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Motivation

I Generation of efficient, verified code from Isabelle/HOL
I Requires efficient (purely functional) data structures

I Options
I Some data structures spread around Isabelle library and AFP

I Different interfaces, different sets of implemented operations

I Ad-hoc implementations of efficient DS within larger projects
I Manual editing of generated code
I Using lists for everything

I Also common in unverified functional programming

I Automatic translation from ADT to CDT (Since 2009-2)
I Problems with underspecified functions

e.g. select an element from a set



The Isabelle Collection Framework

I Unified interface to collection data structures
I Easy to use

I Little effort to generate executable code
I Suited for larger developments

I Extensible
I Easy to add new interfaces, algorithms, data structures

I Efficient
I Vastly outperforms default code generator
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Data Refinement

ADT [e.g. ′a set] Abstract Algorithm [f ]

CDT [e.g. ′a RBTree] Concrete Algorithm [f̄ ]

α

I Show

1. P x =⇒ Q (f x) (Correctness of abstract algorithm)
2. invar x̄ =⇒ invar (f̄ x̄) ∧ α (f̄ x̄) = f (α x̄) (Correctness of

Implementation)

I Step 1: Independent from ICF.
I Good setup of automatic methods for Isabelle’s standard types

I Step 2: Usually discharged automatically by simplifier.
I Underspecification (e.g. SOME x . x ∈ S)

I Nondeterministic abstract algorithm: α (f̄ x̄) ∈ f (α x̄)
I Parameterize abstract algorithm over underspecified operation



Interfaces

ADT Abstract Algorithm

Interface Generic Algorithm

CDT Concrete Algorithm

α

interpret

implementation

instantiation

I Interface of CDT specified as locale

I Implementation proof done wrt. locale

I Locale interpreted with CDT

⇒ Separation of implementation proof and data structure



Example

Interface for sets:

locale StdSet = StdSetDefs ops +
assumes empty-correct : α empty = {} and invar empty
assumes ins-correct : invar s =⇒ α (ins x s) = {x} ∪ α s

invar s =⇒ invar (ins x s)
. . .

Implementation of interface:

definition hs-ops ≡ . . .
interpretation hs! : StdSet hs-ops
proof
. . .



Example

Abstract Algorithm:
fun set-a where

set-a [] = {}
set-a (a#l) = (insert a (set-a l))

Generic Algorithm:
context StdSetDefs begin

fun set-g where
set-g [] = empty
set-g (a#l) = (ins a (set-g l))

Correct implementation:
lemma (in StdSet) set-g-correct :

invar (set-g l) ∧ α (set-g l) = set-a l
by (induct l) (auto simp add : correct)

Instantiation: Now available: hs.set-g, rs.set-g, . . .



Extending the ICF

I New interfaces
I New data structures

I Supported by library of generic algorithms
I Implement all operations from a few basic operations
I Adapt one interface to another (e.g. set-by-map)

I New generic algorithms
I Naming conventions make instantiation canonical
I Currently: Ad-hoc script for automatic instantiation



ICF for Larger Developments

I Operations used with different types by GA must be specified
separately

locale MyContextDefs =
StdSetDefs ops for ops :: (nat, ′s) set-ops+
fixes iterate :: (′s, nat, nat × nat) iterator
fixes iterate’ :: (′s, nat, ′s) iterator

begin
definition avg-aux :: ′s ⇒ nat × nat where

avg-aux s == iterate (λ x (c , sum). (c + 1, sum + x)) s (0, 0)

definition avg s == let (c , sum) = avg-aux s in sum div c

definition filter-le-avg s == let a = avg s in
iterate’ (λ x s. if x ≤ a then ins x s else s) s empty

end

I Alternative: Work with fixed CDT
I Switching to other CDT still easy due to uniform naming

scheme. (E.g. replace hs-xxx by rs-xxx)
I Or use abbreviations at top of theory

I Only local changes required to switch CDT
I Invariants explicitly visible

I Cumbersome with nested data structures, e.g. map from keys
to sets of values.

I Real problem with function package
I Isabelle2009-2: Invariants may be hidden in typedefs
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Efficiency

I Inserting/deleting/testing random numbers, and iteration to
sum up numbers in set
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Case Study

I Implemented tree automata library with ICF
I Fixed CDT: Using red-black trees for maps and sets

I Test: Intersect pairs of random automata and check result for
emptiness

I Haskell is fastest, even comparable with Java implementation
I Our library vastly outperforms Timbuk/Taml

I They use lists to implement sets

ICF ICF ICF ICF Taml LETHAL
Language Haskell SML OCaml OCaml(i) OCaml(i) Java

complete 1.5s 6.1s 12.5s 121s 1923s 0.46s
reduced 0.07s 0.41s 0.52s 4.98s 71.64s 0.12s



Conclusion

I Collection Framework for Isabelle/HOL

I Efficient

I Easy to use, suitable for larger developments

Ongoing work

I Add more ADTs (Heaps, Priority Queues, ...)

I Arrays mapped to persistent arrays in ML/Haskell

I Encapsulate invariants in typedefs

Future work

I Equality of keys/elements

I Currently, logical equality is used.
I Not adequate for nested data structures

e.g., hash-set of tree-sets

I Tune existing implementations for efficiency

I State Monads (Imperative HOL): More efficient, but more effort to create
executable code.
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