instead add a handful of links
to each page p that a user is likely to find useful.

In this paper, we introduced the CacheCut shortcutting
algorithm, which uses the predictive power of cache replace-
ment policies to provide website shortcuts that are likely to
be useful to site visitors. Compared to other shortcutting
algorithms in the literature, CacheCut is fast and resource
efficient. CacheCut can process a month’s worth of access



Unmodified Random Perkowitz MinPath CacheCut
0

1

2

3

4

5

6

7

8

Shortcutting algorithm

A
ve

ra
ge

 n
um

be
r 

of
 p

ag
es

 in
 a

 tr
ai

l
5 shortcuts
10 shortcuts

Figure 7: Length of trails after shortcutting. The
average length from the first node in a trail to the
last, when the visitor is assumed to take the avail-
able shortcut at each node that leads furthest along
the trail.

MinPath CacheCut Perkowitz
8.15 hours 32 seconds 17 seconds

Table 1: Time to generate 5 shortcuts per page on
29,249 trails

logs in a few seconds, so it is suitable for real-time deploy-
ment without straining the webserver.

The CacheCut algorithm is seen to be very effective de-
spite its simplicity. Most visitor trails that can be improved
by shortcutting are improved by CacheCut, and in fact
a significant fraction of trail-edges are available as short-
cuts for the average trail. More complicated shortcutting
algorithms such as MinPath consider a visitor’s entire trail
rather than only the current page, but this added complex-
ity does not improve the quality of shortcuts provided, and
the additional computation needed makes them impractical
to deploy. Compared to PerkowitzShortcut, our algo-
rithm produces higher-quality shortcuts and is guaranteed
to need only O(n) memory. In some applications this guar-
antee may be desirable, even though PerkowitzShortcut
uses O(n) memory in practice.

In the future, it would be useful to deploy a shortcutting
algorithm on an active website, and observe how it influ-
ences the browsing behavior of visitors. Analyzing the per-
formance of shortcutting algorithms offline as done in this
paper means that we must ignore the possibility that vis-
itors’ browsing trails would be different in the presence of
shortcutting links. A deployed version would also need to
keep track of how often the presented shortcuts are used,
and retain the most utilized shortcuts rather than replace
them with new shortcuts. Deploying a shortcutting algo-
rithm requires determining exactly how shortcuts will be
added to webpages as links. One possibility is to modify the
web server so that when it serves a web page to a visitor,
HTML code for the shortcuts are automatically added to
the page. The downside of this approach is that it may be
difficult to find an appropriate place within the page to add

the shortcuts so as to not ruin the page formatting.

Acknowledgments
We would like to thank Albert Chen for his contribution
to a preliminary version of this work. This research was
supported by NSF grant CCF-0431257, NSF Career Award
ACI-0093404, and NSF-ITR award IIS-0325116.

8. REFERENCES
[1] C. R. Anderson, P. Domingos, and D. S. Weld. Adaptive web

navigation for wireless devices. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence,
2001.

[2] C. R. Anderson and E. Horvitz. Web montage: A dynamic
personalized start page. In WWW ’02: Proceedings of the
eleventh international conference on World Wide Web, pages
704–712. ACM Press, 2002.

[3] A. Banerjee and J. Ghosh. Clickstream clustering using
weighted longest common subsequences. In Proc. of the
Workshop on Web Mining, SIAM Conference on Data
Mining, pages 33–40, 2001.

[4] L. Cherkasova. Improving www proxies performance with
greedy-dual-size-frequency caching policy. HP Laboratories
Report No. HPL-98-69R1, 1998.

[5] R. Cooley, B. Mobasher, and J. Srivastava. Web mining:
Information and pattern discovery on the world wide web. In
Proceedings of the 9th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI’97). IEEE,
November 1997.

[6] M. Eirinaki and M. Vazirgiannis. Web mining for web
personalization. ACM Trans. Inter. Tech., 3(1):1–27, 2003.

[7] E. Gabrilovich, S. Dumais, and E. Horvitz. Newsjunkie:
Providing personalized newsfeeds via analysis of information
novelty. In WWW ’04: Proceedings of the 13th international
conference on World Wide Web, pages 482–490. ACM Press,
2004.

[8] N. Megiddo and D. S. Modha. Outperforming LRU with an
adaptive replacement cache algorithm. Computer, 37(4):58–65,
2004.

[9] N. Milic-Frayling, R. Jones, K. Rodden, G. Smyth,
A. Blackwell, and R. Sommerer. Smartback: Supporting users
in back navigation. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages 63–71.
ACM Press, 2004.

[10] M. Perkowitz. Adaptive Web Sites: Cluster Mining and
Conceptual Clustering for Index Page Synthesis. PhD thesis,
University of Washington, 2001.

[11] M. Perkowitz and O. Etzioni. Adaptive web sites: an ai
challenge. In Proceedings of the 15th International Joint
Conference on Artificial Intelligence, 1997.

[12] M. Perkowitz and O. Etzioni. Towards adaptive web sites:
Conceptual framework and case study. Artificial Intelligence,
118([1-2]):245–275, 2000.

[13] R. Srikant and Y. Yang. Mining web logs to improve website
organization. In WWW ’01: Proceedings of the tenth
international conference on World Wide Web, pages 430–437.
ACM Press, 2001.

[14] Yahoo!, Inc. My Yahoo! http://my.yahoo.com.

[15] Q. Yang, H. Wang, and W. Zhang. Web-log mining for
quantitative temporal-event prediction. IEEE Computational
Intelligence Bulletin, 1(1):10–18, 2002.

[16] Q. Yang and H. H. Zhang. Web-log mining for predictive web
caching. IEEE Transactions on Knowledge and Data
Engineering, 15(4):1050–1053, 2003.


