Trustworthy decompilation: extracting models of
machine code inside an ITP

Magnus O. Myreen

Computer Laboratory, University of Cambridge

Abstract

Modern processors support a large numbers of instructions and a multitude
of features; as a result, detailed formal models of real instruction set architec-
tures (ISAs) are long and hard to understand. Established approaches for proving
functional properties on top of these models tie proofs to a specific model and
require expert knowledge of the underlying model and substantial manual effort
of those performing the proofs.

In this talk, I will explain a novel approach to verification of machine code
which addresses these issues. My approach is based on translation: machine-code
programs are translated into functionally equivalent tail-recursive functions via
fully-automatic deduction. In doing so, the problem of proving properties of
machine-code programs reduces to a problem of proving properties of recur-
sive functions. My approach has several advantages over established approaches
of verification condition generation. In particular, the new approach does not
require annotating the program with assertions; and, more importantly, this
approach separates the verification proof from the underlying ISA models so
that specific resource names, some instruction orderings and certain control-flow
structures become irrelevant. As a result, proof reuse is enabled to a greater
extent than in established methods.

Towards the end of the talk, I will summarise some lessons that were learnt
when implementing this tool for the HOL4 theorem prover. I will also explain
some applications of this decompiler in automatic synthesis of correct code from
functional specifications and explain how verification combined with synthesis
has been used in case studies such as the construction of formally verified im-
plementations of Lisp in ARM, x86 and PowerPC machine code.

The automation described above has been implemented as ML programs
which steer HOL4 to a translation proof for each input machine-code program.



