EXPLAIN:
A Tool for Performing Abductive Inference

Isil Dillig
MSR Cambridge
Abduction: Opposite of deduction
What is Abduction?

- **Abduction**: Opposite of deduction
- **Deduction**: Infers valid conclusion from premises
Abduction: Opposite of deduction

Deduction: Infers valid conclusion from premises

Abduction: Infers missing premise to explain a given conclusion
What is Abduction?

- **Abduction**: Opposite of deduction
- **Deduction**: Infers valid conclusion from premises
- **Abduction**: Infers missing premise to explain a given conclusion

Given known facts Γ and desired outcome ϕ, abductive inference finds “simple” explanatory hypothesis ψ such that

$$\Gamma \land \psi \models \phi \quad \text{and} \quad \text{SAT}(\Gamma \land \psi)$$
Simple Example

Facts: “If it rains, then it is wet and cloudy”, “If it is wet, then it is slippery”:
$$R \Rightarrow W \land C \land W \Rightarrow S$$

Conclusion: “It is cloudy and slippery”, i.e.,
$$C \land S$$

Abductive explanation: R, i.e.,”It is rainy”
Simple Example

- Facts: “If it rains, then it is wet and cloudy”, “If it is wet, then it is slippery”:
 \[R \Rightarrow W \land C \land W \Rightarrow S \]

- Conclusion: “It is cloudy and slippery”, i.e., \[C \land S \]
Simple Example

- Facts: “If it rains, then it is wet and cloudy”, “If it is wet, then it is slippery”:
 \[R \Rightarrow W \land C \land W \Rightarrow S \]

- Conclusion: “It is cloudy and slippery”, i.e., \(C \land S \)

- Abductive explanation: \(R \), i.e., “It is rainy”
int x = 0;
int y = 0;

while(x < n)
{
 x = x+1;
 y = y+2;
}

assert(x + y >= 3*n);
Suppose we know $x \geq n$

- e.g., from loop termination condition
Suppose we know $x \geq n$

- e.g., from loop termination condition

Desired conclusion $x + y \geq 3n$

- property we want to prove
Suppose we know $x \geq n$

- e.g., from loop termination condition

Desired conclusion $x + y \geq 3n$

- property we want to prove

Abductive explanation: $y \geq 2x$

- corresponds to missing loop invariant
In general, the abduction problem $\Gamma \land ? \models \phi$ has infinitely many solutions.
Properties of Desired Solutions

- In general, the abduction problem $\Gamma \land ? \models \phi$ has infinitely many solutions.

- **Trivial solution:** ϕ, but not useful because it does not take into account what we know.
In general, the abduction problem $\Gamma \land ? \models \phi$ has infinitely many solutions.

Trivial solution: ϕ, but not useful because it does not take into account what we know.

So, what kind of solutions do we want to compute?
Which Abductive Explanations Are Good?

Guiding Principle:
Occam’s Razor

If there are multiple competing hypotheses, select the one that makes fewest assumptions.

Generality: If explanation A is logically weaker than explanation B, always prefer A.

Simplicity: Not clear-cut, but we use number of variables.

This simplicity criterion makes sense in verification because we want proof subgoals to be local and refer to few variables.
Guiding Principle: Occam’s Razor

- If there are multiple competing hypotheses, select the one that makes fewest assumptions
If there are multiple competing hypotheses, select the one that makes fewest assumptions

Generality: If explanation A is logically weaker than explanation B, always prefer A
Which Abductive Explanations Are Good?

Guiding Principle: Occam’s Razor

- If there are multiple competing hypotheses, select the one that makes fewest assumptions.

- **Generality**: If explanation A is logically weaker than explanation B, always prefer A.

- **Simplicity**: Not clear-cut, but we use number of variables.
Which Abductive Explanations Are Good?

Guiding Principle: Occam’s Razor

- If there are multiple competing hypotheses, select the one that makes fewest assumptions

- **Generality:** If explanation A is logically weaker than explanation B, always prefer A

- **Simplicity:** Not clear-cut, but we use number of variables

- This simplicity criterion makes sense in verification because we want proof subgoals to be local and refer to few variables
EXPLAIN’s Abduction Algorithm

- EXPLAIN computes a **logically weakest** solution with **fewest** variables to abduction problems in Presburger arithmetic.
EXPLAIN’s Abduction Algorithm

- EXPLAIN computes a logically weakest solution with fewest variables to abduction problems in Presburger arithmetic.

- Given premises I and desired conclusion ϕ:
EXPLAIN’s Abduction Algorithm

- EXPLAIN computes a **logically weakest** solution with **fewest** variables to abduction problems in Presburger arithmetic.

- Given premises I and desired conclusion ϕ:

1. Compute an MSA of $I \Rightarrow \phi$ consistent with I

\[
\text{abduce}(I, \phi) \quad \{
\]

\[
V = \text{msa}(I \Rightarrow \phi, I)
\]

\[
\}
\]
EXPLAIN’s Abduction Algorithm

EXPLAIN computes a **logically weakest** solution with **fewest variables** to abduction problems in Presburger arithmetic

Given premises I and desired conclusion ϕ:

1. Compute an MSA of $I \Rightarrow \phi$ consistent with I

2. Quantify out all variables not in the MSA

```
abduce(I, \phi) { 
  V = msa(I \Rightarrow \phi, I) 
  \psi = QE(\forall V.(I \Rightarrow \phi)) 
}
```
EXPLAIN’s Abduction Algorithm

EXPLAIN computes a logically weakest solution with fewest variables to abduction problems in Presburger arithmetic.

Given premises I and desired conclusion ϕ:

1. Compute an MSA of $I \Rightarrow \phi$ consistent with I

2. Quantify out all variables not in the MSA

3. Remove subparts implied or contradicted by premises

```
abduce(I, \phi) \{
V = msa(I \Rightarrow \phi, I)

\psi = QE(\forall \overline{V}.(I \Rightarrow \phi))

\psi' = simplify(\psi, I)
\}
```
EXPLAIN’s Abduction Algorithm

- EXPLAIN computes a **logically weakest solution with fewest variables** to abduction problems in Presburger arithmetic.

- Given premises \(I \) and desired conclusion \(\phi \):
 1. Compute an MSA of \(I \Rightarrow \phi \) consistent with \(I \)
 2. Quantify out all variables not in the MSA
 3. Remove subparts implied or contradicted by premises

abduce\((I, \phi) \)

\[
V = \text{msa}(I \Rightarrow \phi, I) \\
\psi = \text{QE}(\forall V . (I \Rightarrow \phi)) \\
\psi' = \text{simplify}(\psi, I) \\
\text{return } \psi'
\]
Useful technique to add to our bag of tricks; lots of applications!
Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of applications!

- Loop invariant generation
Abduction in Program Analysis

Useful technique to add to our bag of tricks; lots of applications!

- Loop invariant generation
- Synthesis of compositional program proofs
Useful technique to add to our bag of tricks; lots of applications!

- Loop invariant generation
- Synthesis of compositional program proofs
- Inference of missing library specifications
Useful technique to add to our bag of tricks; lots of applications!

- Loop invariant generation
- Synthesis of compositional program proofs
- Inference of missing library specifications
- Explaining static analysis warnings to programmers
Useful technique to add to our bag of tricks; lots of applications!

- Loop invariant generation
- Synthesis of compositional program proofs
- Inference of missing library specifications
- Explaining static analysis warnings to programmers
- Modular analysis using separation logic
EXPLAIN is implemented in Mistral SMT solver and is available from:
http://www.cs.wm.edu/~tdillig/mistral
EXPLAIN is implemented in Mistral SMT solver and is available from:
http://www.cs.wm.edu/~tdillig/mistral

- The tool paper describes algorithm in more detail and presents usage examples.
EXPLAIN is implemented in Mistral SMT solver and is available from:
http://www.cs.wm.edu/~tdillig/mistral

The tool paper describes algorithm in more detail and presents usage examples

Try it out!