Outline

- The Milawa logic
- A primitive proof checker
- An extended proof checker
- Soundness of the extended checker
- A reflection rule
- Pragmatics of building proofs
- Status and future directions
The Milawa Logic

• Goal: “a large subset” of the ACL2 logic
 – No strings, characters, symbol packages, or complex numbers, maybe not even rationals/negatives

• Terms are basically ACL2 expressions
 – Constants, variables, and (recursively) functions applied to other terms.

• Formulas are like in the ACL2 book
 – Equalities between terms \(t1 = t2 \)
 – Negations of formulas \(\sim A \)
 – Disjunctions of formulas \(A \lor B \)
The Milawa Logic: Primitive Rules

Propositional Axiom Schema \(\neg A \lor A \)

Expansion Derive \(B \lor A \) from \(A \)

Contraction Derive \(A \) from \(A \lor A \)

Associativity Derive \((A \lor B) \lor C \) from \(A \lor (B \lor C) \)

Cut Derive \(B \lor C \) from \(A \lor B \) and \(\neg A \lor C \)

Instantiation Derive \(A/\sigma \) from \(A \)
The Milawa Logic: Primitive Rules

Reflexivity Axiom

\[x = x \]

Equality Axiom

\[x_1 \neq y_1 \lor (x_2 \neq y_2 \lor (x_1 \neq x_2 \lor y_1 = y_2)) \]

Functional Equality Axiom Schema

\[x_1 \neq y_1 \lor (x_2 \neq y_2 \lor (\ldots \lor (x_n \neq y_n \lor (f \, x_1 \ldots \, x_n) = (f \, y_1 \ldots \, y_n)) \ldots)) \]

Induction Rule (haven't worked this out yet)

Reflection Rule (explained later)
The Milawa Logic: Lisp Axioms

t-not-nil \(t \neq nil \)

if-when-nil \(x \neq nil \lor (if \ x \ y \ z) = z \)

if-when-not-nil \(x = nil \lor (if \ x \ y \ z) = y \)

definition-not \((not \ x) = (if \ x \ nil \ t) \)

definition-implies \((implies \ x \ y) = (if \ x \ ...) \)

definition-iff \((iff \ x \ y) = (if \ x \ ...) \)

equal-when-diff \(x = y \lor (equal \ x \ y) = nil \)

equal-when-same \(x \neq y \lor (equal \ x \ y) = t \)

... ...

The Milawa Logic: Formal Proofs

• A **Formal Proof** of a formula F in theory T is a rooted tree of formulas where:

 – The formula at the root of the tree is F

 – The formula at every leaf is a logical axiom or a non-logical axiom of T

 – The formula at every interior node, n, can be derived by applying some primitive rule of inference to the formulas of n's children

• Once we have exhibited a formal proof of F in T, we say that F is a theorem of T.
A Primitive Proof Checker

- Lisp representation of our terms, and formulas:
 - `termp` is like pseudo-termp
 - `formulap` uses keywords
 - (:pequal a b) for $a=b$
 - (:pnot A) for $\neg A$
 - (:por A B) for $A \lor B$

- Terms and formulas are distinct
 - Keyword symbols are not valid function symbols
A Primitive Proof Checker

- **Appeals** are our proof objects.
- They have the following structure:

 (method conclusion [subgoals] [extras])

 - **method** explains how the formula is justified
 - **conclusion** is a formula which this appeal asserts
 - **subgoals** is a list of appeals which justify the conclusion, if needed by this method
 - **extras** holds any additional information, e.g., substitution lists, if needed by this method
A Primitive Proof Checker

• We write functions to check each type of appeal.
• Note: only a local check – “assume subappeals”

(defun contraction-okp (x database arity-table)
 (declare (ignore database arity-table))
 (let ((method (get-method x))
 (conclusion (get-conclusion x))
 (subgoals (get-subgoals x))
 (extras (get-extras x)))
 (and (equal method :contraction)
 (equal extras nil)
 (equal (len subgoals) 1)
 (let* ((subgoal (first subgoals))
 (subconc (get-conclusion subgoal)))
 (and (equal (first subconc) :por)
 (equal (second subconc) conclusion)
 (equal (third subconc) conclusion)))))))
A Primitive Proof Checker

- We can then locally check any type of appeal by combining the checkers in the natural way:
- This basically just emulates a virtual function call in an inheritance hierarchy

(defun appeal-provisionally-okp (x database arity-table)
 (case (get-method x)
 (:axiom (axiom-okp x database arity-table))
 (:propositional-schema (propositional-schema-okp x database arity-table))
 (:functional-equality (functional-equality-okp x database arity-table))
 (:expansion (expansion-okp x database arity-table))
 (:contraction (contraction-okp x database arity-table))
 (:associativity (associativity-okp x database arity-table))
 (:cut (cut-okp x database arity-table))
 (:instantiation (instantiation-okp x database arity-table))
 (:induction (induction-okp x database arity-table))
 (:reflection (reflection-okp x database arity-table))
 (otherwise nil))))
A Primitive Proof Checker

- The full proof checker itself just extends this local check everywhere throughout the tree

(mutual-recursion

(defun proofp (x database arity-table)
 (and (appealp x arity-table)
 (appeal-provisionally-okp x database arity-table)
 (proof-listp (get-subgoals x) database arity-table)))

(defun proof-listp (xs database arity-table)
 (if (consp xs)
 (and (proofp (car xs) database arity-table)
 (proof-listp (cdr xs) database arity-table))
 (equal xs nil))))
An Extended Proof Checker

• Commute Or \(\text{Derive } B \lor A \text{ from } A \lor B \)

(defun commute-or-okp (x database arity-table)
 (declare (ignore database arity-table)))
 (let ((method (get-method x))
 (conclusion (get-conclusion x))
 (subgoals (get-subgoals x))
 (extras (get-extras x)))
 (and (equal method :commute-or)
 (equal extras nil)
 (equal (len subgoals) 1)
 (let* ((subgoal (first subgoals))
 (subconc (get-conclusion subgoal)))
 (and (equal (first subconc) :por)
 (equal (first conclusion) :por)
 (equal (second conclusion) (third subconc))
 (equal (third conclusion) (second subconc)))))
An Extended Proof Checker

• We add this rule to create proofp-2

(defund appeal-provisionally-okp-2 (x database arity-table)
 (case (get-method x)
 (:commute-or (commute-or-okp x database arity-table))
 (otherwise (appeal-provisionally-okp x database arity-table)))))

(mutual-recursion

(defund proofp-2 (x database arity-table)
 (and (appealp x arity-table)
 (appeal-provisionally-okp-2 x database arity-table)
 (proof-listp-2 (get-subgoals x) database arity-table))))

(defund proof-listp-2 (xs database arity-table)
 (if (consp xs)
 (and (proofp-2 (car xs) database arity-table)
 (proof-listp-2 (cdr xs) database arity-table)
 (equal xs nil))))
The Extended Checker is Sound

- We say a formula F is provable when there exists a formal proof of F.

 $$\text{(defun-sk provablep (formula database arity-table)}$$
 $$\text{ (exists proof)}$$
 $$\text{ (and (proofp proof database arity-table)}$$
 $$\text{ (equal (get-conclusion proof) formula))))$$

- We will show that whenever proofp-2 accepts an appeal X, then the conclusion of X is provable.
 - Consequence: if proofp is sound, then so is proofp-2.
The Extended Checker is Sound

• The following lemma is not too difficult to prove:

(defun soundness-of-appeal-provisionally-okp
 (implies (and (appealp x arity-table)
 (appeal-provisionally-okp x database arity-table)
 (provable-listp (strip-conclusions (get-subgoals x))
 database arity-table))
 (provablep (get-conclusion x) database arity-table)))

• With that in place, we mainly just need:

(defun soundness-of-commute-or-okp
 (implies (and (appealp x arity-table)
 (commute-or-okp x database arity-table)
 (provable-listp (strip-conclusions (get-subgoals x))
 database arity-table))
 (provablep (get-conclusion x) database arity-table)))
The Extended Checker is Sound

- Derivation of Commute Or

1. A v B Given
2. ~A v A Propositional Axiom
3. B v A Cut; 1,2

- Magic compiler based on this derivation

```lisp
(defun magic-compiler (x database arity-table)
  (let* ((or-a-b       (get-conclusion (first (get-subgoals x))))
         (or-a-b-proof (provablep-witness or-a-b database arity-table))
         (a            (second or-a-b)))
    (cut or-a-b-proof
         (propositional-schema a))))
```
The Extended Checker is Sound

(defthm get-conclusion-of-magic-compiler
 (implies (and (appealp x arity-table)
 (commute-or-okp x database arity-table)
 (provable-listp (strip-conclusions (get-subgoals x))
 database arity-table))
 (equal (get-conclusion
 (magic-compiler x database arity-table))
 (get-conclusion x))))

(defthm proofp-of-magic-compiler
 (implies (and (appealp x arity-table)
 (commute-or-okp x database arity-table)
 (provable-listp (strip-conclusions (get-subgoals x))
 database arity-table))
 (proofp (magic-compiler x database arity-table)
 database arity-table)))

(defthm soundness-of-commute-or-okp
 (implies (and (appealp x arity-table)
 (commute-or-okp x database arity-table)
 (provable-listp (strip-conclusions (get-subgoals x))
 database arity-table))
 (provablep (get-conclusion x) database arity-table)))
The Extended Checker is Sound

(defthm soundness-of-appeal-provisionally-okp-2
 (implies (and (appealp x arity-table)
 (appeal-provisionally-okp-2 x database arity-table)
 (provable-listp (strip-conclusions (get-subgoals x))
 database arity-table))
 (provablep (get-conclusion x) database arity-table)))

(defthm crux
 (if (equal flag :proof)
 (implies (proofp-2 x database arity-table)
 (provablep (get-conclusion x) database arity-table))
 (implies (proof-listp-2 x database arity-table)
 (provable-listp (strip-conclusions x) database
 arity-table))))

(defthm proofp-2-is-sound
 (implies (proofp-2 x database arity-table)
 (provablep (get-conclusion x) database arity-table)))
The Extended Checker is Sound

• So we have an ACL2 proof that proofp-2 is sound with respect to proofp.
 – But this is not “formal” in the sense of proofp

• Goal: translate this into a proofp-checkable proof.
 – The ACL2 proof is a “roadmap” of useful lemmas to prove.
 – Now we just need to be able to construct these proofs. (more on this soon)
Adding a Reflection Rule

- Assume we have a proofp-checkable proof that proofp-2-is-sound.
- Assume we have used proofp-2 to “prove” F.
- How do we get a formal proofp proof of F?
 - We could skip this, claim that proofp-2-is-sound is convincing enough
 - We could try to “compile” the proof
 - It might be too large to check
 - We could add a reflection rule
Adding a Reflection Rule

• The reflection rule will be something like this:
 \[\text{Derive } F \text{ from } (\text{provablep } F \ldots) = t \]

• Now, if we know proofp-2 proves F, we can:

 – Show that F is provable, by appealing to the lemma:

 \[
 (\text{defthm proofp-2-is-sound} \\
 (\text{implies} (\text{proofp-2 } x \ \text{database arity-table}) \\
 (\text{provablep} (\text{get-conclusion } x) \ \text{database arity-table})))
 \]

 – Use reflection to conclude that F is true, since it is provable
Pragmatics of Building Proofs

- Formal proofs are too big to create by hand, so I write functions to build them for me.
- These are like derived rules of inference

```
(defun commute-or-bldr (x)
  ;; Derive b v a from a proof of a v b.
  ;; Derivation.
  ;; 1. a v b      Given
  ;; 2. ~a v a     Propositional Axiom
  ;; 3. b v a      Cut; 1, 2
  (or (and (appeal-structureishp x)
           (let* ((or-a-b (get-conclusion-fast x))
                  (a (second or-a-b)))
                (and (equal (first or-a-b) :por)
                     (cut x (propositional-schema a))))
       (cw "[commute-or-bldr]: invalid argument: ~%~x0~%" x)))
```
(defun right-expansion-bldr (x b)
 ;; Derive (a v b) from a proof of a
 ;; Derivation.
 ;; 1. a Given
 ;; 2. b v a Expansion; 1
 ;; 3. a v b Commute Or; 2
 (or (and (appeal-structure-ship x)
 (formula-structurep b)
 (commute-or-bldr (expansion b x)))
 (cw "[right-expansion-bldr]: invalid args: x0 x1 x2" x b)))

(defun modus-ponens-bldr (x y)
 ;; Derive b from proofs of a and ~a v b.
 ;; Derivation.
 ;; 1. a Given
 ;; 2. a v b Right Expansion; 1
 ;; 3. ~a v b Given
 ;; 4. b v b Cut; 2, 3
 ;; 5. b Contraction; 4
 (or (and (appeal-structure-ship x)
 (appeal-structure-ship y)
 (let* ((a (get-conclusion-fast x))
 (or-not-a-b (get-conclusion-fast y))
 (not-a (second or-not-a-b))
 (b (third or-not-a-b)))
 (and (equal (second not-a) a)
 (contraction
 (cut (right-expansion-bldr x b) y)))
 (cw "[modus-ponens-bldr]: invalid args: x0 x1 x2" x y)))
Derive \(a \lor (c \lor b) \) from a proof of \(a \lor b \)

Derive \(a \lor (b \lor c) \) from a proof of \(a \lor b \)

Derive \(a \lor b \) from a proof of \(a \lor (b \lor b) \)

Derive \(a \lor (b \lor c) \) from a proof of \((a \lor b) \lor c \)

Derive \(\neg (a \lor b) \lor c \) from \(\neg a \lor c \) and \(\neg b \lor c \)

Schema: \(\neg (a \lor b) \lor (b \lor a) \)

Derive \(a \lor (c \lor b) \) from a proof of \(a \lor (b \lor c) \)

Schema: \(\neg (a \lor d) \lor ((a \lor b) \lor (c \lor d)) \)

Schema: \(\neg (b \lor c) \lor ((a \lor b) \lor (c \lor d)) \)

Derive \((a \lor b) \lor (c \lor d) \) from a proof of \((a \lor d) \lor (b \lor c) \)

Derive \(a \lor (b \lor (c \lor d)) \) from a proof of \(a \lor ((b \lor c) \lor d) \)

Derive \(a \lor (b \lor (c \lor d)) \) from a proof of \(a \lor (b \lor (c \lor d)) \)

Derive \(a \lor (c \lor d) \) from proofs of \(a \lor (b \lor c) \) and \(a \lor (\neg b \lor d) \)

Derive \(p \lor b \) from proofs of \(p \lor a \) and \(p \lor (\neg a \lor b) \)

Derive \(b \) from proofs of \(\neg a \) and \((a \lor b) \)

Derive \(P \lor b \) from proofs of \(P \lor \neg a \) and \(P \lor (a \lor b) \)

Schema: \(a = a \)

Schema: \(a_1 \neq b_1 \lor (a_2 \neq b_2 \lor (a_1 \neq a_2 \lor b_1 = b_2)) \)

Derive \(b = a \) from \(a = b \)

Schema: \(a \neq b \lor b = a \)

Derive \(b \neq a \) from \(a \neq b \)

Schema: \(\neg (p \lor a = b) \lor (p \lor b = a) \)

Derive \(P \lor b = a \) from a proof of \(P \lor a = b \)

Derive \(a \lor c \) from \(a = b \) and \(b = c \)

Derive \(P \lor a = c \) from proofs of \(P \lor a = b \) and \(P \lor b = c \)

Derive \(c \neq b \) from proofs of \(a \neq b \) and \(c = a \)

Derive \(P \lor c \neq b \) from proofs of \(P \lor a \neq b \) and \(P \lor c = a \)

Derive \(b \) from \(a_1, a_2, \ldots, a_n, \neg a_1 \lor (\neg a_2 \lor \ldots \lor (\neg a_n \lor b) \ldots) \)

Derive \((f \ t_1 \ldots \ t_n) = (f \ s_1 \ldots \ s_n) \) from \(t_1 = s_1, \ldots, t_n = s_n. \)

Derive \(P \lor b \) from \(P \lor a_1, \ldots, P \lor a_n, P \lor (\neg a_1 \lor \ldots \lor (\neg a_n \lor b) \ldots) \)

Derive \(P \lor (f \ t_1 \ldots \ t_n) \) = (f \ s_1 \ldots \ s_n) \) from \(P \lor t_1 = s_1, \ldots P \lor t_n = s_n \)

Derive \(a \) from proofs of \(b \lor a \) and \(\neg b \lor a \)
Some Important Rules

• Transitivity of Equal Builders
 - Derive $a = c$ from $a = b$ and $b = c$
 - Derive $P \lor a = c$ from $P \lor a = b$ and $P \lor b = c$

• Equal by Arguments Builders
 - Derive $(f \ t_1 \ldots \ t_n) = (f \ s_1 \ldots \ s_n)$
 from $t_1 = s_1, \ldots, t_n = s_n$
 - Derive $P \lor (f \ t_1 \ldots \ t_n) = (f \ s_1 \ldots \ s_n)$
 from $P \lor t_1 = s_1, \ldots, P \lor t_n = s_n$
SR, A Simple Rewriter

• I have a rewriter that can build some proofs
 - \(\text{sr} : \text{term} \times \text{rule list} \rightarrow \text{proof} \)

 Where a “rule” is a simple formula of the form \(\text{lhs} = \text{rhs} \)
 - \((\text{sr} \times \text{rules})\) creates a proof of \(x = x' \), if any rules can rewrite parts of \(x \)

• Basically unconditional inside-out rewriting with proof output
 - The equal-by-args and transitivity-of-equal builders construct the proof
Some Example Rules

• These are provable using our builders and the Lisp axioms

 (if nil y z) = z
 (if t y z) = y
 (if x y y) = y
 (if x (if x y w) z) = (if x y z)
 (if x y (if x y z)) = (if x y z)
 (if (if x y z) p q) = (if x (if y p q) (if z p q))

• With these (and definitions of implies, not), sr can prove the following is just t:

 (IMPLIES (NOT (CONSP X))
 (NOT (IF (CONSP X)
 (IF (EQUAL A (CAR X))
 T
 (MEMBERP A (CDR X)))
 NIL))))
Space and Time Considerations

- \((\text{implies} \ (\text{not} \ (\text{consp} \ x)) \ (\text{not} \ (\text{memberp} \ a \ x)))) = t\)
 - About 475 KB, 6200 lines when printed with \(\sim f\)
 - About \(\frac{1}{2}\) second to check (excluding read time)

- \((\text{if} \ (\text{if} \ x \ y \ z) \ p \ q) = (\text{if} \ x \ (\text{if} \ y \ p \ q) \ (\text{if} \ z \ p \ q))\)
 - About 225 KB, 3000 lines

- \((\text{booleanp} \ t) = t\)
 - About 22 KB, 280 lines

- \((\text{booleanp} \ (\text{equal} \ x \ y)) = t\)
 - About 1MB, 13000 lines
Current Status

• Currently capabilities
 – Manipulate propositional formulas fairly easily
 – Unconditional rewriting of terms
 – Simple non-inductive theorems

• Short term goals
 – Developing conditional rewriter
 – Figure out induction rule, number representation
 – Well defined extension principle for new definitions
 – Actually begin proving lemmas on the way to proofp-2-is-sound
Future Directions (Long Term)

- Prove proofp-2-is-sound using proofp
- Develop useful extensions and verify them, to create more powerful proof checkers
- Perhaps consider ACL2 integration?
 - Local events, missing datatypes, etc.
 - Extending ACL2 to emit checkable proof objects?
 - Allowing ACL2 to accept checked proof objects?
Thanks

• Useful Papers and Books
 – Computer Aided Reasoning: An Approach, Chapter 6
 – A Precise Description of the ACL2 Logic
 – Structured Theory Development for a Mechanized Logic
 – A Quick and Dirty Sketch of a Toy Logic
 – Mathematical Logic, Shoenfield
 – Metatheory and Reflection, John Harrison