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Theorem prover as a 
framework for teaching 

something else

Teaching theorem 
proving as a topic in its 

own right

From...

To...



A “software foundations” course 
for students from a broad range of 
backgrounds



Parameters

• Taught yearly at Penn

• 30-70 students

• Semi-required course for masters and PhD students

• Mix of undergraduates, MSE students, and  PhD 
students (mostly not studying PL)

• 13 weeks, 23 lectures (80 minutes each), plus 3 
review sessions and 3 exams

• Weekly homework assignments (~10 hours each)



Logic 

• Inductively defined relations
• Inductive proof techniques

Functional Programming 
• programs as data, 

polymorphism, recursion, ...

PL Theory 

• Precise description of program 
structure and behavior
• operational semantics
• lambda-calculus

• Program correctness
• Hoare Logic

• Types 

logic

software engineering EE, civil, mechanical, ...

calculus
=

A “Software Foundations” Syllabus
(for the masses)

• FPLs are going mainstream (Haskell, Scala, 
F#, ...)

• Individual FP ideas are already mainstream
• mutable state = bad (e.g. for concurrency)
• polymorphism = good (for reusability)
• higher-order functions = useful

• ...

• Language design is a pervasive activity

• Program meaning and correctness are 
pervasive concerns

• Types are a pervasive technology



Oops, forgot one thing...

•The difficulty with teaching many of these 
topics is that they presuppose the ability to 
read and write mathematical proofs

• In a course for arbitrary computer science 
students, this turns out to be a really bad 
assumption



My List (II)

Proof! 
• The ability to recognize and 

construct rigorous 
mathematical arguments

Sine qua non...



My List (II)

Proof! 
• The ability to recognize and 

construct rigorous 
mathematical arguments

Sine qua non...

But...
Very hard to teach these skills effectively in a large 

class (while teaching anything else)

Requires an instructor-intensive feedback loop



automated proof assistant 
= 

one TA per student

A Bright Idea...



...With Major Consequences!

•Using a proof assistant completely shapes 
the way ideas are presented

• Working “against the grain” is a really bad idea

• Learning to drive a proof assistant is a 
significant intellectual challenge



...With Major Consequences!

•Using a proof assistant completely shapes 
the way ideas are presented

• Working “against the grain” is a really bad idea

• Learning to drive a proof assistant is a 
significant intellectual challenge

⇒ Restructure entire course 
around the idea of proof 



Any Questions?

Let’s talk...



What is ?





formal vs. informal

plausible 
vs. 

deductive inductive vs. deductive

careful vs. rigorous

detailed vs. formal

explanation vs. proof

intuition vs. knowledge



A Useful Distinction

Proofs optimized for conveying understanding
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Proofs optimized for conveying certainty
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A Useful Distinction

Proofs optimized for conveying understanding

vs.
Proofs optimized for conveying certainty

Very hard to teach! But addressed in lots of other courses

Possible to teach 
(with tool support!)

Not adequately addressed 
elsewhere in the curriculum

Critically needed for doing PL



A Spectrum of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

instructions for writing...

program for constructing...

“Certainty” is far from being a sign of success, it is only a symptom 
of lack of imagination, of conceptual poverty. It produces smug 
satisfaction and prevents the growth of knowledge.   — Lakatos



A Spectrum of “Certainty Proofs”

1. Detailed proof in natural language

2. Proof-assistant script

3. Formal proof object

mostly ignore concentrate here

teach by example

“Certainty” is far from being a sign of success, it is only a symptom 
of lack of imagination, of conceptual poverty. It produces smug 
satisfaction and prevents the growth of knowledge.   — Lakatos



Goals

We would like students to be able to 
1. write correct definitions 
2. make useful / interesting claims about them
3. verify their correctness (and find bugs)
4. write clear proofs demonstrating their 

correctness

(ideally)

^



The Course



Choosing One’s Poison
Many proof assistants have been used to 
teach  programming languages...

Isabelle
HOL
Coq
Tutch
SASyLF
Agda
ACL2

etc. None is perfect

(usually to a narrower audience)
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Choosing My Poison
I chose Coq

• Curry-Howard gives a nice story, from FP 
through “programming with propositions”

• Mature tool

• Automation

• Familiarity

• Local expertise  

• And now that we’ve got the hard 
part out of the way...



In
te

ra
ct

iv
e 

se
ss

io
n 

in
 e

ar
ly

 le
ct

ur
es



Ex
pa

nd
ed

 v
er

si
on

 fo
r 

ha
nd

ou
ts

 a
nd

 h
om

ew
or

k 
as

si
gn

m
en

ts



Ty
pe

se
t 

ve
rs

io
n 

fo
r 

ea
si

er
 r

ea
di

ng
*

*... in a web browser, with an index 
and hyperlinks to definitions

And check out: 
Narrating Formal Proof, 
Carst Tankink, Herman 

Geuvers and James 
McKinna, at UITP on 

Thursday...

https://cs.ru.nl/~carst
https://cs.ru.nl/~carst
http://www.cs.ru.nl/~herman
http://www.cs.ru.nl/~herman
http://www.cs.ru.nl/~herman
http://www.cs.ru.nl/~herman


Guided Tour



Course Overview

• Basic functional programming (and 
fundamental Coq tactics)

• Logic (and more Coq tactics)

• While programs and Hoare Logic

• Simply typed lambda-calculus

• References and store typing

• Subtyping



Cold Start
Start from bare, unadorned Coq

• No libraries

• Just inductive definitions, structural 
recursion, and (dependent, polymorphic) 
functions



Basics
Inductively define booleans, numbers, etc.  Recursively 
define functions over them.

Inductive nat : Type :=
  | O : nat
  | S : nat -> nat.

Fixpoint plus (n : nat) (m : nat) {struct n} : nat :=
  match n with
    | O => m
    | S n' => S (plus n' m)
  end.

Restriction to structural recursion 
is not a big deal, provided we 

choose examples a bit carefully



Theorem plus_0_l : forall n:nat,  plus 0 n = n.

Proof. reflexivity. Qed.

Proof by Simplification
A few simple theorems can be proved just by beta-
reduction...



Theorem plus_id_example : forall n m:nat,
  n = m -> plus n n = plus m m.

Proof.
  intros n m. (* move both quantifiers into the context *)
  intros H. (* move the hypothesis into the context *)
  rewrite -> H. (* Rewrite the goal using the hypothesis *)
  reflexivity. Qed.

Proof by Rewriting
A few more can be proved just by substitution using 
equality hypotheses.



Theorem plus_1_neq_0 : forall n,
  beq_nat (plus n 1) 0 = false.

Proof.
  intros n. destruct n as [| n'].
    reflexivity.
    reflexivity. Qed.

Proof by Case Analysis

More interesting properties require case 
analysis...

numeric 
comparison, 
returning a 

boolean



Theorem plus_0_r : forall n:nat, plus n 0 = n.

Proof.
  intros n. induction n as [| n'].
  Case "n = 0". reflexivity.
  Case "n = S n'". simpl. rewrite -> IHn'.
       reflexivity. 
Qed.

Proof by Induction

... or, more generally, induction



Functional Programming
Similarly, we can define (as usual)

• lists, trees, etc.
• polymorphic functions (length, reverse, etc.)
• higher-order functions (map, fold, etc.)
• etc.

Inductive list (X:Type) : Type :=
  | nil : list X
  | cons : X -> list X -> list X.



Theorem map_rev : forall (X Y : Type) (f : X -> Y) (l : list X),

  map f (rev l) = rev (map f l).

Properties of Functional Programs
The handful of tactics we have already seen are 
enough to prove a a surprising range of properties of 
functional programs over lists, trees, etc.  



A Few More Tactics

To go further, we need a few additional tactics...

• inversion 

• e.g., from [x]=[y] derive x=y

• generalizing induction hypotheses

• unfolding definitions



Programming with Propositions

“Coq has another universe, called Prop, where 
the types represent mathematical claims and 
their inhabitants represent evidence...”



Definition true_for_zero (P:nat->Prop) : Prop :=
  P 0.

Definition true_for_n__true_for_Sn (P:nat->Prop) (n:nat) : 
Prop :=
  P n -> P (S n).

Definition preserved_by_S (P:nat->Prop) : Prop :=
  forall n', P n' -> P (S n').

Definition true_for_all_numbers (P:nat->Prop) : Prop :=
  forall n, P n.

Definition nat_induction (P:nat->Prop) : Prop :=
     (true_for_zero P)
  -> (preserved_by_S P)
  -> (true_for_all_numbers P).

Theorem our_nat_induction_works : forall (P:nat->Prop), 

  nat_induction P.

Programming with Propositions



Inductive and (A B : Prop) : Prop :=
  conj : A -> B -> (and A B).

Logic

Familiar logical connectives can be built from 
Coq’s primitive facilities...

Similarly: disjunction, negation, existential 
quantification, equality, ...



Inductive le (n:nat) : nat -> Prop :=
  | le_n : le n n
  | le_S : forall m, (le n m) -> (le n (S m)).

Definition relation (X: Type) := X->X->Prop.

Definition reflexive (X: Type) (R: relation X) :=
  forall a : X, R a a.

Definition preorder (X:Type) (R: relation X) :=
  (reflexive R) /\ (transitive R).

Inductively Defined Relations



Inductive aexp : Type := 
  | ANum : nat -> aexp
  | APlus : aexp -> aexp -> aexp
  | AMinus : aexp -> aexp -> aexp
  | AMult : aexp -> aexp -> aexp.

Fixpoint aeval (e : aexp) {struct e} : nat :=
  match e with
  | ANum n => n
  | APlus a1 a2 => plus (aeval a1) (aeval a2)
  | AMinus a1 a2 => minus (aeval a1) (aeval a2)
  | AMult a1 a2 => mult (aeval a1) (aeval a2)
  end.

Expressions

(Similarly boolean expressions)



Fixpoint optimize_0plus (e:aexp) {struct e} : aexp := 
  match e with
  | ANum n => ANum n
  | APlus (ANum 0) e2 => optimize_0plus e2
  | APlus e1 e2 => APlus (optimize_0plus e1) (optimize_0plus e2)
  | AMinus e1 e2 => AMinus (optimize_0plus e1) (optimize_0plus e2)
  | AMult e1 e2 => AMult (optimize_0plus e1) (optimize_0plus e2)
  end.

Optimization



Theorem optimize_0plus_sound: forall e,
  aeval (optimize_0plus e) = aeval e.

Proof.
  intros e. induction e.
  Case "ANum". reflexivity.
  Case "APlus". destruct e1.
    SCase "e1 = ANum n". destruct n.
      SSCase "n = 0". simpl. apply IHe2.
      SSCase "n <> 0". simpl. rewrite IHe2. reflexivity.
    SCase "e1 = APlus e1_1 e1_2".
      simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
    SCase "e1 = AMinus e1_1 e1_2".
      simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
    SCase "e1 = AMult e1_1 e1_2".
      simpl. simpl in IHe1. rewrite IHe1. rewrite IHe2. reflexivity.
  Case "AMinus".
    simpl. rewrite IHe1. rewrite IHe2. reflexivity.
  Case "AMult".
    simpl. rewrite IHe1. rewrite IHe2. reflexivity. Qed.



Automation

At this point, we begin introducing some simple 
automation facilities.  

(As we go on further and proofs become 
longer, we gradually introduce more powerful 
forms of automation.)



Theorem optimize_0plus_sound'': forall e,
  aeval (optimize_0plus e) = aeval e.
Proof.
  intros e.
  induction e; 
    (* Most cases follow directly by the IH *)
    try (simpl; rewrite IHe1; rewrite IHe2; reflexivity);
    (* ... or are immediate by definition *)
    try (reflexivity).
  (* The interesting case is when e = APlus e1 e2. *)
  Case "APlus".
    destruct e1; 
      try (simpl; simpl in IHe1; rewrite IHe1; rewrite IHe2; reflexivity).
    SCase "e1 = ANum n". destruct n.
      SSCase "n = 0". apply IHe2.
      SSCase "n <> 0". simpl. rewrite IHe2. reflexivity. Qed.



Inductive com : Type :=
  | CSkip : com
  | CAss : id -> aexp -> com
  | CSeq : com -> com -> com
  | CIf : bexp -> com -> com -> com
  | CWhile : bexp -> com -> com.

While Programs



Notation "'SKIP'" := 
  CSkip.
Notation "c1 ; c2" := 
  (CSeq c1 c2) (at level 80, right associativity).
Notation "l '::=' a" := 
  (CAss l a) (at level 60).
Notation "'WHILE' b 'DO' c 'LOOP'" := 
  (CWhile b c) (at level 80, right associativity).
Notation "'IF' e1 'THEN' e2 'ELSE' e3" := 
  (CIf e1 e2 e3) (at level 80, right associativity).



Definition factorial : com :=
  Z ::= !X;
  Y ::= A1;
  WHILE BNot (!Z === A0) DO
    Y ::= !Y *** !Z;
    Z ::= !Z --- A1
  LOOP.

With a bit of notation hacking...



Definition cequiv (c1 c2 : com) : Prop :=
  forall (st st':state), (c1 / st ~~> st') <-> (c2 / st ~~> st').

Program Equivalence

Definitions and basic properties
• “program equivalence is a congruence”

Case study: constant folding



Hoare Logic
Assertions
Hoare triples
Weakest preconditions
Proof rules

• Proof rule for assignment
• Rules of consequence
• Proof rule for SKIP
• Proof rule for ;
• Proof rule for conditionals
• Proof rule for loops

Using Hoare Logic to reason about programs
• e.g. correctness of factorial program



Small-Step Operational Semantics

At this point we switch from big-step to small-
step style (and, for good measure, show their 
equivalence).



Types
Fundamentals

• Typed arithmetic expressions

Simply typed lambda-calculus

Properties
• Free variables
• Substitution
• Preservation
• Progress
• Uniqueness of types

Typechecking algorithm
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 The POPLMark Tarpit

•Dealing carefully with variable binding is 
hard; doing it formally is even harder

•What to do?
• DeBruijn indices?

• Locally Nameless?

• Switch to Isabelle?  Twelf?

• Finesse the problem!
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A Cheap Solution

• Observation: If we only ever substitute closed 
terms, then capture-incurring and capture-
avoiding substitution behave the same.

• Second observation [Tolmach]: Replacing the 
standard weakening+permutation with a “context 
invariance” lemma makes this presentation very 
clean.

• Downside: Doesn’t work for System F



Subtyping

•Records

• Subtyping relation

• Properties



Outcomes



The Fear

• inductive definitions
• operational 

semantics
• untyped λ-calculus
• simply typed λ-

calculus
• references
• exceptions
• records and 

subtyping
• Featherweight Java

Old syllabus:
• Coq
New syllabus



The Actuality

• inductive definitions
• operational 

semantics
• untyped λ-calculus
• simply typed λ-

calculus
• references 
• exceptions
• records and 

subtyping
• Featherweight Java

• functional 
programming

• logic (and Curry-
Howard)

• while programs
• program equivalence
• Hoare Logic
• Coq

Old syllabus:

New syllabus



The Fear

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before

Preparation / aptitude



The Fear

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before

0%

20%

40%

60%

80%

100%

Bottom 80% Top 10%middle 10%

After

Preparation / aptitude



The Actuality

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before After

Preparation / aptitude

0%

20%

40%

60%

80%

100%



The Actuality

0%

20%

40%

60%

80%

100%

C
om

pr
eh

en
si

on

Bottom 15% Top 15%middle 70%

Before After

Preparation / aptitude

0%

20%

40%

60%

80%

100%

in fact, students typically performed 
better on paper exams than in pre-

Coq offerings of the course
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What About Those Goals?

We would like students to be able to 
1. write correct definitions 
2. make useful / interesting claims about them
3. verify their correctness

1. by hand
2. by writing proof scripts

4. write clear proofs of their correctness

pretty well

imperfectly

pretty well

a little
yes!



One small catch...

Making up lectures and homeworks 
takes between one and two orders 
of magnitude more work for the 

instructor than a paper-and-pencil 
presentation of the same material!
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• Can really build everything we need from scratch
• Curry-Howard → nice unifying story 

• Proving = programming



Is Coq The Ultimate TA?
Pros:
• Can really build everything we need from scratch
• Curry-Howard → nice unifying story 

• Proving = programming

My Coq proof scripts do not have the 
conciseness and elegance of Jérôme 
Vouillon's.  Sorry, I've been using Coq 
for only 6 years...

— Leroy (2005)

Cons:
• Curry-Howard

• Proving = programming → deep waters
• Constructive logic can be confusing to students

• Annoyances
• Lack of animation facilities
• “User interface”

• Notation facilities



Bottom Line...



Bottom Line...

It works!



Want to 

?



Use Our Materials

• The course has been taught successfully at several places 
(Penn three times, Maryland, Portland State, Princeton, 
UCSD, Purdue, and the Oregon PL Summer School...)

• Full text of the notes (minus solutions) are publicly 
available as Coq scripts and HTML files:

http://www.cis.upenn.edu/~bcpierce/sf

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/


Improve Our Materials

If you are teaching from these materials and want 
write access to the SVN repo, just email me

OSS model
• electronic distribution
• many contributors (around 

a core group)
• extensible 
• new versions as needed

Textbook model
• fixed (small) set of authors
• printed on paper
• limited scope
• new version every couple of 

years



Adapt Our Materials

•Think this course would work better in 
Isabelle, Agda, ACL2, ...?

• Go for it!



Ignore Our Materials

•The Software Foundations course is an 
existence proof

• Plenty of room for competing efforts

and do it your own way!



What Next?







Thin End of the Wedge: 
Compilers

•Verified compilers are becoming a hot topic

• Impressive recent achievements
• Easy to see why it’s important

• Beautiful expositions exist

• e.g. Xavier Leroy’s lecture notes from 2010 
OPLSS

• Looks like a wonderful way to teach 
compilers



The Big Game: 
Undergrad Discrete Math

Similar issues: 

• Students come into discrete math courses (at least in 
the U.S.) with little or no idea of “what is a proof”

• Insufficient instructor resources to give every 
student continuous feedback



The Big Game: 
Undergrad Discrete Math

Similar issues: 

• Students come into discrete math courses (at least in 
the U.S.) with little or no idea of “what is a proof”

• Insufficient instructor resources to give every 
student continuous feedback

But not identical!

• Much less time — must keep overhead lower
• Informal proof skills equally important
• Broader range of relevant math (number theory, 

graph theory, discrete probability...)



Thank you!

http://www.cis.upenn.edu/~bcpierce/sf/

SF courseware co-authors:
Chris Casinghino, Michael Greenberg, Vilhelm Sjöberg, 
Brent Yorgey

More contributors:
Andrew W. Appel, Jeffrey Foster, Michael Hicks, Ranjit 
Jhala, Greg Morrisett, Leonid Spesivtsev, and Andrew 
Tolmach

http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/

