1 Context-Sensitive Grammars (4 Points)

We discussed two different definitions for context-sensitive grammars in class:

Let $G = \{V, \Sigma, S, P\}$ be a grammar.

Definition 1.1 If each production $\alpha \to \beta$ in P satisfies $|\alpha| \leq |\beta|$, then the grammar G is a Type 1 or context-sensitive grammar.

Definition 1.2 If all productions in P are of the form

$$\alpha A \gamma \to \alpha \beta \gamma \quad \text{with } \alpha, \gamma \in (\Sigma \cup V)^*, \beta \in (\Sigma \cup V)^+, A \in V,$$

then the grammar G is a Type 1 or context-sensitive grammar.

Show that Definition 1.2 implies Definition 1.1.
2 LL(1) Parsing (6 Points)

Consider the grammar \(G = (V, \Sigma, S, P) \) with \(V = \{S, B, P, L, R\} \) and \(\Sigma = \{x, (,), \{, \}, \}, \} \) and \(S \) as the start symbol, where \(P \) is the set of productions:

\[
\begin{align*}
S & \rightarrow B \\
B & \rightarrow \{L\} \\
P & \rightarrow (L) \\
L & \rightarrow SR \\
L & \rightarrow xR \\
R & \rightarrow ,L \\
R & \rightarrow \epsilon \\
\end{align*}
\]

a) Calculate the First set for \(V \).

b) Calculate the Follow set for \(V \).

c) Write down the LL(1) parsing table for \(G \).

d) Generate the parse tree for the string \(\{x, (x, x), x\} \).