
A Verified OS Kernel.
 Now What?

Gerwin Klein



NICTA Copyright 2010 From imagination to impact

The Team

2



NICTA Copyright 2010 From imagination to impact

The Team

2



NICTA Copyright 2010 From imagination to impact



NICTA Copyright 2010 From imagination to impact

1 microkernel

0 bugs

 8,700 l nes of Ci

qed

*conditions apply

*



NICTA Copyright 2010 From imagination to impact 2

The Goal



NICTA Copyright 2010 From imagination to impact 12



NICTA Copyright 2010 From imagination to impact 13



NICTA Copyright 2010 From imagination to impact

The Problem

7



NICTA Copyright 2010 From imagination to impact

Small Kernels

8

Small trustworthy foundation

• hypervisor, microkernel, 
nano-kernel, virtual machine, 
separation kernel, exokernel ...

• High assurance components in 
presence of other components

Hardware

Linux
Server

Legacy App.
Legacy App.

Legacy 
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities



NICTA Copyright 2010 From imagination to impact

Small Kernels

8

Small trustworthy foundation

• hypervisor, microkernel, 
nano-kernel, virtual machine, 
separation kernel, exokernel ...

• High assurance components in 
presence of other components

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy 
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities



The Proof



The Proof



NICTA Copyright 2010 From imagination to impact 10

Functional Correctness

Specification

Code

Proof



NICTA Copyright 2010 From imagination to impact 10

Functional Correctness

Specification

Code

What
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22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;
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Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)
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Lipton and Snyder:

• entities represented as nodes of a graph
• capabilities represented as edges of a graph
• rights are contained in capabilities

e3

e2e1

e0Grant Read, 
Write

Create

Read 
Write
Create
Take
Grant

The Rights:
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For any state in the future:

• Can E gain authority to do X?

• Can E gain more authority than it has? 

• How much more?

• Can information flow from A to B?
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Intel 32bit + IOMMU

seL4/x86:
- x86 version exists, supports Linux
- verification likely, not started yet

- Intel VT-d/IOMMU implemented
- enables untrusted device DMA 
- verification possible 

- experimental multi processor version
- initial proofs exist

New Architectures
- ca 1/3 of seL4 arch dependent
- close to ARM 

-> easy to implement and verify 
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• L4.verified: 
functional correctness 
10,000 loc

• Next step: 
formal guarantees for 
> 1,000,000 loc
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How?

Exploit:

• seL4 isolation
• verified properties
• MILS architectures

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy 
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

33
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• Find right architecture

• Security analysis
– identify trusted components
– ideally take-grant style
– behaviour of trusted components

• Code-level theorem in the end
– connect to kernel proof
– ideally prove trusted component only 

Leg
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• Multilevel Secure Access Device 

Secure Access Controller

   Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Currently selected connection: No Active Connection

Login as: hotspy007
Logout

The Network has been successfully switched to WWW

Currently selected connection: WWW
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NIC-C = Control Network Card
NIC-D = Data Network Card
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Net-A = Network A
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NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web 
server packet routing

driverA driverB

driverD

Desired Property

No information flow
between providers A and B

through SAC

even if they collaborate

Proving all this correct?
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CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web 
server packet routing

driverA driverB

driverD

Desired Property

No information flow
between providers A and B

through SAC

even if they collaborate

Proving all this correct?

NO!
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CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

Web 
server packet routing

driverA driverB

driverD

Design
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CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

packet routing

driverA driverB

driverD

Design

SAC-C 

SAC-Controller:
Embedded Linux + 
Web Server UI



C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

packet routing

driverA driverB

driverD

Design

RSAC-C 

R= Router
RM = Router Manager
SAC-C = SAC Controller

Router:
Embedded Linux/
Network Routing + Drivers
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CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

packet routing

driverA driverB

driverD

Design

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller
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CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller

Design
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CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller

TIMER

has access to

Design
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CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B 
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

Trusted Components

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller

Router Manager:
< 2kloc
only trusted component

TIMER

has access to
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Security Goal
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Goal:   No information flowing between providers A and B
Assumption:   Info flow through front-end terminal is trusted
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Plain Take-Grant Analysis
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Security Goal
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• Goal: prove NIC-B always ‘not contaminated’
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DT starts to communicate 
with Net-B, through R.

This may imply the 
creation of new objects 

using R-mem and granting 
some caps to them. 
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So far
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So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec
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So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec

• Use take-grant to model security
– can simulate system
– modelling already finds bugs
– high-level proof in Isabelle/HOL or SPIN
– includes behaviour of trusted component
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Future
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Future

• Need to 
verify low-level design
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Future

• Need to 
verify low-level design

• Building tool-chain for:
– describing cap layout 

(capDL)
– generating booter
– generating booter proof
– abstraction to take-grant
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Summary

Formal proof all the way from spec to C. 

Formal Code Verification up to 10kloc:

It works.
It’s feasible.
It’s fun.

• 200kloc handwritten, machine-checked proof

• ~460 bugs (160 in C)

• Verification on code, design, and spec
• Systems with trusted components
• The future: formal proof for large systems down to code



Thank You
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L4.verified


