
Proof Assistant
as Teaching Assistant

Benjamin C. Pierce
University of Pennsylvania

A View from the Trenches

ITP 2010

An Experiment

in Pedagogy

Goal

Goal

Teaching theorem
proving as a topic in its

own right

From...

Goal

Theorem prover as a
framework for teaching

something else

Teaching theorem
proving as a topic in its

own right

From...

To...

A “software foundations” course
for students from a broad range of
backgrounds

Parameters

• Taught yearly at Penn

• 30-70 students

• Semi-required course for masters and PhD students

• Mix of undergraduates, MSE students, and PhD
students (mostly not studying PL)

• 13 weeks, 23 lectures (80 minutes each), plus 3
review sessions and 3 exams

• Weekly homework assignments (~10 hours each)

Logic

• Inductively defined relations
• Inductive proof techniques

Functional Programming
• programs as data,

polymorphism, recursion, ...

PL Theory

• Precise description of program
structure and behavior
• operational semantics
• lambda-calculus

• Program correctness
• Hoare Logic

• Types

logic

software engineering EE, civil, mechanical, ...

calculus
=

A “Software Foundations” Syllabus
(for the masses)

• FPLs are going mainstream (Haskell, Scala,
F#, ...)

• Individual FP ideas are already mainstream
• mutable state = bad (e.g. for concurrency)
• polymorphism = good (for reusability)
• higher-order functions = useful

• ...

• Language design is a pervasive activity

• Program meaning and correctness are
pervasive concerns

• Types are a pervasive technology

Oops, forgot one thing...

•The difficulty with teaching many of these
topics is that they presuppose the ability to
read and write mathematical proofs

• In a course for arbitrary computer science
students, this turns out to be a really bad
assumption

My List (II)

Proof!
• The ability to recognize and

construct rigorous
mathematical arguments

Sine qua non...

My List (II)

Proof!
• The ability to recognize and

construct rigorous
mathematical arguments

Sine qua non...

But...
Very hard to teach these skills effectively in a large

class (while teaching anything else)

Requires an instructor-intensive feedback loop

automated proof assistant
=

one TA per student

A Bright Idea...

...With Major Consequences!

•Using a proof assistant completely shapes
the way ideas are presented

• Working “against the grain” is a really bad idea

• Learning to drive a proof assistant is a
significant intellectual challenge

...With Major Consequences!

•Using a proof assistant completely shapes
the way ideas are presented

• Working “against the grain” is a really bad idea

• Learning to drive a proof assistant is a
significant intellectual challenge

⇒ Restructure entire course
around the idea of proof

Any Questions?

Let’s talk...

What is ?

formal vs. informal

plausible
vs.

deductive inductive vs. deductive

careful vs. rigorous

detailed vs. formal

explanation vs. proof

intuition vs. knowledge

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach!

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Critically needed for doing PL

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Not adequately addressed
elsewhere in the curriculum

Critically needed for doing PL

A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Possible to teach
(with tool support!)

Not adequately addressed
elsewhere in the curriculum

Critically needed for doing PL

A Spectrum of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

instructions for writing...

program for constructing...

“Certainty” is far from being a sign of success, it is only a symptom
of lack of imagination, of conceptual poverty. It produces smug
satisfaction and prevents the growth of knowledge. — Lakatos

A Spectrum of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

mostly ignore concentrate here

teach by example

“Certainty” is far from being a sign of success, it is only a symptom
of lack of imagination, of conceptual poverty. It produces smug
satisfaction and prevents the growth of knowledge. — Lakatos

Goals

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness (and find bugs)
4. write clear proofs demonstrating their

correctness

(ideally)

^

The Course

Choosing One’s Poison
Many proof assistants have been used to
teach programming languages...

Isabelle
HOL
Coq
Tutch
SASyLF
Agda
ACL2

etc. None is perfect

(usually to a narrower audience)

Choosing My Poison

Choosing My Poison
I chose Coq

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Mature tool

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Mature tool

• Automation

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Mature tool

• Automation

• Familiarity

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Mature tool

• Automation

• Familiarity

• Local expertise

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Mature tool

• Automation

• Familiarity

• Local expertise

•

Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP
through “programming with propositions”

• Mature tool

• Automation

• Familiarity

• Local expertise

• And now that we’ve got the hard
part out of the way...

In
te

ra
ct

iv
e

se
ss

io
n

in
 e

ar
ly

 le
ct

ur
es

Ex
pa

nd
ed

 v
er

si
on

 fo
r

ha
nd

ou
ts

 a
nd

 h
om

ew
or

k
as

si
gn

m
en

ts

Ty
pe

se
t

ve
rs

io
n

fo
r

ea
si

er
 r

ea
di

ng
*

*... in a web browser, with an index
and hyperlinks to definitions

And check out:
Narrating Formal Proof,
Carst Tankink, Herman

Geuvers and James
McKinna, at UITP on

Thursday...

https://cs.ru.nl/~carst
https://cs.ru.nl/~carst
http://www.cs.ru.nl/~herman
http://www.cs.ru.nl/~herman
http://www.cs.ru.nl/~herman
http://www.cs.ru.nl/~herman

Guided Tour

Course Overview

• Basic functional programming (and
fundamental Coq tactics)

• Logic (and more Coq tactics)

• While programs and Hoare Logic

• Simply typed lambda-calculus

• References and store typing

• Subtyping

Cold Start
Start from bare, unadorned Coq

• No libraries

• Just inductive definitions, structural
recursion, and (dependent, polymorphic)
functions

Basics
Inductively define booleans, numbers, etc. Recursively
define functions over them.

Inductive nat : Type :=
 | O : nat
 | S : nat -> nat.

Fixpoint plus (n : nat) (m : nat) {struct n} : nat :=
 match n with
 | O => m
 | S n' => S (plus n' m)
 end.

Restriction to structural recursion
is not a big deal, provided we

choose examples a bit carefully

Theorem plus_0_l : forall n:nat, plus 0 n = n.

Proof. reflexivity. Qed.

Proof by Simplification
A few simple theorems can be proved just by beta-
reduction...

Theorem plus_id_example : forall n m:nat,
 n = m -> plus n n = plus m m.

Proof.
 intros n m. (* move both quantifiers into the context *)
 intros H. (* move the hypothesis into the context *)
 rewrite -> H. (* Rewrite the goal using the hypothesis *)
 reflexivity. Qed.

Proof by Rewriting
A few more can be proved just by substitution using
equality hypotheses.

Theorem plus_1_neq_0 : forall n,
 beq_nat (plus n 1) 0 = false.

Proof.
 intros n. destruct n as [| n'].
 reflexivity.
 reflexivity. Qed.

Proof by Case Analysis

More interesting properties require case
analysis...

numeric
comparison,
returning a

boolean

Theorem plus_0_r : forall n:nat, plus n 0 = n.

Proof.
 intros n. induction n as [| n'].
 Case "n = 0". reflexivity.
 Case "n = S n'". simpl. rewrite -> IHn'.
 reflexivity.
Qed.

Proof by Induction

... or, more generally, induction

Functional Programming
Similarly, we can define (as usual)

• lists, trees, etc.
• polymorphic functions (length, reverse, etc.)
• higher-order functions (map, fold, etc.)
• etc.

Inductive list (X:Type) : Type :=
 | nil : list X
 | cons : X -> list X -> list X.

Theorem map_rev : forall (X Y : Type) (f : X -> Y) (l : list X),

 map f (rev l) = rev (map f l).

Properties of Functional Programs
The handful of tactics we have already seen are
enough to prove a a surprising range of properties of
functional programs over lists, trees, etc.

A Few More Tactics

To go further, we need a few additional tactics...

• inversion

• e.g., from [x]=[y] derive x=y

• generalizing induction hypotheses

• unfolding definitions

Programming with Propositions

“Coq has another universe, called Prop, where
the types represent mathematical claims and
their inhabitants represent evidence...”

Definition true_for_zero (P:nat->Prop) : Prop :=
 P 0.

Definition true_for_n__true_for_Sn (P:nat->Prop) (n:nat) :
Prop :=
 P n -> P (S n).

Definition preserved_by_S (P:nat->Prop) : Prop :=
 forall n', P n' -> P (S n').

Definition true_for_all_numbers (P:nat->Prop) : Prop :=
 forall n, P n.

Definition nat_induction (P:nat->Prop) : Prop :=
 (true_for_zero P)
 -> (preserved_by_S P)
 -> (true_for_all_numbers P).

Theorem our_nat_induction_works : forall (P:nat->Prop),

 nat_induction P.

Programming with Propositions

Inductive and (A B : Prop) : Prop :=
 conj : A -> B -> (and A B).

Logic

Familiar logical connectives can be built from
Coq’s primitive facilities...

Similarly: disjunction, negation, existential
quantification, equality, ...

Inductive le (n:nat) : nat -> Prop :=
 | le_n : le n n
 | le_S : forall m, (le n m) -> (le n (S m)).

Definition relation (X: Type) := X->X->Prop.

Definition reflexive (X: Type) (R: relation X) :=
 forall a : X, R a a.

Definition preorder (X:Type) (R: relation X) :=
 (reflexive R) /\ (transitive R).

Inductively Defined Relations

Inductive aexp : Type :=
 | ANum : nat -> aexp
 | APlus : aexp -> aexp -> aexp
 | AMinus : aexp -> aexp -> aexp
 | AMult : aexp -> aexp -> aexp.

Fixpoint aeval (e : aexp) {struct e} : nat :=
 match e with
 | ANum n => n
 | APlus a1 a2 => plus (aeval a1) (aeval a2)
 | AMinus a1 a2 => minus (aeval a1) (aeval a2)
 | AMult a1 a2 => mult (aeval a1) (aeval a2)
 end.

Expressions

(Similarly boolean expressions)

Fixpoint optimize_0plus (e:aexp) {struct e} : aexp :=
 match e with
 | ANum n => ANum n
 | APlus (ANum 0) e2 => optimize_0plus e2
 | APlus e1 e2 => APlus (optimize_0plus e1) (optimize_0plus e2)
 | AMinus e1 e2 => AMinus (optimize_0plus e1) (optimize_0plus e2)
 | AMult e1 e2 => AMult (optimize_0plus e1) (optimize_0plus e2)
 end.

Optimization

Theorem optimize_0plus_sound: forall e,
 aeval (optimize_0plus e) = aeval e.

Proof.
 intros e. induction e.
 Case "ANum". reflexivity.
 Case "APlus". destruct e1.
 SCase "e1 = ANum n". destruct n.
 SSCase "n = 0". simpl. apply IHe2.
 SSCase "n <> 0". simpl. rewrite IHe2. reflexivity.
 SCase "e1 = APlus e1_1 e1_2".
 simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
 SCase "e1 = AMinus e1_1 e1_2".
 simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
 SCase "e1 = AMult e1_1 e1_2".
 simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
 Case "AMinus".
 simpl. rewrite IHe1. rewrite IHe2. reflexivity.
 Case "AMult".
 simpl. rewrite IHe1. rewrite IHe2. reflexivity. Qed.

Automation

At this point, we begin introducing some simple
automation facilities.

(As we go on further and proofs become
longer, we gradually introduce more powerful
forms of automation.)

Theorem optimize_0plus_sound'': forall e,
 aeval (optimize_0plus e) = aeval e.
Proof.
 intros e.
 induction e;
 (* Most cases follow directly by the IH *)
 try (simpl; rewrite IHe1; rewrite IHe2; reflexivity);
 (* ... or are immediate by definition *)
 try (reflexivity).
 (* The interesting case is when e = APlus e1 e2. *)
 Case "APlus".
 destruct e1;
 try (simpl; simpl in IHe1; rewrite IHe1; rewrite IHe2; reflexivity).
 SCase "e1 = ANum n". destruct n.
 SSCase "n = 0". apply IHe2.
 SSCase "n <> 0". simpl. rewrite IHe2. reflexivity. Qed.

Inductive com : Type :=
 | CSkip : com
 | CAss : id -> aexp -> com
 | CSeq : com -> com -> com
 | CIf : bexp -> com -> com -> com
 | CWhile : bexp -> com -> com.

While Programs

Notation "'SKIP'" :=
 CSkip.
Notation "c1 ; c2" :=
 (CSeq c1 c2) (at level 80, right associativity).
Notation "l '::=' a" :=
 (CAss l a) (at level 60).
Notation "'WHILE' b 'DO' c 'LOOP'" :=
 (CWhile b c) (at level 80, right associativity).
Notation "'IF' e1 'THEN' e2 'ELSE' e3" :=
 (CIf e1 e2 e3) (at level 80, right associativity).

Definition factorial : com :=
 Z ::= !X;
 Y ::= A1;
 WHILE BNot (!Z === A0) DO
 Y ::= !Y *** !Z;
 Z ::= !Z --- A1
 LOOP.

With a bit of notation hacking...

Definition cequiv (c1 c2 : com) : Prop :=
 forall (st st':state), (c1 / st ~~> st') <-> (c2 / st ~~> st').

Program Equivalence

Definitions and basic properties
• “program equivalence is a congruence”

Case study: constant folding

Hoare Logic
Assertions
Hoare triples
Weakest preconditions
Proof rules

• Proof rule for assignment
• Rules of consequence
• Proof rule for SKIP
• Proof rule for ;
• Proof rule for conditionals
• Proof rule for loops

Using Hoare Logic to reason about programs
• e.g. correctness of factorial program

Small-Step Operational Semantics

At this point we switch from big-step to small-
step style (and, for good measure, show their
equivalence).

Types
Fundamentals

• Typed arithmetic expressions

Simply typed lambda-calculus

Properties
• Free variables
• Substitution
• Preservation
• Progress
• Uniqueness of types

Typechecking algorithm

 The POPLMark Tarpit

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

• Switch to Isabelle? Twelf?

 The POPLMark Tarpit

•Dealing carefully with variable binding is
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

• Switch to Isabelle? Twelf?

• Finesse the problem!

A Cheap Solution

A Cheap Solution

• Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

A Cheap Solution

• Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

• Second observation [Tolmach]: Replacing the
standard weakening+permutation with a “context
invariance” lemma makes this presentation very
clean.

A Cheap Solution

• Observation: If we only ever substitute closed
terms, then capture-incurring and capture-
avoiding substitution behave the same.

• Second observation [Tolmach]: Replacing the
standard weakening+permutation with a “context
invariance” lemma makes this presentation very
clean.

• Downside: Doesn’t work for System F

Subtyping

•Records

• Subtyping relation

• Properties

Outcomes

The Fear

• inductive definitions
• operational

semantics
• untyped λ-calculus
• simply typed λ-

calculus
• references
• exceptions
• records and

subtyping
• Featherweight Java

Old syllabus:
• Coq
New syllabus

The Actuality

• inductive definitions
• operational

semantics
• untyped λ-calculus
• simply typed λ-

calculus
• references
• exceptions
• records and

subtyping
• Featherweight Java

• functional
programming

• logic (and Curry-
Howard)

• while programs
• program equivalence
• Hoare Logic
• Coq

Old syllabus:

New syllabus

The Fear

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before

Preparation / aptitude

The Fear

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before

0%

20%

40%

60%

80%

100%

Bottom 80% Top 10%middle 10%

After

Preparation / aptitude

The Actuality

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before After

Preparation / aptitude

0%

20%

40%

60%

80%

100%

The Actuality

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before After

Preparation / aptitude

0%

20%

40%

60%

80%

100%

in fact, students typically performed
better on paper exams than in pre-

Coq offerings of the course

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well
pretty well

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well
pretty well

yes!

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well
pretty well

a little
yes!

What About Those Goals?

We would like students to be able to
1. write correct definitions
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well

imperfectly

pretty well

a little
yes!

One small catch...

Making up lectures and homeworks
takes between one and two orders
of magnitude more work for the

instructor than a paper-and-pencil
presentation of the same material!

Is Coq The Ultimate TA?
Pros:
• Can really build everything we need from scratch
• Curry-Howard → nice unifying story

• Proving = programming

Is Coq The Ultimate TA?
Pros:
• Can really build everything we need from scratch
• Curry-Howard → nice unifying story

• Proving = programming

My Coq proof scripts do not have the
conciseness and elegance of Jérôme
Vouillon's. Sorry, I've been using Coq
for only 6 years...

— Leroy (2005)

Cons:
• Curry-Howard

• Proving = programming → deep waters
• Constructive logic can be confusing to students

• Annoyances
• Lack of animation facilities
• “User interface”

• Notation facilities

Bottom Line...

Bottom Line...

It works!

Want to

?

Use Our Materials

• The course has been taught successfully at several places
(Penn three times, Maryland, Portland State, Princeton,
UCSD, Purdue, and the Oregon PL Summer School...)

• Full text of the notes (minus solutions) are publicly
available as Coq scripts and HTML files:

http://www.cis.upenn.edu/~bcpierce/sf

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/

Improve Our Materials

If you are teaching from these materials and want
write access to the SVN repo, just email me

OSS model
• electronic distribution
• many contributors (around

a core group)
• extensible
• new versions as needed

Textbook model
• fixed (small) set of authors
• printed on paper
• limited scope
• new version every couple of

years

Adapt Our Materials

•Think this course would work better in
Isabelle, Agda, ACL2, ...?

• Go for it!

Ignore Our Materials

•The Software Foundations course is an
existence proof

• Plenty of room for competing efforts

and do it your own way!

What Next?

Thin End of the Wedge:
Compilers

•Verified compilers are becoming a hot topic

• Impressive recent achievements
• Easy to see why it’s important

• Beautiful expositions exist

• e.g. Xavier Leroy’s lecture notes from 2010
OPLSS

• Looks like a wonderful way to teach
compilers

The Big Game:
Undergrad Discrete Math

Similar issues:

• Students come into discrete math courses (at least in
the U.S.) with little or no idea of “what is a proof”

• Insufficient instructor resources to give every
student continuous feedback

The Big Game:
Undergrad Discrete Math

Similar issues:

• Students come into discrete math courses (at least in
the U.S.) with little or no idea of “what is a proof”

• Insufficient instructor resources to give every
student continuous feedback

But not identical!

• Much less time — must keep overhead lower
• Informal proof skills equally important
• Broader range of relevant math (number theory,

graph theory, discrete probability...)

Thank you!

http://www.cis.upenn.edu/~bcpierce/sf/

SF courseware co-authors:
Chris Casinghino, Michael Greenberg, Vilhelm Sjöberg,
Brent Yorgey

More contributors:
Andrew W. Appel, Jeffrey Foster, Michael Hicks, Ranjit
Jhala, Greg Morrisett, Leonid Spesivtsev, and Andrew
Tolmach

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/

