
A Verified OS Kernel.
 Now What?

Gerwin Klein

NICTA Copyright 2010 From imagination to impact

The Team

2

NICTA Copyright 2010 From imagination to impact

The Team

2

NICTA Copyright 2010 From imagination to impact

NICTA Copyright 2010 From imagination to impact

1 microkernel

0 bugs

 8,700 l nes of Ci

qed

*conditions apply

*

NICTA Copyright 2010 From imagination to impact 2

The Goal

NICTA Copyright 2010 From imagination to impact 12

NICTA Copyright 2010 From imagination to impact 13

NICTA Copyright 2010 From imagination to impact

The Problem

7

NICTA Copyright 2010 From imagination to impact

Small Kernels

8

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

Hardware

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

NICTA Copyright 2010 From imagination to impact

Small Kernels

8

Small trustworthy foundation

• hypervisor, microkernel,
nano-kernel, virtual machine,
separation kernel, exokernel ...

• High assurance components in
presence of other components

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

seL4 API:
- IPC
- Threads
- VM
- IRQ
- Capabilities

The Proof

The Proof

NICTA Copyright 2010 From imagination to impact 10

Functional Correctness

Specification

Code

Proof

NICTA Copyright 2010 From imagination to impact 10

Functional Correctness

Specification

Code

What

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact 10

Functional Correctness

Specification

Code

What

How

Proof

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact 11

*conditions apply

Specification

Proof

Code

NICTA Copyright 2010 From imagination to impact 11

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

NICTA Copyright 2010 From imagination to impact 11

*conditions apply

Specification

Proof

Expectation

Assumptions

Code

Assume correct:
- compiler + linker (wrt. C op-sem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

12

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

12

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

12

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact

Execution always defined:
• no null pointer de-reference

• no buffer overflows

• no code injection

• no memory leaks/out of kernel memory

• no div by zero, no undefined shift

• no undefined execution

• no infinite loops/recursion

Not implied:
• “secure” (define secure)

• zero bugs from expectation to physical world

• covert channel analysis

12

Implications

Specification

C Code

NICTA Copyright 2010 From imagination to impact 13

Proof Architecture

Specification

Proof

C Code

NICTA Copyright 2010 From imagination to impact

Proof Architecture

14

C Code

Design

Specification

NICTA Copyright 2010 From imagination to impact

Proof Architecture

14

C Code

Design

Specification

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

14

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

14

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

22 THREADS AND TCBS

constdefs
switch_to_thread :: thread_ptr ⇒ unit s_monad

switch_to_thread t ≡ do

state ← get;

assert (get_tcb t state �= None);

arch_switch_to_thread t;

modify (λs. s (| cur_thread := t |))
od

constdefs
switch_to_idle_thread :: unit s_monad

switch_to_idle_thread ≡ do

thread ← gets idle_thread;

arch_switch_to_idle_thread;

modify (λs. s (| cur_thread := thread |))
od

definition
schedule :: unit s_monad where
schedule ≡ do

threads ← allActiveTCBs;

thread ← select threads;

switch_to_thread thread

od

OR switch_to_idle_thread

end

22 Threads and TCBs

theory Tcb_A

imports CSpace_A ArchVSpace_A Schedule_A Ipc_decls_A

begin

constdefs
set_thread_state :: obj_ref ⇒ thread_state ⇒ unit s_monad

set_thread_state ref ts ≡ do

tcb ← assert_opt_get $ get_tcb ref;

set_object ref (TCB (tcb (| tcb_state := ts |)))
od

defs
suspend_def:

suspend lazy thread ≡ do

ipc_cancel thread;

set_thread_state thread Inactive

od

constdefs
restart :: obj_ref ⇒ unit s_monad

restart thread ≡ do

state ← get_thread_state thread;

when (¬ runnable state) $ do

ipc_cancel thread;

NICTA Confidential 66

NICTA Copyright 2010 From imagination to impact

Proof Architecture

14

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Proof Architecture

14

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

NICTA Copyright 2010 From imagination to impact seL4

• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

NICTA Copyright 2010 From imagination to impact 16

Did you find any Bugs?

Bugs found

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

• in C: 160

• in design: ~150

• in spec: ~150

 460 bugs

NICTA Copyright 2010 From imagination to impact 16

Did you find any Bugs?

Bugs found

Haskell design 2 py

First C impl. 2 weeks

Debugging/Testing 2 months

Kernel verification 12 py

Formal frameworks 10 py

Total 25 py

Effort

Access Control

Access Control

NICTA Copyright 2010 From imagination to impact

Proof Architecture

18

C Code

Design

Specification

Haskell
Prototype

Access Control Spec Confinement

NICTA Copyright 2010 From imagination to impact

Take-Grant model

19

Lipton and Snyder:

• entities represented as nodes of a graph
• capabilities represented as edges of a graph
• rights are contained in capabilities

e3

e2e1

e0Grant Read,
Write

Create

Read
Write
Create
Take
Grant

The Rights:

NICTA Copyright 2010 From imagination to impact

Operations - Create

20

Create new entitye

(n)
Create ∈ c1

NICTA Copyright 2010 From imagination to impact

Operations - Create

20

Create new entitye

Create ∈ c1

all rights

n

NICTA Copyright 2010 From imagination to impact

Operations - Grant

21

e

e1

e2

Grant ∈ c1

c2

Grant c2 to e1

 with mask R

NICTA Copyright 2010 From imagination to impact

Operations - Grant

21

e

e1

e2

Grant ∈ c1

c2

di
m

in
is

h
c 2

 R

Grant c2 to e1

 with mask R

NICTA Copyright 2010 From imagination to impact

Operations - Remove/Delete

22

e e1
c1

e2
c2

e e1
c1

e2

Remove capability c2

Delete entity e2

Create ∈ c2

NICTA Copyright 2010 From imagination to impact

Operations - Remove/Delete

22

e e1
c1

e2

e e1
c1

e2

Remove capability c2

Delete entity e2

Create ∈ c2

(e2)

NICTA Copyright 2010 From imagination to impact

Operations - Remove/Delete

22

e e1
c1

e2

e e1
c1

Remove capability c2

Delete entity e2

Create ∈ c2

NICTA Copyright 2010 From imagination to impact

Questions

23

For any state in the future:

• Can E gain authority to do X?

• Can E gain more authority than it has?

• How much more?

• Can information flow from A to B?

NICTA Copyright 2010 From imagination to impact

Example

24

e0 e1

C

C

e3
R

e2

e4

R, W

e5

e6

e7

R, W,
G, C7

R, W,
G, C6

R, W,
G, C
3

R, W,
G, C5 R, W,

G, C4

R, W,
G, C2

R, W,
G, C0

R

NICTA Copyright 2010 From imagination to impact

Example

24

e0 e1

C

C

e3
R

e2

e4

R, W

e5

e6

e7

R, W,
G, C7

R, W,
G, C6

R, W,
G, C
3

R, W,
G, C5 R, W,

G, C4

R, W,
G, C2

R, W,
G, C0

R

Authority Barrier

NICTA Copyright 2010 From imagination to impact

Example

24

e0 e1

C

C

e3
R

e2

e4

R, W

e5

e6

e7

R, W,
G, C7

R, W,
G, C6

R, W,
G, C
3

R, W,
G, C5 R, W,

G, C4

R, W,
G, C2

R, W,
G, C0

R

Authority Barrier

Information Flow

Now What?

NICTA Copyright 2010 From imagination to impact

Current Proof

26

C Code

Design

Specification

Access Control Spec Confinement

Haskell
Prototype

NICTA Copyright 2010 From imagination to impact

Current Proof

26

C Code

Design

Specification

NICTA Copyright 2010 From imagination to impact

Even More Assurance?

27

Assembly Code

NICTA Copyright 2010 From imagination to impact

Even More Assurance?

27

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

Assembly Code

NICTA Copyright 2010 From imagination to impact

Even More Assurance?

27

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)Compiler Verification

CompCert

Assembly Code

NICTA Copyright 2010 From imagination to impact

Even More Assurance?

27

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)Compiler Verification

CompCert

Assembly Verification

ARM model, Fox et al
Verisoft

Assembly Code

NICTA Copyright 2010 From imagination to impact

Even More Assurance?

27

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)Compiler Verification

CompCert

Assembly Verification

ARM model, Fox et al
Verisoft

Calling Conventions
Frame Conditions

Assembly Code

NICTA Copyright 2010 From imagination to impact

Even More Assurance?

27

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)Compiler Verification

CompCert

Assembly Verification

ARM model, Fox et al
Verisoft

Calling Conventions
Frame Conditions

Assembly Code

Coq

HOL4

NICTA Copyright 2010 From imagination to impact 28

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

Assembly Code

Even More Assurance?

NICTA Copyright 2010 From imagination to impact 28

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

Assembly Code Cache/TLB model Verisoft XT

Even More Assurance?

NICTA Copyright 2010 From imagination to impact 28

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

Assembly Code

boot result verification

Cache/TLB model Verisoft XT

Even More Assurance?

NICTA Copyright 2010 From imagination to impact 28

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

Assembly Code

boot result verification

Cache/TLB model Verisoft XT

VAMP
FM9001
Intel i7

Even More Assurance?

Hardware Verification

VHDL?

NICTA Copyright 2010 From imagination to impact 28

Assume correct:
- compiler + linker (wrt. C opsem)
- assembly code (600 loc)
- hardware (ARMv6)
- cache and TLB management
- boot code (1,200 loc)

Assembly Code

boot result verification

Cache/TLB model Verisoft XT

VAMP
FM9001
Intel i7

Even More Assurance?

Hardware Verification

VHDL?

NICTA Copyright 2010 From imagination to impact

Systems On Top

29

NICTA Copyright 2010 From imagination to impact

Systems On Top

29

Describes
Binary Interface

NICTA Copyright 2010 From imagination to impact

Systems On Top

29

C system call
bindings

C/C++
progs

Exists:
- standard seL4 library
- used in seL4/Linux
- not hard to formally verify
- verification scheduled

seL4/
Linux

NICTA Copyright 2010 From imagination to impact

Systems On Top

29

C system call
bindings

C/C++
progs

Haskell
runtime

Haskell
Programs

seL4/Haskell:
- early prototype Haskell runtime
- has seL4 systems call bindings
- verification hard
- runtime verification progress in

HASP project @ PSU & Galois

seL4/
Linux

NICTA Copyright 2010 From imagination to impact

Systems On Top

29

C system call
bindings

C/C++
progs

Haskell
runtime

Haskell
Programs

JVM

Java
Programs

seL4/JVM:
- any takers?
- JVM extensively formalised
- widely used
- EAL7 smart card

implementations exist

seL4/
Linux

NICTA Copyright 2010 From imagination to impact

Systems On Top

29

C system call
bindings

C/C++
progs

Haskell
runtime

Haskell
Programs

JVM

Java
Programs

seL4/
Linux

NICTA Copyright 2010 From imagination to impact

Other Architectures

30

NICTA Copyright 2010 From imagination to impact

Other Architectures

30

Intel 32bit

seL4/x86:
- x86 version exists, supports Linux
- verification likely, not started yet

NICTA Copyright 2010 From imagination to impact

Other Architectures

30

Intel 32bit + IOMMU

seL4/x86:
- x86 version exists, supports Linux
- verification likely, not started yet

- Intel VT-d/IOMMU implemented
- enables untrusted device DMA
- verification possible

+ multi core

NICTA Copyright 2010 From imagination to impact

Other Architectures

30

Intel 32bit + IOMMU

seL4/x86:
- x86 version exists, supports Linux
- verification likely, not started yet

- Intel VT-d/IOMMU implemented
- enables untrusted device DMA
- verification possible

- experimental multi processor version
- initial proofs exist

+ multi core

NICTA Copyright 2010 From imagination to impact

Other Architectures

30

Intel 32bit + IOMMU

seL4/x86:
- x86 version exists, supports Linux
- verification likely, not started yet

- Intel VT-d/IOMMU implemented
- enables untrusted device DMA
- verification possible

- experimental multi processor version
- initial proofs exist

New Architectures
- ca 1/3 of seL4 arch dependent
- close to ARM

-> easy to implement and verify

Looking Forward

Looking Forward

NICTA Copyright 2010 From imagination to impact

Trustworthy Embedded Systems

32

• L4.verified:
functional correctness
10,000 loc

• Next step:
formal guarantees for
> 1,000,000 loc

NICTA Copyright 2010 From imagination to impact

How?

Exploit:

• seL4 isolation
• verified properties
• MILS architectures

Hardware

seL4

Linux
Server

Legacy App.
Legacy App.

Legacy
Apps

Trusted
Service

Sensitive
App

TrustedUntrusted

33

NICTA Copyright 2010 From imagination to impact

Challenges

34

• Find right architecture

• Security analysis
– identify trusted components
– ideally take-grant style
– behaviour of trusted components

• Code-level theorem in the end
– connect to kernel proof
– ideally prove trusted component only

Leg

US EU AUS ASIA www

NICTA Copyright 2010 From imagination to impact

Example System

35

• Scenario:

US EU AUS ASIA www

NICTA Copyright 2010 From imagination to impact

Example System

35

• Scenario:

US EU AUS ASIA www

NICTA Copyright 2010 From imagination to impact

Example System

36

SAC

• Multilevel Secure Access Device

NICTA Copyright 2010 From imagination to impact

Example System

37

• Multilevel Secure Access Device

SAC

Currently selected connection: No Active Connection

Secure Access Controller

 Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Login as: hotspy007
Logout

NICTA Copyright 2010 From imagination to impact

Example System

37

• Multilevel Secure Access Device

SAC

Currently selected connection: No Active Connection

Secure Access Controller

 Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Login as: hotspy007
Logout

NICTA Copyright 2010 From imagination to impact

Example System

38

• Multilevel Secure Access Device

Secure Access Controller

 Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Currently selected connection: No Active Connection

Login as: hotspy007
Logout

SAC

NICTA Copyright 2010 From imagination to impact

Example System

38

• Multilevel Secure Access Device

Secure Access Controller

 Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Currently selected connection: No Active Connection

Login as: hotspy007
Logout

The Network has been successfully switched to EU

Currently selected connection: EU

SAC

NICTA Copyright 2010 From imagination to impact

Example System

39

• Multilevel Secure Access Device

Secure Access Controller

 Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Currently selected connection: No Active Connection

Login as: hotspy007
Logout

The Network has been successfully switched to EU

Currently selected connection: EU

SAC

NICTA Copyright 2010 From imagination to impact

Example System

39

• Multilevel Secure Access Device

Secure Access Controller

 Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Currently selected connection: No Active Connection

Login as: hotspy007
Logout

The Network has been successfully switched to EU

Currently selected connection: EU

SAC

NICTA Copyright 2010 From imagination to impact

Example System

40

• Multilevel Secure Access Device

Secure Access Controller

 Switch to Network:
 US
 EU
 AUS
 ASIA
 WWW

Currently selected connection: No Active Connection

Login as: hotspy007
Logout

The Network has been successfully switched to WWW

Currently selected connection: WWW

SAC

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

SAC System

SAC

Components

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Components

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web
server

Components

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web
server packet routing

Components

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web
server packet routing

driverA driverB

driverD

Components

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web
server packet routing

driverA driverB

driverD

Desired Property

No information flow
between providers A and B

through SAC

even if they collaborate

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web
server packet routing

driverA driverB

driverD

Desired Property

No information flow
between providers A and B

through SAC

even if they collaborate

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web
server packet routing

driverA driverB

driverD

Desired Property

No information flow
between providers A and B

through SAC

even if they collaborate

Proving all this correct?

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

SAC

Web
server packet routing

driverA driverB

driverD

Desired Property

No information flow
between providers A and B

through SAC

even if they collaborate

Proving all this correct?

NO!

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

Web
server packet routing

driverA driverB

driverD

Design

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

packet routing

driverA driverB

driverD

Design

SAC-C

SAC-Controller:
Embedded Linux +
Web Server UI

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

packet routing

driverA driverB

driverD

Design

RSAC-C

R= Router
RM = Router Manager
SAC-C = SAC Controller

Router:
Embedded Linux/
Network Routing + Drivers

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

packet routing

driverA driverB

driverD

Design

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller

Design

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller

TIMER

has access to

Design

C
O

M
P

O
N

E
N

TS
NICTA Copyright 2010 From imagination to impact

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

NIC-C = Control Network Card
NIC-D = Data Network Card
CT = Control Terminal
DT = Data Terminal

Net-A = Network A
Net-B = Network B
NIC-A = Network Card for Network A
NIC-B = Network Card for Network B

SAC System

Trusted Components

RSAC-C RM

R= Router
RM = Router Manager
SAC-C = SAC Controller

Router Manager:
< 2kloc
only trusted component

TIMER

has access to

NICTA Copyright 2010 From imagination to impact

 Low-Level Design CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

NICTA Copyright 2010 From imagination to impact

 Abstraction CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

R-code

(R)

(R-mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

ASID Pool

NICTA Copyright 2010 From imagination to impact

Security Goal

TIMER
CHIPTIMER

RM

SAC-D

CT DT

Net-A Net-B

rw
rw

R

r

r

rwcg

c

rw

rw

r

rwcg

NIC-C

NIC-B

NIC-D

rw

r

R-mem

r

rwcgc

rw

rw

rwr
R-code

NIC-A

Goal: No information flowing between providers A and B
Assumption: Info flow through front-end terminal is trusted

NICTA Copyright 2010 From imagination to impact

Plain Take-Grant Analysis

TIMER
CHIPTIMER

RM

SAC-D

CT DT

Net-A Net-B

rw
rw

R

r

r

rwcg

c

rw

rw

r

rwcg

NIC-C

NIC-B

NIC-D

rw

r

R-mem

r

rwcgc

rw

rw

rwr
R-code

NIC-A

NICTA Copyright 2010 From imagination to impact

Plain Take-Grant Analysis

TIMER
CHIPTIMER

RM

SAC-D

CT DT

Net-A Net-B

rw
rw

R

r

r

rwcg

c

rw

rw

r

rwcg

NIC-C

NIC-B

NIC-D

rw

r

R-mem

r

rwcgc

rw

rw

rwr
R-code

NIC-A

NICTA Copyright 2010 From imagination to impact

Plain Take-Grant Analysis

TIMER
CHIPTIMER

RM

SAC-D

CT DT

Net-A Net-B

rw
rw

R

r

r

rwcg

c

rw

rw

r

rwcg

NIC-C

NIC-B

NIC-D

rw

r

R-mem

r

rwcgc

rw

rw

rwr
R-code

NIC-A

Need to know trusted
component behaviour

NICTA Copyright 2010 From imagination to impact

Security Goal

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

Approach:
• label-based security

- tag as ‘contaminated’ if may contain data from Net-A
- NIC-A always contaminated

• Goal: prove NIC-B always ‘not contaminated’

NICTA Copyright 2010 From imagination to impact

Security Analysis

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw

Rules: A
r R

B A B

w W
A B A B

A
r R

B A B

w W
A B A B

NICTA Copyright 2010 From imagination to impact

Life Cycle

RM

SAC-C

CT DT

Net-A Net-B

NIC-C

NIC-A NIC-B

NIC-D

rw

r

rw

rw

1

R-code

(R)

(R-
mem) TIMER

c

r

r

TIMER
CHIP

rw

r

rw

c

rw
r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

(R)

CT authenticates with
SAC-C

CT sends a request
to switch to Net-A RM

SAC-C

CT DT

Net-A Net-B

rw

RW

rw

2

TIMER

c

r

NIC-C

NIC-B

NIC-D

rw

r

cr

R

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

(R)RM

SAC-C

CT DT

Net-A Net-B

rw

R

rw

3

TIMER

c

r

r

 RM receives request
to switch to Net-A

rw

NIC-C

NIC-B

NIC-D

rw

r

c

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

4

R

TIMER

C

r

r

rw

RM creates a new
Router instance R

rwcg
(and gets full rights to

the newly created
object)

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

5

R

TIMER

r

r

rw

RM initializes the
Router instance

rWcg

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW

c

(R-
mem)

R-code

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

6

R

TIMER

r

r

rw

rwcG

c

RM grants to R its
rights to

NIC-A, NIC-D,

R-mem, R-code
TIMER, and itself

rw

r

rwcg

NIC-C

NIC-B

NIC-D

r

rw

rw
c

r

cr

rw

TIMER
CHIP

RW
(R-

mem)

R-code

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

7

R

TIMER

r

r

rwcg

c

RW

RW

R

RWcg

 DT starts to communicate
with Net-A, through R.

This may imply the
creation of new objects

using R-mem and granting
caps to them.

NIC-C

NIC-B

NIC-D

rw

r

 R-mem

R

RWCGc

rw

rw

TIMER
CHIP

RWr
R-code

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

R

TIMER

r
rwcg

c

RW

RW

NIC-C

NIC-B

NIC-D

rw

r R

RWCGc

CT sends a request
to switch to Net-B

(while DT still
communicates with
Net-A through R)

RW

RWcg

r

Rrw

TIMER
CHIP

RW

R

8

R-code

 R-mem

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

R

TIMER

r

r

rwcg

c

RW

RW

NIC-C

NIC-B

NIC-D

rw

r R

RWCGc

 RM receives request
to switch to Net-B

rw

R

RWcg

Rrw

TIMER
CHIP

RW

9

R-code

 R-mem

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

R

TIMER

r

r

NIC-C

NIC-B

NIC-D

rw

r

c

rw

RM revokes all caps
given to R

(using the cap used to
create R)

r

rw

TIMER
CHIP

RW

C

10

R-code

 R-mem

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

11

R

TIMER

r

r

c

NIC-C

NIC-B

NIC-D

rw

r

C

rw

RM revokes
caps of R-mem

(using create cap to
R-mem)

r

rw

TIMER
CHIP

RW
R-code

 R-mem

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

12

(R)

TIMER

r

r

c

NIC-C

NIC-B

NIC-D

rw

r

c

rw

RM deletes R and R-
mem

r

rw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rWF
rWF

13

(R)

TIMER

r

r

c

NIC-C

NIC-B

NIC-D

rWF

r

c

rw

RM flushes
NIC-A, NIC-B and

NIC-D

r

rw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

14

R

TIMER

C

r

r

rw

RM creates a new
Router instance R

rwcg
(and gets full rights to

the newly created
object)

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

15

R

TIMER

r

r

rw

c

RM grants to R its
rights to

NIC-B, NIC-D,

R-mem, R-code,
TIMER and itself

NIC-C

NIC-B

NIC-D

rw

r

cr

rw

TIMER
CHIP

RW

rWcg

R-code
(R-

mem)

NIC-A

Life Cycle

r R

w W

r R

w W

RM grants to R its
rights to

NIC-B, NIC-D,

R-mem, R-code,
TIMER and itself

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

16

R

TIMER

r

r

rw

rwcG

c

rw rwcg

NIC-C

NIC-B

NIC-D

r

rw

rw
c

r

cr

rrw

TIMER
CHIP

RW
R-code

(R-
mem)

NIC-A

Life Cycle

r R

w W

r R

w W

DT starts to communicate
with Net-B, through R.

This may imply the
creation of new objects

using R-mem and granting
some caps to them.

NICTA Copyright 2010 From imagination to impact

RM

SAC-C

CT DT

Net-A Net-B

rw
rw

17

R

TIMER

r

r

rwg

c

RW

RW RWcg

NIC-C

NIC-B

NIC-D

rw

r R

RWCGc

Rrw

TIMER
CHIP

RWr

rw

R-code

 R-mem

NIC-A

Life Cycle

r R

w W

r R

w W

NICTA Copyright 2010 From imagination to impact

So far

68

NIC-C

NIC-A NIC-B

NIC-D

NIC-A

RMSAC-C R

TIMER

NICTA Copyright 2010 From imagination to impact

So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec

68

NIC-C

NIC-A NIC-B

NIC-D

NIC-A

RMSAC-C R

TIMER

NICTA Copyright 2010 From imagination to impact

So far

• Can build systems with
– large untrusted components
– plus few small, trusted components
– trusted = needs behaviour spec

• Use take-grant to model security
– can simulate system
– modelling already finds bugs
– high-level proof in Isabelle/HOL or SPIN
– includes behaviour of trusted component

68

NIC-C

NIC-A NIC-B

NIC-D

NIC-A

RMSAC-C R

TIMER

NICTA Copyright 2010 From imagination to impact

Future

69

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

NICTA Copyright 2010 From imagination to impact

Future

• Need to
verify low-level design

69

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

NICTA Copyright 2010 From imagination to impact

Future

• Need to
verify low-level design

• Building tool-chain for:
– describing cap layout

(capDL)
– generating booter
– generating booter proof
– abstraction to take-grant

69

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

71NICTA Copyright 2010 From imagination to impact

More Future

70

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

...
...

RM TCB

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

 CAP

 PCI bus
config.

IO ports

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

71NICTA Copyright 2010 From imagination to impact

More Future

• Verify
Trusted Component

70

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

...
...

RM TCB

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

 CAP

 PCI bus
config.

IO ports

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

PD

 PDE

PT

 PTE

 FRAME

 FRAME
PTE

 PDE

 FRAME

R VSpace

...
...

 AEP

 EP

RM TCB

 CAP CAP ...

TI
M

E
R

 C
S

pa
ce

 CAP CAP ...

S
A

C
_C

 C
S

pa
ce

IRQ

 CAP

 CAP

...

Network Card A

IO
S

R

Untyped memory objects

...
..

 CAP

Network Card B Data Network Card

IR
Q

R

D
FR

A
M

E
S

IRQ

... IO
S

R

 CAP

IR
Q

R

IRQ

... IO
S

R

 CAP

IR
Q

R

TIMER CHIP

 Timer IO
Ports

 AEP

Timer TCB

SAC_C TCB

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

D
FR

A
M

E
S

D
FR

A
M

E
S

...
...

IRQ

 CAP

IRQ
R

 CAP

ASID Pool

IOSR = IOSpace Root
Pointer

IRQR = IRQ register
reference

DFRAMES = Device Frames

 PCI bus
config.

IO ports

Control Network Card

IRQ

... IO
S

R

 CAP

IR
Q

R

D
FR

A
M

E
S

...

...

71NICTA Copyright 2010 From imagination to impact

More Future

• Verify
Trusted Component

• Refine to C:
– interface with kernel
– use most abstract level

possible
– make sure sec property

preserved by refinement

70

C Code

Design

Specification

capDL Spec

Access Control Spec

C Code

capDL Spec

Access Control Spec

Component seL4

 CAP CAP

CNODE

 CAP

 PD

 ...

R
M

 C
S

pa
ce

RM VSpace

 CAP

 CAP

 CAP

 CAP

 CAPs

 CAP

 CAPs

...
...

RM TCB

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAPs

 CAP

 CAP

 CAP

 CAP

 PCI bus
config.

IO ports

Summary

Summary

NICTA Copyright 2010 From imagination to impact 72

Summary

Formal proof all the way from spec to C.

Formal Code Verification up to 10kloc:

It works.
It’s feasible.
It’s fun.

• 200kloc handwritten, machine-checked proof

• ~460 bugs (160 in C)

• Verification on code, design, and spec
• Systems with trusted components
• The future: formal proof for large systems down to code

Thank You

Thank You

L4.verified

