Storage: Hard Disk Drives

- Non-volatile magnetic storage
- Rapidly rotating platters with two surfaces
- Disk head reads from and writes to the magnetic surface

Hard Disks

- Rotation typically measured in RPM = rotations per minute
- Heads are attached to disk arms
- Arms can be moved through a (single) arm assembly
- Data is stored in fixed-sized sectors
- A circle of sectors is a track

Total capacity of a disk drive

- (bytes per sector) * (sectors per track) * (tracks per surface) * (surfaces per platter) * (platters per disk)

Geometry

- Early disks: fixed number of sectors per track
- Modern disks: multiple zones
Hard Disk Access Time

- **Seek time**
 - Move arm over target track
 - Minimum seek time
 - move to adjacent track
 - Maximum seek time
 - Move from innermost to outermost track or vice versa
 - Average seek time
 - Often approximated through time to seek one third of the way across the disk
 - “Geometric” average, not representative for any workload

- **Rotation time**
 - Once the head has settled on the target track, this is the time until the disk has rotated under the head to the target sector
 - Typical rotation: 4200 RPM to 15000 RPM
 - Average rotation latency: time for ½ rotation
 - Typical latencies: 2 ms - 7.5 ms

- **Transfer time**
 - Time to transfer data from/to disk
 - From/to buffer

 \[\text{Disk access time} = \text{Seek time} + \text{Rotation time} + \text{Transfer time} \]

Disk Scheduling

- Disk access can be costly
 - Moving the disk arm
 - Waiting for the platters to rotate

- Order in which requests are served can make a significant difference
 - CPU is much faster than a disk access

- Scheduling problem
 - Can be done by OS, disk firmware, or both

 \[\text{SSTF} \]
 - Shortest seek time first
 - Pick the request closest to the current head position
 - Akin to Shortest Job First in task scheduling
 - Can lead to starvation…
Disk Scheduling

- **SCAN**
 - Sometimes called the elevator algorithm
 - Idea: “preserve momentum”
 - E.g., disk arm first sweeps from inner towards outer track
 - Serving all requests between current and outermost track

- **C-SCAN**
 - Head only moves in one direction
 - When reaching border, return to start position
 - More uniform access time

Question!

- What would be the average read time of a disk that has 5400 RPM and average seek time of 20ms?
- 5400 RPM = 90 RPS = 90 Hz
- So a rotation happens every 11.11.. ms
- On average we will have to wait a half of a rotation to get the data
- \(20 + \frac{11.11}{2} = 25.55\) ms

RAID

- **Redundant Array of Inexpensive Disks**
 - **Striping**
 - Improve performance
 - Does not improve resilience
 - **Mirroring**
 - Can improve performance
 - If read from disk with least seek time
 - Improves resilience
RAID

- Dedicated parity disk
- All spindles need to be synchronized
- Data is striped on a byte granularity
- With three disks, can handle the loss of one disk
- Stripe the parity
- Stripe the data on a block granularity

Hybrid RAID

- RAID 1+0
- Mirroring a pair of striped disks

Solid State Drive (SDD)

- No moving parts, stores data in “non-volatile” memory
- Usually NAND-Flash
 - Can read and write data at once but only at page granularity
 - Typical page size: 2kB to 4kB
- Random access is cheap
 - Read access latency is low
 - Typically < 0.1ms for NAND-Flash SSD
 - A fast HDD has ~2.9 ms, a typical laptop HDD has 12 ms
 - Write access more costly, requires full erase first (order of ms)
- Problem: cost
- Problem: wear

Flash Translation Layer

- Indirection between logical blocks and physical blocks
- Count write accesses and dynamically remap blocks (ideally to such already erased)
- Wear-leveling
 - Implemented in the device firmware
 - Use a map of logical block addresses to physical block addresses
- Dynamic wear-leveling
 - Every write goes to a new physical block
- Static wear-leveling
 - Also periodically remap blocks that do not change
Hybrid drives

- Can’t decide between the quick access of SSD and the durability of HDD? Get a hybrid drive.

Manual Configuration
- Put your Operating System and any programs you know you will want quick access but also won’t change too often

Automatic configuration
- Use disk scheduling to dynamically move frequently used block on to the SSD. Great disk cache.