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This paper is a report on our work in automated (mechanical)
theorem-proving for a functional language. The language is a version of
SASL, originally introduced by David Turner and since elaborated into its
current version, cf. Richards [14], [15]. Moreover, this language has
entered the realm of practicability with the introduction of a prototype
NORMA! machine at the Austin Research Center (ARC) of Burroughs
Corporation. The main objectives of this paper are (1) to report our
experiences with a SASL Prover and (2) to demonstrate the soundness of
our approach via a rigorous mathematical underpinning. The underlying
purpose is to demonstrate the potential for a non-trivial mechanical
system for proving theorems about programs which has a rigorous
mathematical underpinning.

in November 1984, Robert Boyer consulted for about a month with ARC
in adapting the Boyer-Moore theorem-prover (cf. [2]) to SASL. The
verification efforts presented herein use the resulting system, which we
refer to as the S45/ Frover. This paper is divided into three parts. The
first part is descriptive. It begins with an introduction to SASL, and
continues with an introduction to the SASL Prover by way of examples.
Part 1 also includes a discussion of the LIFTing principle which enables us
to reason more effectively about infinite data structures, and closes with
an outline of some of our successful verifications using the SASL Prover.
The second part is theoretical. We prove a soundness theorem which
demonstrates the validity of the theorems proved by the SASL Prover
{assuming that it correctly implements its logic). The proof goes by way
of contructing a model appropriate for the SASL Prover, and then defining
an appropriate isomorphism between it and an appropriate submodel of the
standard SASL domain. Finally, in the third part we consider an alternate
approach which eliminates some of the complications in reasoning about
the error value "bottom” and also avoids the LIFTing principle. As this
approach differs slightly from that used in the first two parts, we also
indicate modifications required from the proof in Part 2 in order to prove
the corresponding soundness theorem. We illustrate this aiternate
approach by briefly discussing our proofs of correctness of 3ASL
pattern-matching and unification programs. (See Kaufmann [3], [6] for
detailed proofs of correctness of these programs.)

A passing familiarity with Pure Lisp notation is assumed in this paper.
Also, some of the more technical details rely on the presentation of a
Computational Logic in Boyer-Moore [2], though these are not necessary for
a first reading of this paper. Other than these exceptions, this paper is
intended to be self-contained for the reader familiar with the rudiments



of logic. In particular, we do nof assume familiarity with SASL.
A preliminary report on this (and other) work was presented at a talk
briefly abstractéd in Kaufmann [10].
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Schneider, and Douglas Surber, for their input on this work.




PART 1: DESCRIPTION OF SASL PROVER AND RESULTS
Here is an outline of this part.

Introduction to SASL

Introduction to the SASL prover
Introduction to the logic of the SASL prover
The LIFTing principle

Some illustrative examples

The correctness of a higher-order mergesort

Mmoo w >

1A Introduction to SASL

Let us begin with a2 simple and familiar example: a definition of the
factorial function, which we name fact!. (We'll define an alternate
version fact2 later.) Notice that the juxtaposition "fact! x" represents
function application.

factl x = (x=0) > 1;
X ¥ fact1(x-1)

The meaning of the construct "a -> b; ¢” is "if a equals TRUE, then return
b; if a equals FALSE, thenreturn ¢; otherwise return ERROR". (Yes,
there is actually a value ERROR in SASL, usually called "BOTTOM".) SASL
also has list values. For example, the following function returns the last
element of a given list. "[]", pronounced "nil", denotes the empty list; hd
("nead") returns the first element of a given list; t1 ("tail") returns all
but the first element of a given list. (Thus hd and tl are analogous to
Lisp's car and cdr, respectivelly.)

Jast L=(tiL=[]) - hdL; ’
last (L1 L)

Notice that SASL is really just a sugared (and untyped) lambda calculus
with pairing (and with constants for numbers, booleans, and characters)Z.
In fact, in the spirit of untyped lambda calculus, functions can take
functions as arguments and return functions as values. For example, the
following basic function takes arguments f (generally a function) and L
{(generally a list) and returns the result of applying f to every member of



L. (Here list is the recognizer for lists.)

map f L =(L=[) >[I
(Tist L) -> f(hd L) : map f (t1L);
BOTTOM

Functions in SASL are actually cwr/ed. that is, they are all really
functions of one argument. For example, if we define

pIUS Xy = Xty

and let L be the list [3,4,5] (i.e the list with elements 3, 4, and 5 in that
order), then

map {(plus 7) L

denotes the 1ist [10,11,12], since (plus 7) denotes the function which
adds 7 to any argument.

SASL allows infinite lists, such as the list of integers from n on,
defined as follows. Here, " is the list construction operation, analogous
to Lisp's "cons” (and pronounced the same). thus, hd(xy) = x, and for lists
y we also have tl(xy)=y. Unlike Lisp, the tail of (x:y) is BOTTOM if vy
is not a list; such a list is said to Zerminate with BOT7OM, rather than
with M. Notice that ™" binds more loosely than juxtaposition. Thus the
list of integers from n on is simply (from n), where:

fromn=n:fromén+1) .

Here is a group of SASL definitions, the first of which defines the
(infinite) list of primes, in increasing order.4

primes = sieve (from 2)

fromn=n:from(n+1)

sieve L=hd L : sieve (filter (hd L) (£1L))

filteral =((hd L) REMa = 0) -> filter a {t1 L),
hdL: filtera(ti L)

infinite lists such as primes are useful in finite computations. For
example, the expression "primes 100" denotes the 100th prime in the
context of the definitions above, as juxtaposition denotes list



subscription rather than function application when the first expression
denotes a list. (The paper Hughes [4] gives a nice account of how to use
infinite data structures, and more generally of applicative languages such
as SASL.)

As the reader may have guessed by now, the following principle holds:
to every set of SASL definitions corresponds SASL objects for which those
aefinitions hol/d (8, §8, Lemma D6)).

1.B Introduction to the SASL prover

The Prover begins with an initial database of facts about SASL,
numbers, booleans, and so on. The user can extend this database by adding
definitions and by instructing the Prover to (attempt to) prove theorems.
There are two ways to add definitions. The DEFN command has the
following syntax:

(DEFN function_name argument_list
body)

Every function symbol occurring in body must be in the initial SASL
database or have already been defined by the user, except that
function_name itself may occur in body, i.e. recursion is permitted. If
the function is recursive, then the Prover will attempt to prove that the
function is total, i.e. it always returns a value (for all choices of
arguments), by proving that some function of the arguments always
decreases according to some well-founded relation. (See Chapter 11l of
Boyer-Moore [2] for details.) If the Prover cannot do so, then it rejects
this definition. Now many recursively defined SASL functions are not
total, such as from defined above. However, there is another command
that one may use for SASL functions, which is SASL-DEFN. This command -
has the same syntax as DEFN. The difference is that it checks that every
function called in body (except the one being defined) is a SASL function,
i.e. either belongs to a given predefined set of known SASL functions (the
SASL primitives, defined in Subsection 2.B(iii)) or else is one which was
previously defined using SASL-DEFN. (One added technical point: the
function symbol RENAME gets special treatment, namely, if the term
(RENAME 'f) occurs in body, then the function symbol f must either be
the one being defined or must be a SASL function in the above sense.) If
that check succeeds, then this definition is added to the database. The
rationale here is that the semantics of SASL guarantee that every such
definition has a solution, as mentioned above. Finally, we note that for



both the DEFN and SASL-DEFN commands, the function being defined may

not occur in the initial SASL database nor may it have been previously

defined by the user; otherwise the Prover will reject the definition.
The command to prove a theorem has the following syntax:

(PROVE-LEMMA theorem_name theorem_types
theorem_statement
hints)

where hints is optional, and theorem_types is "(REWRITE)" if the user
wants the system to use this theorem as a rewrite lemma in the future,
and otherwise is generally "NiL".

In Appendix 1, which we suggest as the reader’s next stop, these
commands are used to prove that for all non-negative integers n, factl n
=fact2 1 n where fact! isdefined above and factZ is defined using an
accumulating parameter:

fact2 acc n = (n=0) -> acc;
fact2 (acc*n) (n-1)

This and all definitions, however, must be given to the prover inLisp
syntax, without infix operators.3 Our convention has been to prefix SASL
functions with "SASL-"; for example, the subterm "acc*n” appears as
"(SASL-TIMES acc n)".

1.C Introduction to the logic of the SASL prover

In this section we say more about the initial SASL database of facts.
The commands used to create this database are to be found in Appendix 2.
we allow ourselves to speak informally about the basic Boyer-Moore
Computational Logic, as details may be found in Chapter I11 of [2].

The logic allows for so-called s/e//s, which are really types and may
be defined inductively. The intuitive idea can be given informally as
follows. The NUMBERP shell contains all the non-negative integers, while
the NEGATIVEP shell contains the rest. The TRUEP and FALSEP shells
each contain one (boolean) value. The FINLISTP shell contains every
hereditarily finite list, i.e. every list whose head is either a hereditarily
finite Tist or is not a list at all and whose tail is a hereditarily finite list
or is BOTTOM, henceforth spelled BTM and put by itself in the BTMP
shell. The LISTP shell contains the rest of the lists. Finally, the



LITATOM shell holds functions. (There is no shell for characters; not
every object needs to belong to a shell) Let us now get a bit more precise.

A shell comes with a recagnizer; a constructor; an (optional) sottom
object; and for each argument of the constructor an gccessor (roughly,
inverse to the constructor), a fype restriction, and a derault value. For
example, one built-in shell is the one with recognizer NUMBERP which
contains the non-negative integers. The consiructor is ADDT, which
means that NUMBERP returns T (TRUE) on exactly those objecis of the
form (ADD! x) together with the optional &aoiéfom object, which for this
shell is 0. The accessor is (not unexpectedly!) SUB1. The Zipe
restriction® for the argument to ADD1 is that the argument be a
NUMBERP; if not, then that argument is coerced to the aerau/t valuve, which
happens to be the "bottom object” O of the NUMBERP shell. For example,
{(ADD1 T) = (ADD1 0), usually denoted 1. (Similarly, (ADD1 1) is
abbreviated by 2, (ADD1 2) by 3, and so on.) Here then are the built-in
shells. We refer to them by their recognizers. Notice our convention of
using boldface for terms.

O NUMBERP, as defined above.

0O NEGATIVEP, with constructor MINUS, no bottom object, accessor
NEGATIVE-GUTS, type restriction NUMBERP, and default value O.
(Note: shells are disjoint, and hence (MINUS 0)=0, which is of course
unfortunate. we'll partially rescue ourselves from this anomaly in
Part 2. However, notice that the function SASL-DIFFERENCE defined
in Appendix 2 never returns the value (MINUS 0).)

O TRUEP, with constructor TRUE, no bottom object, and no accessors,
type restrictions or default values since TRUE takes no arguments. As
in Boyer-Moore [2], we abbreviate (TRUE) by T.

O FALSEP, defined analogously to TRUEP.

O LITATOM, which takes one argument, has bottom object NIL, and has no
type restriction -- and that's all we need to know for now about this
shell.

O LISTP, with constructor CONS, no bottom object, accessors CAR and
CDR and with no type restrictions and default value of NIL for both
accessors.



WARNING:
CAR and CDR are not used by the SASL Prover -- they have nolhing to do

with SASL's hd and tl functions.

Wwe also add the following shells to create the SASL world. The reader may
wish to compare these descriptions with the corresponding ADD-SHELL
events in the beginning of Appendix 2. (By "events” we mean commands to
the Prover.)

O BTMP, with constructor BTM taking no arguments, and that's that (as
for TRUEP).

O FINLISTP, with constructor FINPAIR, bottom object SASL-NIL,
accessors FINHD and FINTL, type restriction of non-LISTP and
default value of BTM for the first argument, and type restriction that
the second argument must be 2 BTMP or a FINLISTP with default value

of BTM.

Notice that if the second argument of a FINPAIR isnot a list, it is
coerced to BTM; for example, (FINPAIR 2 3) = (FINPAIR 2 BTM). This
accords with the behavior of SASL "cons”, which is not strict in either of
its arguments; that is, aib is a list for all a, b (and is never BOTTOM).

Henceforth we refer to the set of all shells defined above as e sef of
0asic SASL shel/s. The sense in which these shells correspond to sets of
SASL values will be made precise in Part 2.

A number of SASL facts are also included in the initial SASL library
(Appendix 2). The DCL command is used to declare a function; that is, DCL
is like DEFN except that the body is omitted. The ADD-AXIOM command
is like the PROVE-LEMMA command, except that the theorem-prover
accepts the given statement without proof. Hence, it is important to
verify such statements by hand, as we do (at least in outline) in Part 2.
working through Appendix 2, one sees that the SASL functions (SASL-)
cons, hd, and t1 are defined using the functions associated with the
FINLISTP shell unless one of the arguments is an infinite list structure
(i.e. a2 LISTP), in which case the declared functions CONS-INF, HD-INF, and
TL-INF are used. Subsequent axioms explain the relationships among all
these functions. As remarked above, CAR and CDR are not used here at
all. Rather, the LISTP shell is merely used as a convenient receptacle for
the infinite list structures, since it has to be used for something anyhow
(as it's built into the guts of the Prover).

Functions are currently handled in a rather awkward way. Recall that



the LITATOM shell is used to hold the functions (in a nonconstructive
way, much as the LISTP shell holds the infinite list structures). Early on
in Appendix 2 we declare a function AP, which is intended to be function
application. The behavior of AP is explained by the axioms suffixed
“REP", such as:

(ADD-AXIOM SASL-HD-REP
(REWRITE)
(EQUAL (AP (RENAME "'SASL-HD) X)
(SASL-HD X))

(Here, 'SASL-HD is actually a LITATOM obtained by continually applying
the constructor for LITATOM to the ASCII characters of "SASL-HD", but
that's not important.) The idea of this axiom would be clear if "(RENAME
'SASL-HD)" were simply replaced by “SASL-HD". The function RENAME is
introduced for the following reason. First we note that such axioms are
added whenever a function is defined or declared by the user. Now suppose
that the user defines his own function, say FOO, which also happens to be
the same function as SASL-HD. Intrinsic to the Boyer-Moore logic is the
assumption that the shell constructors are one-to-one (if there are no
type restrictions), and hence 'SASL-HD = 'FOO. However, because we wish
to prove function equality in some cases, we have an extensionality axiom
near the end of Appendix 2 which says that if two functions act the same
on all arguments, then they are equal. Hence we conclude 'SASL-HD = 'FOOC,
contradicting the conclusion just reached above. The correct conclusion is
that (RENAME "SASL-HD) = (RENAME 'FOO), which is proved using
extensionality together with the axiom for 'SASL-HD displayed above
along with the corresponding axiom for 'FOQ.

Axioms such as the above "REP" axioms are also added automatically
whenever the user invokes the SASL-DEFN command. Suppose the user
adds a definition by:

(SASL-DEFN FOO (X)
(BAR X))

The the system adds the following additional axiom automatically.
(FOO X) = (AP (RENAME 'FOO) X)

If there are two arguments, then the added axiom reflects the currying
mentioned in Section A: given



(SASL-DEFN FOO2 (X Y)
(BARZ X Y))

the system adds
(FOO2Z X Y) = (AP (AP (RENAME 'FOO2) X) Y)

In addition, the system also adds axioms saying that partial applications
are functions. That is, given a definition

(SASL-DEFN NAME (X; X5 ... X5)
BODY)

the system adds axioms

(LITATOM (AP (AP (... (AP (RENAME 'NAME) X 1) ..) X;_1) X;)

for 1<i<n. (Recall that LITATOM is the recognizer for functions.)

The reader is welcome to read through Appendix 2, though the
interesting parts are commented on above already. we'll return to
Appendix 2 in Section 2.B, where we will consider soundness. One final
remark: the function symbol AP-OUTER corresponds to juxtaposition, so
that (AP-OUTER xy) denotes the applicationof x to y (ie (AP xy))if
¥ is a function, but denotes (SUBSC x v, i.e. list subscription, if x isa
list.

As mentioned at the start of this section, a comprehensive account of
the basic logic can be found in Boyer-Moore [2]. We remark however that
(6) and (7) on page 39 of [2] (establishing a well-founded relation for each
shell) are ignored in this paper, since there is a fixed set of well-founded
relations used in the implementation, namely, the standard order on the
non-negative integers and its two-fold and three-fold lexicographic
products.

1.0 The LIFTing principle

we first illustrate this principle by way of an example. Suppose one
wants to prove the associativity of the SASL function append, which can
be defined as follows: :



append x y = “1list x => BOTTOM;
‘ x=[] -> (list y => y; BOTTOM);
hd x : append (t1 x) vy

Wwe have found that the following approach often works fairly well. The
idea is to prove the given theorem first under the assumption that certain
of the variables do not denote infinite data structures. Here is the
statement of that theorem:

append (append x y) z = append x (append y z)
for x,y,z not infinite data structures (i.e,, not LISTPs)

It's easy to see from the definition of append that this theorem helds if

x isnot alist, i.e. if (list x)=T. So let us informally prove the result for
x afinite list, by induction on the structure of x. If x=[], then the
theorem clearly holds. Assuming the theorem holds for X, we prove the
result for axx as follows:

append (append (a:x) y) z)
= append (2 : append x y) z
= 2 append (append X y) z
= a: append x (appendy z)  (by the inductive hypothesis)
= gppend (a:x) (append y z)

Now that we know that the theorem hoids for non-LISTPs, we may use
the LIFTing principle to conclude that the theorem holds without this
restriction. A formal statement of the LIFTing principle can be found in
Section 2.C. For now, we simply note that it includes the following. Let L
be a list of variables. Suppose that t1 and t2 are SASL terms and that
the equation [t! =t2] is valid under the assumption that the variables in
L arenot LISTPs. Then [t! =t2] isvalid without that assumption.
Intuitively, any disagreement between these terms would show up after
some finite amount of computation which only refers to finite parts of the
variables in L. Again, we'll be precise about this in Part 2 (specifically,
in Lemma 2.4).

Let us now show the commands given to the Prover in order to verify
the associativity of append. The strategy that we use here is fairly
typical of several proofs that we have carried out on the Prover. We
define not only the SASL append function, SASL-APPEND, but we also
define a "finite analogue” APPEND which is intended to agree with the

1



SASL version on all X, vy, and z which are not LISTPs. The advantage of
this approach is that since the Prover is presented with the finite version
APPEND using the DEFN command, it generates an induction principle in
the course of accepting that definition which is used to prove the
associativity of APPEND automatically. In conjunction with the theorem
APPEND-IS-APPEND which asserts the equivalence of the SASL append
function with its finite analogue (when the variables are not LISTPs), it
is then able to conclude the associativity of SASL-APPEND (see
"SASL-APPEND-ASSOC") under this same assumption. Finally, it LiFTs the
result to apply to all x,v, z. Here, then, are the events given to the
Prover. First, the definitions of the SASL append function and its "finite
analog™:

(SASL-DEFN SASL-APPEND (X Y)
(SASL-IF (SASL-NOT (SASL-LIST X))
(BTM)
(SASL-IF (SASL-EQUAL X (SASL-NIL))
(SASL-IF (SASL-LIST Y) Y (BTM))
(SASL-CONS (SASL-HD X) (SASL-APPEND (SASL-TL X) Y)N))

(DEFN APPEND (X Y)
(IF (FINLISTP X)
(IF (EQUAL X (SASL-NIL))
(IF (FINLISTPY) Y (BTM)D)
(FINPAIR (FINHD X)
(APPEND (FINTL X) )N
(BTMM

Now our plan is to first prove that SASL append is associative when
restricted to non-infinite structures. To that end, we prove a lemma
which asserts that under this restriction, the SASL append function is
the same as its finite analogue.

(PROVE-LEMMA APPEND-IS-APPEND (REWRITE)
(IMPLIES (AND (NOT (LISTP X))
(NOT (LISTP YD)
(EQUAL (SASL-APPEND XY}
(APPEND X Y))))

The Prover proves this automatically, choosing to use the induction
principle generated when the definition of APPEND was accepted. Next, it

12



uses that induction to prove the associativity of the finite analogue,
followed by easy rewriting (with the lemma just given) to yield the result
for the SASL append function restricted to non-infinite structures.

(PROVE-LEMMA ASSOC-APPEND (REWRITE)
(EQUAL (APPEND (APPEND X Y) Z)
(APPEND X (APPEND Y Z)J))

(PROVE-LEMMA SASL-APPEND-ASSOC (REWRITE)
(IMPLIES (NLISTP X)
(IMPLIES (NLISTRY)
(IMPLIES (NLISTP Z)
(EQUAL (SASL-APPEND (SASL-APPEND X Y) Z)
(SASL-APPEND X (SASL-APPEND Y Z))1)))

Finally, we would like to remove the assumption that X, Y, and Z are not
infinite structures (LISTPs), as described above. The following LIFT
command is the one that carries out the final step, i.e. the removal of the
finiteness assumption. It has the following syntax:

(LIFT lifted_theorem_name theorem_types source_theorem_name
variables)

where lifted_theorem_name is the name of the resulting theorem,
theorem_types is as before (usually "(REWRITE)" or "NIL"),
source_theorem_name is the name of the finite version that has
already been proved, and variables is a list of variables which have been
assumed to be non-LISTPs in the source theorem. A syniax check is made
to assure that the source theorem has a syntactic form appropriate for the
application of LIFTing, as described in Section 2.C. In particular,
equations between terms, all of whose functions are SASL functions, are
allowed. In the present example, then, we give the command

(LIFT SASL-APPEND-ASSOC-LIFTED (REWRITE) SASL-APPEND~ASSOC
XY 2Z)

This command then adds a theorem named SASL-APPEND-ASSOC-LIFTED
to the database, with statement

(EQUAL (SASL-APPEND (SASL-APPEND X Y) 7)
(SASL-APPEND X (SASL-APPEND Y Z)))



and the proof is complete.
The LIFTing principle would not be valid if applied to arbitrary
theorems. Consider for example the following statement:

(NOT (EQUAL X (1:0))

This statement is true for all non-LISTPs. However, the infinite list of
ones, defined by

X=1X,

shows that the statement above can fail for infinite lists. In fact, we'll
see in the proof of Lemma 2.4 that the "NOT" above is the source of the
problem, and our syntactic restrictions for use of the LIFTing principle
will treat "NOT" very carefully.

1.E Some illustrative examples

Appendix 3 contains a sequence of events (commands to the Prover)
which ran successfully and contain several theorems. These were
essentially reported in Boyer-Kaufmann [1]; the only difference is that the
first six events of Appendix 2 in [1] have been replaced in our latest run by
the six events presented above (which use a correct version of SASL
append).

The first group of events in Appendix 3 culminates in
THEOREM-SASL-GLUE-LIFTED, which (informally) asserts that if L isa
finite tree with character strings at the leaves, then the appropriate
flattening of that tree is also a character string. Since the SASL function
tree (which recognizes trees) is defined in terms of the higher-order
function all, and since the Boyer-Moore system is not designed explicitly
to handle such functions, the finite analogue of tree (namely, AUX-TREE)
is defined using an extra parameter "FLAG", which indicates whether one is
looking at the head or the tail of the tree. The flattening function,
SASL-GLUE, also has such a finite analogue with an extra parameter
"FLAG". In fact, as the lemma AUX-GLUE-IS-GLUE-AND-MAP-GLUE shows,
(AUX-GLUE T) is really SASL-GLUE while (AUX-GLUE F) is really
{(MAP SASL-GLUE).

The next group of events is a mechanical proof of a theorem mentioned
in Turner [19], namely, if L is an infinite list then appendL K =L for all
K. The function REAL-LENGTH is defined in the initial database of SASL



facts (near the end of Appendix 2), and is intended to give the "real
length” of an arbitrary list (where an infinite list has real length BTM, but
a list of the form (x; :..: X, : BTM) has real length n rather than (SASL)

length BTM). The function INF-LIST is defined after REAL-LENGTH, and
is intended to recognize infinite lists. The proof uses these two functions
along with a finite analogue LEN of the SASL length function.

The third group of events culminates in a statement that every list
whose length does not equal BTM fis the reverse of its reverse.

Unlike the first three groups, the final group of events does not involve
the lifting principle. It does however involve infinite lists, as it
culminates in the statement that (from n), = n+k-1. (from is defined in

section A)

A more substantial example is a proof of correciness of a SASL
guicksort function, as reported in Kaufmann [7]. There were few surprises
in that effort, however, so let us move on to consider a sorting program
which takes the ordering as a parameter. We happened to choose
mergesort for this purpose.

1.F The correctness of a higher-order mergesort

To save space we omit the detailed list of events leading to the proof
of correctness of a higher-order mergesort, but instead summarize that
proof. First, here are the main SASL definitions. Notice that the first
parameter 1t of mergesort is intended to be a binary, boolean-valued
function -- usually, the characteristic function of a total order. However,
the main theorem will be general enough to allow 1t to be an arbitrary
binary function. The auxiliary function merge takes ftwo lists which are
already sorted according to its parameter It and merges them together to
produce a sorted list.

mergesort 1t L =
“(list L) -> BOTTOM;
L=[1->1J;
tiL={-1L
merge 1t {(mergesort 1t (odds L))
(mergesort 1t {odds (t1L))
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merge ItLM=
“(list L & list M) -> BOTTOM:
L=[]->M;
M=[1->L;
1t (hd L) (hd ™M) ->hd L :merge it (t1L)M;;
hdM:merge It L (11 M)

odds L =
L={]-> [;
tiL={-1;
hd L : odds (t1 (1 L))

Next, we present the main functions given to the Prover with the DEFN
command. They are used to state the theorems. The first of these is a
rather unusual definition of what it means for a list to be sorted with
respect to LT. The idea is that for consecutive members x,y of the list,
either [x LT y] is true or else at least [y LT x] is false. (That is, it's OK and
perhaps even unavoidable that both [x LT yland [y LT x] are false, if LT is
not a total order.) It's easy to see that if LT is indeed a total order, then
this definition agrees with the usual one. (in fact a lemma has been
proved to this effect for the cases that LT is ordinary < or <)

(DEFN SORTED (LT L)
(IF (NOT (FINLISTP L))

T

(IF (EQUAL L (SASL-NIL))
T
(IF (EQUAL (FINTL L) (SASL-NILY)
T
(AND (OR (EQUAL (AP-OUTER (AP-OUTER LT (FINHD L))

(FINHD (FINTL L))

T ]
(EQUAL (AP-OUTER (AP-OUTER LT (FINHD (FINTL L))
(FINHD L))
F)

(SORTED LT (FINTL L))IN)N)

The next definition is for a function PFINLISTP (Araper FINLISTP), which
returns T on any FINLISTP which terminates with NIL, i.e. any list of the
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(DEFN PFINLISTP (L)
(IF (NOT (FINLISTP L))
F
(IF (EQUAL L (SASL-NIL))

T

(PFINLISTP (FINTL L))

The function OCCURRENCES checks to see how many times some X occurs
in a given finite list L

DEFN OCCURRENCES (X L)
(IF (NOT (FINLISTP L))
0
(IF (EQUAL L (SASL-NIL))
0
(IF (EQUAL X (FINHD L))
(ADD1 (OCCURRENCES X (FINTL L))
(OCCURRENCES X (FINTL L))

There are also finite analogues defined for MERGESORT, MERGE, and ODDS;
as before, we will refer to the SASL versions by prefixing them with
"SASL-". Here are the main theorems proved about MERGESORT. As both of
these results involve non-SASL functions, we do not attempt to 1ift them
in any way; besides, mergesort doesn't terminate on infinite lists anyhow.

1. Mergesort returns a sorted list:
(IMPLIES (PFINLISTP L)
(EQUAL (SORTED LT (SASL-MERGESORT LT L)) T))

2. Mergesort returns a permutation of the given list, if it "halts™
{(IMPLIES (AND (NLISTP L)
{(EQUAL (SASL-PFINLISTP (SASL-MERGESORT LT L)) T
(EQUAL (OCCURRENCES X (SASL-MERGESORT LT L))
(OCCURRENCES X L))}

The second result may appear weak because of the second hypothesis, but
the idea is to remove it in particular cases. We tried this out for the case
of finite lists of nonnegative numbers (NUMBERPs) ordered by ordinary
integer '¢. Let NUMLIST be the recognizer for such lists:



(DEFN NUMLIST (L)
(IF (NOT (FINLISTP L))
F
(IF (EQUAL L (SASL-NIL))
T
(AND (NUMBERP (FINHD L))
(NUMLIST (FINTL L))

The following results were then proved, using the general results and their
lemmas.

3. Mergesort ona NUMLIST returns a NUMLIST:
(IMPLIES (NUMLIST L)
(NUMLIST (MERGESORT (RENAME 'SASL-LT) L))

4. Mergesort returns a permutation of a NUMLIST:
(IMPLIES (NUMLIST L)
(EQUAL (OCCURRENCES X (SASL-MERGESORT (RENAME 'SASL-LT)L)
(OCCURRENCES X L))



PART 2: SOUNDNESS

In this part we provide a theoretical basis for the Prover discussed in
Part 1. In Section A we construct term models for the Prover, in a general
setting not specific to the SASL modification of the original Boyer-Moore
system. Moreover, we state a useful lemma showing soundness in a
general sense, and we indicate how to extend interpretations (as defined
below) when presented with a DEFN event. In Section B we specialize to
our (SASL) Prover, showing how to build interpretations corresponding to
sequences of events. Section C contains a proof of the validity of LIFT
events for directedly complete propositions. In Section D we consider the
type set computations which take place at the time of SASL-DEFN events.
Finally, everything is in place to conclude with the soundness theorem in
Section E. Throughout this part, we emphasize what is new about this
Prover relative to the original version described in [2]. However, we do
give definitions and details for that version as well, when appropriate.

The logic we use is simply ordinary first-order logic, restricted to
universal (and quantifier-free) sentences, embellished as described below
(with LIFT events, for example). In particular, there is no need for any
flavor of Hoare triples or the like, as often used for reasoning about
programs in imperative languages.

2.A A "term model” for the Prover; interpretations

In this section we construct a fesv7 mode/ for the Prover which is to
be used to prove a soundness theorem demonstrating the validity of our
approach. indeed, this section is independent of SASL; it provides a mode]
for the original Boyer-Moore Theorem-Prover as well (relative to any
given set of shells). Some familiarity with Boyer-Moore [2] may be helpful
in this section for a few of the technical details. ~

Fix a sequence S of shells and aset AT of afoms, and let B be the
union of AT with the set of bottom objects of 5. We define the ferm
mogel M to be the set of all proper ferms built up from B using the
constructors of 5. that is, every element of B is aproper term, and if
is a constructor of 5 taking n argumentsand ty, .., t, are proper terms

which meet the respective type restrictions of f, then (f t; tﬂ} isa

proper term. (It is clear what it means for a type restriction # to hold
of T atype restriction corresponds to a collection of shells, one of
whose constructors or bottom objects must be the leading function symbol
of t inorderfor fr toholdof t. Asin[2], we think of the elements of
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AT as lying in a shell OTHER.) The class of Zerms is defined similarly,
but without the type restrictions and with variables allowed as well. In
particular, a variable is a term.

Now M as defined above is a universe corresponding to a set of shells,
but we still need to consider a setting in which one has functions on that
universe which correspond to the DEFN events submitted to the Prover. An
interpretation for (an arbitrary set) A is a mapping from a set of
function symbols (each tagged with an arity) to functions on A ({each
with the appropriate arity). (Most logic textbooks also allow relation
symbols, but we will not need them.)

Let us define the bdas/c interpreiation £y {relative toa ﬁxed

sequence S5 of shells) for M to be the interpretation for M whose
domain is the set of all function symbols of members of 5 together with
several other function symbols, defined as follows. For each given shell,
let CONST be its constructor, b its (optional) bottom object, R its
recognizer, ACi (1¢i¢n) its accessors, tri (1¢i<n) its type restrictions, and

dv; {1<i¢n) its default values. (Note the close tie with pp. 38-39 of [21)

The function symbol COUNT is intended to denote a function which
measures roughly the maximum depth of the constructors in a given term.

Let r=7y R, const = /g CONST, and ac; = 75 AC;, let t; (1<i<n) be
arbitrary elements of 1M, and let count = 75 COUNT. Also let t;" =1t; if
try holds of ty; otherwise t;"=dv;. Notice that (CONST t¢ ... t;") is
the form of an arbitrary element of M- AT. Then we define:

r(CONST t;" .. ty) =T

rb=T (if bexists)
r {CONST” t; tn) =F for CONST a constructor of a different shell

from that of CONST and (CONST® ty ... tn)EM

rb =F forb" abottom object of another shell
ra=F for agAT
const{ty,. t,) = (CONST t," ... t;")

ac; (CONST ty" ... ty) =ty
count (CONST t" ... ty') = count (ty7)+ ..+ count (T, + 1

count (b) =0
count (a) = 0 for aeAT
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Also fy (EQUAL) is the characteristic function of equality, and !g

behaves the expected way on the other built-in functions of the Prover (IF,
AND, OR, NOT, LESSP, PLUS, and so on).

For avariable-free term t and an interpretation 7, we say that t
holds in I if Ht)=F. (So if the leading function symbol of t is EQUAL
or a boolean connective, then we know that 7(t) is actually T.) More
generally, aterm t Ao/ds /in 7 if for every variable-free term t
resulting from substituting for the variables in t, t" holdsin 7. The
following lemma will be useful in our proof of soundness. [t follows from
the fact that the axioms clearly hold in 7 and of course, propositional
consequence preserves "holding in" 7. (We omit the details.)

Lemma 2.1 {(soundness of the logic). Fix an interpretation 7 for the term
model M and let S be any collection of terms which hold in 7. Let t be
a term which is provable in the Boyer-Moore Computational Logic using as
axioms terms which hold in 7. Then t holdsin 7. O

In the course of carrying out a proof, one generally extends the
“environment” with DEFN and SASL-DEFN commands. We'll deal with
SASL-DEFN in the next section; for now, let us consider DEFN commands.
By the argument on pages 46 to 51 of [2], every DEFN command defines a
unique function;

Lemma 2.2 (extension by DEFN events). Let /7 be an interpretation for the
term model M and let def be a definition f xy .. X, = body, where f is

not in the domain of 7 but every other function symbol of body is in the
domain of /. Then there is a unigue interpretation extending 7 by adding
f to its domain such that (EQUAL (f x4 .. Xx,) body) holds. Henceforth

we refer to this extension as 2he extension or 7§ vig def. O
2.B Interpretations corresponding to sequences of events

Our basic strategy for proving soundness is as follows. One sets up &
one-to-one correspondence between a term model and an appropriate
subset of the SASL domain, namely one which has the same first-order
properties as the SASL domain. By viewing the term model alternatively
as a SASL domain, one can make sense of SASL-DEFN events. We then
argue the soundness of LIFT events and of the SASL-DEFN type set
computation in Sections 2.C and 2.D.



Here are the stages in which we assign interpretations to sequences of
events.

(i) Defining an appropriate correspondence between two universes

(i1) Interpreting (on M) the declared functions of the initial database: the
initial interpretation

(111) Extending the initial interpretation according to SASL-DEFN events

(iv) Ssummary

(1) Derining two universes and an ooroprialeé corresponaence belween
them

Let AT be the set of SASL characters, except that one character is
omitted. (That character will be mapped to (MINUS 0).) Let M be the
corresponding term model, in a context where the existing shells are
exactly those introducted in Section 1.C, i.e. those appropriate for SASL.

The intended model for SASL is known as the SAS. domain, denoted ¥,
and is constructed from basic principles in Kaufmann [8]. As it isa
standard Scott-style domain (actually a c.p.o., or continuous partial order),
it can be constructed using results of Scott, as in [16]

Fix afinite set £ of SASL values, i.e. elements of the SASL domain
V. Correspondingly, let ¥ be the first-order structure with universe V
(the SASL domain); binary function = interpreting juxtaposition;
constants hd, tl, and cons; constants for the recognizers (logical, char,
..); constants for the SASL operators (plus, and, cond [for "..->..;.."], and
so on}; and constants for the elements of . Now ¥ isa first-order
structure, so by the Lowenheim-3kolem theorem of first-order logic, we
may choose a countable submodel ¥~ of ¥ which satisfies the same

first-order sentences as does V.
Next, we define a bijection j from the universe V- of V-~ onto M

as follows. As usual, we'll use poldface to denote terms. NOTE: we do not
claim that the definition of | is in any sense constructive,

O j(true) =T, j(false) = F, (BOTTOM) = (BTM), j([) = (SASL-NIL).

O jlcy=c¢ for ¢ acharacter in AT; otherwise, j(c) = (MINUS 0)

O j(n)=n for all nonnegative integers n.
NOTE: We use the convention that n abbreviates (ADD1 (ADD1 ...
(ADD1 0)...)) (for n-many ADD1s).

O j(-n) =(MINUS n) for all positive integers n.

0 Let List be the set of all list elements of V. Thenlet Finlist be

the set of all x € List such that for some natural number n, every
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composition f of n functions from the set (hd, ti} has the property
that f(x) =BOTTOM. (intuitively, these are the finite trees in V)

Then for all x € (VC—List)UFénhst and y € Finlistu{BOTTOM], we
define ] recursively by:
jtcons x y) = (FINPAIR ty to) where ty = j(x) and to = j(y).

O Let Inflist = List - Finlist. Then (j{Inflist) maps inflist 1-1 onto the
terms of type LISTP.

O Let Function be the set of function elements of V. Then (j | Function)
maps Function one-one onto the set of terms of type LITATOM

The last two clauses make sense because VC is countable.

(1) /nterpreting (on MJ the deciared runctions of the initial database: the
initial interpretation f,
We may now interpret the declared functions in Appendix 2 by using the

bijection j. We still leave unspecified a fixed finite set £ of SASL
values. Let f’o be the basic interpretation for M defined in Section 2.A

for the basic SASL shelis defined in Section 1.C. We wish to extend 74 to
an interpretation ; for M. For notational convenience we use lower case
for the interpretation by 4 of a symbol given in upper case, e.g. foo =
!‘;(FOO). We adopt the usual convention that application ™ associates to

the left, i.e. xoy=z = (x=y)*z. Also, we use italics for SASL values in the
definition of 4 below, and write x for j'g(x) and x for j(x)

(similarly for v, z, ..). Finally, we write 'hd’, 'tl, ‘cons’, 'plus’, 'eq, and so
on for the familiar function elements of the SASL domain, which we
assume belong to £ (Here 'eq’ is computable SASL equality.) NOTE: we
do not claim that the definition of 4 1sconstructive.

sasi-char x = j(char * x) where char is the SASL recognizer; similarly
for sasl-decode and sasi-code, where (decode n) is the character
with ASClI code n if one exists, and is BOTTOM otherwise, and
(code x) is the ASCII code of x if x isacharacter, and is BOTTOM
otherwise.

cons-inf x y = j{cons - ¥} if x or y has type LISTP;

/nr otherwise, for a fixed arbitrary infinite list /n/
hd-inf x = j(hd "x) if x has type LISTP; otherwise, /n/

o
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ti-inf x = j(t1 -x) if x has type LISTP; otherwise, /7
apxy=jlx-y
sasl-plus- x vy = jlplus *x = y)
(similarly for sasl-times-, sasl-difference-, sasl-div-,
sasl-rem-, sasl-exp-; these could have been ge/77ed but there 1s no need
to do so)
extensionality-witness x y is chosen to be any z such that
apxz=apy z, if such z exists; otherwise, (BTM)

In addition, it is necessary to give the interpretations of SASL-EQUAL
and REAL-LENGTH since these functions are added essentially as axioms
rather than as definitions (because of the extra two arguments to DEFN,
namely NIL and T). We continue with the same conventions as above:

sasl-equal xy = jleq=x = ¥)
real-length x = least n such that (t1=tl=..=tl=x)=BOTTOM, where
there are n occurrences of ti, if such n exists; otherwise, (BTM).

(11) Extending the initial interpretfalion according {o SASL-DEFN events
Our next step is to consider a sequence of SASL-DEFN events and extend
the initial interpretation !} to an interpretation appropriate to that

sequence. Of course, in an actual session with the Prover one would
probably intermingle DEFN and SASL-DEFN events, rather than putting all
of the SASL-DEFN events first (as might be suggested by the approach we
are taking). Fortunately, we'll see that because SASL-DEFN events never
use function symbols defined in DEFN events (except for those in the
domain of 47), iUs perfectly all right to imagine them as all coming before

the DEFN events. This approach simplifies the exposition, since we will
use the sequence of SASL-DEFN events to interpret RENAME and to
determine the set £ of SASL values used in the section above.

As we mentioned before, the only function symbols which may occur in
SASL-DEFN events are those from previous SASL-DEFN events, the defined
symbol itself, and certain given {SASL) functions, which we now make
explicit:

Definition. The SASL primitives include BTM, SASL-NIL, and AP-QUTER,
together with all of the functions defined or declared in Appendix 2 which
have the prefix "SASL" and do not end with "-" (so e.g. SASL-PLUS- is
excluded).
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Now given any term whose function symbols are all SASL function
symbols (or RENAME, with appropriate argument), one would tike to
produce a corresponding SASL expression (program), i.e. one in which
RENAME does not occur.

Definition. Given any term t, the corresponding SASL expression is
obtained by replacing each subterm of t of the form (RENAME 'FN) with
FN.

Here are some relevant notions from SASL semantics. .

O An environment is a map from the set of identifiers ito the set of SASL
values (i.e. elements of the SASL domain V).

0O The function Eval takes two arguments: a SASL expression and an
environment. It returns a SASL value, namely the value of the given
expression in the given environment.

0 The function Dval takes two arguments: a sequence of SASL definitions
and an environment. It returns a new environment, namely the
environment obtained by modififying the given environment according to
the given definitions.

Careful definitions of Eval and Dval, based on definitions from Turner
[18], can be found in[11]. However, we will attempt to keep this
exposition self-contamed.6

Now fix a sequence defs of SASL-DEFN events. We may also view defs
as a sequence of SASL definitions, by replacing each definition body with
its corresponding SASL expression. Corresponding to this sequence is a
SASL environment, i.e. a map from identifiers to values. Formally, this
environment is p = Dval [defsl py, where pq is the /n/t/a/ SASL

environment: it assigns the appropriate value to each SASL primitive
(including AP-OUTER, which is mapped to ax. Ay. [if x isalist, then xy;

if x isafunction, then x - v; otherwise, BOTTOM]). Now we may make the
relevant definitions.

O Let 7Z be the set of identifiers defined in defs.

O Let C ={pz z€Z}.
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O Extend 4 toan interpretation 7gefg 28 follows:

0 Let ]defS(RENAME)=rename be an arbitrary function from M into

the set of elements of ™M of type LITATOM, such that for all zE€Z,

rename (2} = j(pz).
O For each definition
fvy .. vy=Dbody

in defs, /garg(f) is the n-piace function F satisfying
Fxyoxq =07 mu,m o )
where 7/ =¢f and ;{",~=}’1(><,;> for 1¢i<n. {(As usual, O-place

functions are constants.)

(iv) Summary
It is clear now how to define an interpretation corresponding to a
sequence SEQ of events. First, extend the initial interpretation 4 as

shown in Subsection (iii) above to the interpretation "rdefs , where defs

is the subsequence of SASL-DEFN events extracted from the original
sequence SEQ. Nextlet SEQ; consist of the subsequence of DEFN events

of SEQ. Extend Fgsfg 2S in Lemma 2.2, successively for each member of
EQ, (in order). The final such interpretation is the /nterpreiation

corresponging fo SEQ.
we conclude with a lemma which allows us to move between terms in

the Boyer-Moore logic and their values in the term model, on the one hand,
and SASL expressions and their values in VC, on the other hand. First, it

is helpful to extend the notion of interpretation to aliow values to be
assigned to variables.

Definition. An exfended interpretalion isamap 7 from a sel of function
symbols and variables into a set.

In conventional logic terminology, an extended interpretation is really
an interpretation together with an assignment (of values to variables).
Hence there is a clear notion of meaning of terms in an extended
interpretation, so that the notion "holds in” extends naturally in this
context (i.e, one implicitly universally guantifies all variables in the term



which are not in the domain of the extended interpretation). Notice that
every interpretation is also an extended interpretation. We may now state
the promised lemma. ,

Lemma 2.3. Let defs be a sequence of SASL-DEFN events and let Jgerg

be the corresponding interpretation defined above. Let t be aterm all of
whose function symbols are in the domain of Jge¢g and let t' be the

corresponding SASL expression. Let 7 be an extended interpretation
which extends “'defs and assigns values €1, s €p to the variables X1y,

s Xp occurring in t. Finally, let t be the value of t under 7 andlet {

be the appropriate value for t’, namely
t' = Eval [t'] ((Dval Idefs] pylle;/x;1) where pg isthe initial SASL

environment. Then £ = j(L).

Proof. Routine by induction on terms using the definition of Jg4ere-
O

Henceforth we will often blur the distinction between a term and its
corresonding SASL expression, when there is no danger of confusion.

2 C LIFT events: directed completeness and soundness

The idea of directed completeness is that certain propositions (the
directedly complete ones) have the property that whenever they hold of 2
sequence of values, then they hold of the limit of that sequence. This idea
was explored in Gordon et al (3], for example, to give proofs by fixpoint
fnduction. Our approach, which is similar, is made precise and proved
sound in this section. We begin with some preliminary definitions.
Throughout this section, we fix a sequence of events.

Definitilon. A SASL function symbol is one which is either defined by a
SASL-DEFN event (in the given event sequence) or is a SASL primitive. A
basic SASL term s one which is either a nonnegative numeral n, a
negative numeral (MINUS n) (including (MINUS 0), which is a
character), a term of the form (SASL-DECODE t), (BTH), (SASL-NIL),
T,orF. A finite SAS. term is one which is built up from basic SASL
terms using only the function symbol FINPAIR. A S4SL lerm is one which
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is built up from finite SASL terms using SASL function symbols.

A Jiteral term is a term of the form (EQUAL t u) or (NOT (EQUAL t u)),
where t and u are terms.

Finally, we write vars(t) to denote the set of variables which occur in
the term t.

pefinition. Let VARS be a set of variables. The class of literal terms
which are directedly complete in VARS is defined as follows.

D (EQUAL t u) is directedly complete in VARS iff:
VARS nvars(t)= & = t isa SASL term; and
VARS nvars(u)= & = u is a SASL term.

O (NOT (EQUAL t u)) is directedly complete in VARS iff:
VARS nvars(t)= & = t isaSASL termand u is a finite SASL term;
and,
-VARS nvars(u)= & = u {saSASL termand t is a finite SASL term.

More generally, let t be a term in conjunctive normal form, i.e. one which
is a conjunction of disjunctions of literal terms. (Of course, every term is
provably equal to one in this f orm.) Then t is airectedly complete in
vars if and only if each disjunct of each conjunct of t is directedly
complete, as defined above. Finally, an arbitrary term is directediy
complete in vars if it is equivalent to one which is directedly compiete
in vars. Thus for example, if we broaden the notion of “literal” to include
SASL terms, then the notion of directed completeness for arbitrary terms
is unchanged, since t is always equivalent to (NOT (EQUAL t F)).

Now when given a2 command of the form

(LIFT lifted_theorem_name theorem_types source_theorem_name
(xy ... %))

the Prover checks that source_theorem_name is the name of a
previously proved lemma of the form
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(IMPLIES (NLISTP x1)
(IMPLIES (NLISTP x,,)

(IMPLIES (NLISTP Xq)
9

where L is directedly complete in {x;, xn}. (NLISTP is the composition

of NOT with LISTP) If the Prover is able to verify this, then it adds a
new theorem to the database, as described in Section 1.0. Otherwise, the
rover rejects this command.

Lemma 2.4 (soundness of LIFT events). Suppose that t is a term which is
directedly complete in the set of variables {x, .., x,}. Let SEQ be a

sequence of events and let 7 Dbe the interpretation corresponding to SEQ.
Finally, suppose that the term t' given by

(IMPLIES (NLISTP x,)
(IMPLIES (NLISTP x,)

(IMPLIES (NLISTP x.)
.0

holdsin 7. Then t holdsin 7

Proof. Let defs be the subsequence of SASL definitions in SEQ, and
let p be the environment Dval [defs] py, where py is the initial SASL

environment. Lef 't be the natural partial order on the SASL domain, as
described for example in Kaufmann [8] (or in any other treatment of
denotational semantics, such as Stoy [17]). We may write each !(xz-) as

the supremum of an e-increasing sequence Cip n20> of SASL values, none

of which is an infinite list structure {or /72/7/5¢, in the notation of

Subsection 2.B(i)). For n20 let 7, be the result of extending /7 by
setting its value on x; equal to e;,. Since U holdsin 7, clearly t

holds in 7, forall n. Thus it suffices to prove the following claim:

29



(1) If t is adirectedly complete term which holds in /7, forall n, then
t hoids in /.

To prove (1), we observe that without loss of generality we may
assume that t is in conjunctive normal form. [t is also clear then that it
suffices to consider the case that t is a single disjunction of literals.
Since this disjunction is finite, the hypothesis of (1) implies that some
disjunct of t holdsin 7, forall n belonging to some infinite

subsequence of the natural numbers. If we can prove the lemma for
literals only, then by restricting to this subsequence we see that this
disjunct holds in £ as well; hence so does t. Therefore, it suffices to
prove the lemma under the assumption that t is a directedly complete
literal.

Case 1.1: t isof the form (EQUAL uu’) for SASL terms u and u. By
nypothesis, this term holds in 7, forall n20. By Lemma 2.3, we have

Eval [ull (ple;n/x;1) = Eval Iull (pley,/x;D

for all n20. By the continuity of Eval (which is a standard sort of fact
and can be found in[11, §8, Lemma D10D), it follows that

Eval [ul (ple;/x;D) = Eval [ull (ple;/x;D)

where e; = 7(x;). Then applying Lemma 2.3 again we conclude that t

holds in 7.
Case 1.2¢ t isof the form (EQUAL uu'), where u is a SASL term and
Xy, ., Xo) Nvars(u’) = @, Let U be thevalue of U under 7. Bylemma

2.3, we have
Eval [ul (ple; /%D = U

for all n20. By the continuity of Eval, it follows that
Eval [ul (ple;/x;D) = U

where e; = F(x;). Then applying Lemma 2.3 again we conclude that t
holds in 7.
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Cases 1.3, 1.4 The other two cases for (EQUAL u u') are similar.

Case 2.1: t fs of the form (NOT (EQUAL u u)), where u is a SASL term
and U is a finite SASL term. As in the proof of Case 1.1, Lemma 2.3
implies '

Eval [ul (plej/x;D) = Eval LUl (plejn/x;D)

for all n20, i.e.

(2) Eval [ul (plej/x;]) = Eval fulp

since U is variable-free. Since U is afinite SASL term, 1Us Clear that
Eval fu'] p 1s not a non-trivial limit under 6. Hence by the continuity of
Eval together with (2), this implies

Eval [ul (pley/x;) = Eval [ulp

where e; = J(x;). Then applying Lemma 2.3 again we conclude that t

holds in J.
The remaining cases are similar, and the proof is complete. 0O

2D Type sets

we introduced the logic of the SASL Prover in Sections Cand D of Part
1. However, we left out some axioms that are automatically added to the
system in conjuction with each DEFN and SASL-DEFN event. in the case of
DEFN, these axioms are described in Chapter Vi of [2], and they take the
following form:

) N/ type;(f x; .. %)) V \/ (EQUAL (1 x; ... X)) Xj)

where one disjunction may be empty, and each “type;” is a type recognizer

such as NUMBERP or the “type” OTHERS, which holds of objects not
belonging to any shell (in our case, the characters other than (MINUS 0)).
Such axioms are also added for SASL-DEFN events, but the algorithm for
producing them is 2 bit different from the one for DEFN events. In this
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section we comment on each of these two cases. The results will be used
in the proof of soundness in the next section.

We begin with some notions adapted from Chapter Vi of [2]. A fwpe set
is simply a collection of types, i.e. shells, where in our context we have a
fixed set of shells (given in Section 1.C). As in[2], we have a type OTHERS
(which in our case will be the type of all the characters except (MINUS 0)
). A lype prescription is a pair <ts,vars> where ts is a type set and
vars is aset of variables. A type prescription <ts,vars> for a function
symbol f defined with formal parameters {x},..‘,xn} 2 vars asserts that

forall xy,..X, , either f(x,,.,x,) has a type belonging to ts or else

X1
f(xy,...%y) = %; for some x; € vars; in this case we say that <tsvars»

holds 7or £ (in the interpretation under consideration). A 7waction tpe
assumption is a mapping from a set of function symbols to type
prescriptions, while a ferm Lipe assumplion is a mapping from a set of
terms to type prescriptions. A {ype gssumption is apair <FTATTA>
where FTA is a function type assumption and TTA is a term type
assumption.

There is a straightforward recursive algorithm for giving the type
orescription of a term U relative to a Lype assumption TA=<FTATTA
and a set VARS of variables, as follows. If © isin the domain of TTA,
then return TTA(L). If t isavariable then return <{},{t}> if v € VARS;
otherwise return <UNIVERSE,{}>, where UNIVERSE is the union of all types.
The other cases are straightforward, as described in Chapter VI of [2], but
here is a brief summary. One branches on [F-expressions, taking the union
of the first and second components of the type expressions for each branch
where for each branch one appropriately extends FTA according to the
assumption of truth or falsity of the test of the IF-expression (unless the
type set computation for the test shows either that it's always F or that
it's never F). Finally, let f be a function symbol other than IF, with
formals xy, .., X, Let TA be a type assumption which assigns type
prescription <U,v> to f. Then the type prescription of (f tl tﬂ)
relative to TA is defined to be <X,Y>, where: t}- has type prescription
XY relative to TA and VARS (i<i<n), X=U X x€VIUU, and
Y =U Y %EV]

Now that we've made all of these definitions, we would like to
associate a type prescription with each defined function symbol. Given a
term t and a type prescription <X,Y>, one may consider the following
term (thought of as a formula with free variable t) which asserts that t
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obeys this type prescription:

e (0D (OR (N Urpype ) typeex))
(\/ [(EQUAL t y): yeY)))

where I is the recognizer for type 7. (of course, the symbol AVART:

type
used to abbreviate iterated use of the function symbol OR.) Let 7 bean
extended interpretation into M. We say that a term type assumption TTA
holds in 7 if for all terms t in the domainof TTA, TTA(L) = <X ¥
implies that tp<x;y>(t) hoids in 7. A function type assumption FTA /Ao/ds

/i £ if for every function symbol f in the domain of FTA, with formal
parameters Xy, .., X, If FTA(T) = <X,Y> then tpey v, (f Xy .. Xy) holds in 7

for all extended interpretations /° which agree with /7 except that they
may assign aribitrary values to xiy, ., X, Finally, a type assumption

FTATTAY holgsin 7 if FTA and TTA bothhold in 7. The following
lemma is easily proved by a straightforward induction on terms.

Lemma 2.5 (correctness of type prescription algorithm). Suppose that TA
=<FTA,TTA> is a type assumption which holds in a given extended
interpretation /7. Let t be a term whose function symbols are all in the
domain of FTA, let VARS be 2 set of variables, and suppose that <X,Y> is
the type prescription of t relative to TA and VARS. Then t;}<x}\{>{t>

holdsin & O

I XY (i=1,2}) are type prescriptions such that Ay £Yy and
><2 [ Y2 , then we say that <><3 ,Y3> 7S contained in <X2,Y2> . Unlike

Lemma 2.5, the following Temma is purely syntactic. We omit its routine
proof as well.

Lemma 2.6 (monotonicity of type computations). Suppose that TA =
FTATTA> and TA = <FTA,TTA> are type assumptions such that FTA()
is contained in FTA'(f) for all T intheir common domain, and similarly
TTA(L) iscontained in TTA(L) for all t intheir common domain. Then
the type prescription computed for any term t relative to TA and a set
VARS of variables is contained in the type prescription computed for t
relative to TA and VARS. O



Now the type prescription for a DEFN event

f V. V,=BODY

relative to a function type assumption FTA is computed as follows. Let
f be the function symbol being defined. Let <Xn,Yy> De the type

orescription <{J,{}>. Given <><j,Yj> , let <XNJYj+§> be the type
prescription computed for BODY relative to <FTAL(}> and [Vy, .., V],
where FTA’ assigns the type prescription <><j-,Y}-> to f andotherwise

agrees with FTA. By the monotonicity of type computations (Lemma 2.6),
we know that for some J we have <X .Y > = <X .Y {and hence

XY p= <><}-,Yj> for all j»J). We let X .Y p be the type prescription for
the given DEFN event relative to FTA

The following lemma is used in our soundness proof. The idea is that
given a (successful) DEFN event D, there are a measure and a well-founded
relation used to justify that the function is defined on all arguments (cf.
Chapter 111 of [2]). Aninduction on the measure applied to the arguments
of the function, atong this well-founded relation, can be used to establish

this lemma; we omit this argument.

Lemma 2.7 (soundness of DEFN type prescriptions). Let FTA Dbe a function
type assumption which holds in a given interpretation 7, let D be a DEFN
event defining a function symbol f, and let ./ be the exiension of 7 via

D (as defined at the end of Section 2.A). Then the type prescription for D
relative to FTA holdsfor f in J. a

The Lype-prescription algorithm rfor SASL-DEFN evénts is the same as
the one above for DEFN events, except that this time the initial type
prescription <Xg,Yg> 1S <{BTMP},{}>, where BTMP is the recognizer for

the shell containing BOTTOM. Thus we have to be a bit more careful this
time in how we apply monotonicity if BTMP&X,. Fortunately, one may

easily show by induction on the structure of BODY that if BTMP&X, then
<X1.Y{> remains the same If it is computed instead using <{},{}> for
Xp.Yp> (as before). (This argument is particularly simple because the

function symbol IF does not occur in SASL-DEFN events.) Thus the
monotonicity argument again applies to guarantee that the sequence
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<X}-,Yj> stabilizes (as before). Notice that if the definition is not
recursive then the result is simply <X§,Y3>.

More generally, we may define the notion of a type prescription for a
sequence of SASL-DEFN events. First, let us fix an initial function type

assumption.

Definition. The /n/tial runction Lypé assumplion 1s defined as follows.
For function symbols in the domain of the basic interpretation 74 (cf.

Section 2.A), the type prescriptions assigned to these functions are fairly
obvious: for example, a recognizer R has type prescription <(R},{}>, and
PLUS has type prescription <NUMBERP,{}>. (We omit the details.) Now we
may successively extend 2/ function type assumption to obtain the
initial function type assumpticn, as follows. Consider the sequence of
events in the initial SASL library (Appendix 2). For each DEFN event we
extend the interpretation via that event (as in Lemma 2.2). For each DCL
event we extend by assigning type prescriptions as follows:

01 CONS-INF: <{LISTP},(}>

O HD-INF: <UNIVERSE,{}>

O TL-INF: <{LISTP,FINLISTP,BTMP},(}>

O AP: <UNIVERSE, (>

00 SASL-PLUS- (and analogous "dashed” arithmetic functions):

<INUMBERP,BTMP}, (> 8

O RENAME: <{LITATOM],(}>

O EXTENSIONALITY-WITNESS: <UNIVERSE,(}>

0 SASL-EQUAL: <{TRUEP FALSEP,BTMP} (D

Definition Let defs be a seguence of SASL-DEFN events. Then the 545/
runction Lype assumption for defs is obtained by beginning with the
initial function type assumption (defined just above) and successively
extending it by applying the type-prescription algorithm for SASL-DEFN
events to the members of defs (in order).

Lemma 2.8 (soundness of SASL-DEFN type prescriptions). Let defs bea
sequence of SASL-DEFN events, and let F4n¢c De the corresponding

extension of / as defined in Subsection 2.B(ii1). Then the SASL type

assumption for defs holds in fdefs

Proof. The proof is by induction on the length of the sequence defs. If
this length is O then this is clear by definition of the initial function type
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assumplion. For the inductive step, suppose that the lemma holds for the
sequence defs and let us consider the sequence defs’ obtained by
adding a definition

f Xy .. Xy =Dody

to the end of defs. By the inductive hypothesis, it suffices to show that
the type prescription assigned to f by the SASL type assumption for
defs’ hoids for f in Jqapg - Lel pg De the initial SASL environment

(cf. Subsection 2.A(i11)), and let p = Dval [defs] py. Since the function

symbol f does not occur in defs (for otherwise the Prover would reject
the definition of f), the denotational semantics of SASL guarantee that
Dval [defs'] py = Dval If x4 .. x, = bodyl p (cf.[11,88,Lemma DS]).

Henceforth let us denote this common environment by ¢
Let « <xn,Yn>: n20 > be the sequence of type prescriptions computed

for the definition of f. Now we may take the definition of f and consider
instead an infinite sequence & of nonrecursive definitions

fo Xsi Xn ={BTHM)
f_}+] X«i XQ = bOdyj (_pO}

where b@d\/j 1s the result of replacing each occurrence of f by fj in

body (including those occurrences in (RENAME 'f)). We make the
following claims, where defs(A) is the result of appending & to the end
of defs. Note: we use Lemma 2.3 implicitly, so that we may view A asa
sequence of SASL definitions or of SASL-DEFN events, as we choose.

(1) The SASL type assumption TA(A) for defs(A) assigns a type
prescription <xJ Yl> to fj which holds in Zgerg(a) all j20; ie,

tp<x};\{_}>(f} X} Xn) holds in }defS(ﬁJ .
(2) p'f isthe supremum of the values Dval [defs(4)] g ?J- (1209,
(3) Suppose that a SASL function g is the supremum of SASL functions

g; . Also suppose that for each i, the type prescription $(f) holds in
an extension of the initial interpretation ;3 inwhich f is mapped to
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the function taking
ay, .., ay to .j(gi “d;c.." d,), where g, = j"i(ak) Then &(f)

holds in any extension 7 of 4 inwhich f is mapped to the function

taking ay, .., a, to jlg*a,"..° 3,), where & =j_§(a ).
g 24 n g4y n & K

Let us see first how the theorem follows from these claims. For each 10
let g;=Dval [l pfy,andlet g=p' f. By(2), g isthe supremum of the

g; . Also, foreach j we have ‘tp<xj,Yj>(f} X1 .. Xp) Dolds In 7gars(a) s

by (1). The hypotheses of (3) follow, and hence the conclusion of (3) holds
taking 7= fgefg - That is what we needed to show. Thus it remains only

to prove the claims,

The proof of (1) is by inductionon j. The case j=0 is clear since the
type prescription assigned to fy is <(BTMPL{}>. Now suppose that (1)

holds for i¢j. By Lemma 2.5, the type prescription <X,Y> computed for
bodyj relative to TA(A) and [x!, xj} holds in fdefs(é}f ie.

(4) tQ((X;Y}(DOdy}) holds in ‘?defs(é)

Let body}-' be the SASL expression corresponding to bodyj (as defined in

Subsection 2.B(i11)). Now by definition of Dval (cf. [11]), if weset p" =
Dval [defs(A)] py , then p” f}ﬂ =key. .. ke, EBval i{bodyj'}l (p"ley/x3D.

Thus for all ey, ., ey E VC , the terms (f}-,,; Xy xn) and bodyj' have
the same value in the environment p“[e;/x;] It follows from Lemma 2.3
that the terms (f}-” X1 .. X5} and bodyj have the same value under the
interpretation fgafg(a) €xtended by assigning e; to x; (1<i<n). This
fact together with (4) implies that tpy vy(fi.q %y .. x,) holds in
/defs(a) > @5 desired.

The proof of {2} is an routine exercise in the denotational semantics of
SASL, which goes as follows. First, it's not difficult to show by induction
on j that forall j we have: Dval [defs(4)] pq fj & ¢ f. Aseparate

induction also easily establishes that for all j, j iterations of
kpy. Decl If x4 .. x, = bodyl py p, when applied to the bottom environment

and to f, is below Dval [defs(&)] py fg in the order g; taking the limit
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as jeee, we have that p'f is in the relation & to the supremum of the
values Dval [defs(A)] pg f} (j20). We omit the details.

To prove (3), we first observe that for every type prescription <X,Y>
assigned to a SASL primitive function symbol f by the initial SASL type
assumption, we have LISTPeX iff FINLISTPeX. It follows easily that the
type prescription computed for any subsequent SASL definition must also
have this property. Of course, for any formula tpey y,(t) with this

property, we may replace

(OR (LISTP t) (FINLISTP t))

by
(AND (SASL-LIST t) (NOT (EQUAL T (BTM))) .

Similarly, (BTMP t) may be replaced by (EQUAL t (BTM)) (similarly
for TRUEP and FALSEP), (LITATOM t) by (AND (EQUAL
{(SASL-FUNCTION t) T) (NOT (EQUAL t (BTM))), (NUMBERP t) by
(EQUAL (SASL-GTE t 0) T), and (NEGATIVEP t) by (OR (EQUAL
{(SASL-LT t 0) T) (EQUAL t (MINUS 0))). Thus, it's now clear that for
type prescriptions <X,Y> of SASL definitions, tg%\()(t) may be written

as a boolean combination of equations, where each equation has one side
consisting simply of T, of F, of (BTM), or of (MINUS 0) and the other
side having the property that all of its function symbols are SASL
functions. By the proof of Lemma 2.3 (but without even worrying about
RENAME), we may view all such terms as being SASL expressions (using
the appropriate character for (MINUS 0), of course). Finally, then, (3)
follows from a directed completeness argument very similar to the proof
of Lemma 2.4, except that the present formula is directedly complete in
the function symbol f (rather than in a set of variables). We leave the
precise definition of this notion of directed complefeness as well as the
requisite lemma to the reader, as they are entirely analogous to the
corresponding work in Section 2.C. O

2.E The soundness theorem
All of the pieces are finally in place for a statement and proof of
soundness. The lemma below is the conclusion of all the work above,

while the theorem below it gives a result appropriate to the original SASL
domain. We conclude with a few remarks about how one might generalize
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this latter theorem.

Lemma 2.9 (soundness for the term model). Let SEQ be 2 sequence of
events run successfully by the Prover. Then every eguation stored by the
Prover holds in the interpretation corresponding to SEQ (as defined in
Seciton 2.B).

Proof. The proof is by induction on the length of SEQ. If SEQ is empty
then we only need check that every axiom in Appendix 2 holds in the initial
interpretation }'3 , as do the defining equations of SASL-EQUAL and

REAL-LENGTH. This is routine (thought tedious) and left to the reader.

For the inductive step, there are several cases according to the form of
the last command of SEQ. If that last command is a PROVE-LEMMA event,
then we are done by the inductive hypothesis together with Lemma 2.1
{soundness of Boyer-Moore logic). If the command is a DEFN event, then
Lemma 2.2 (extension by DEFN events) and Lemma 2.7 (soundness of DEFN
type prescriptions) combine with the inductive hypothesis to yield the
conclusion. For a SASL-DEFN event, one applies Lemma 2.8 (soundness of
SASL-DEFN type prescriptions) and Lemma 2.3, together with a simple
check that the axioms inveolving RENAME (see Section 1.C) hold. Finally, if
the Tast event is a LIFT event then one simply applies Lemma 2.4
(soundness of LIFT events) together with the inductive hypothesis. O

we would like to state a theorem which applies to the original SASL
domain. To that end we make the following definition.

Definition. Let p be anenvironment. For SASL expressions t, and s
we say that p sar/sr7es the equation ty =ty , written pkt =ty , Iff
Eval [t1 p = Eval [t-] p. More generally, we define the notion p k¢ for
% 2 boolean combination of eguations, by: p E (AND b ¢2) iIff pkd; and
pPEdy; pF(OR ¢y &) Iff pEdy or pkdy;and pk(NOT &) iff it is
not the case that p k4.

Theorem. Suppose that ¢ is a boolean combination of equations between
SASL terms and that ¢ is proved by the Prover in a sequence SEQ of
events whose SASL-DEFN events form a subsequence defs. Then

p k¢, forany environment p of the form (Dval [defs] pglle;/x: 1<i<n],

where pq is the initial SASL environment (as defined in Subsection
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2B(ii1) and xy, .., X, are the variables occurring in .

Proof. By Lemma 2.8, we know that &4 holds in the interpretation
corresponding to SEQ, and hence in its restriction fdefs (defined in

Subsection 2.B(i11)), since each equation in & is an equation between SASL
terms. Then by Lemma 2.3, the sentence (¥xy) .. (¥x )¢ is true in Vi

(defined in Subsection 2.B(1)), where C contains a constant symbol for
each function declared or defined in Appendix 2 together with each symbol
defined in defs. Since ¥V, satisfies the same first-order sentences as

i (by definition), this sentence (¥xy) .. (¥x )¢ isalso true in ¥, and
this fact is just a restatement of the desired conclusion. [T

The theorem above can be made somewhat more powerful than may
appear at first. For example, consider the following lemma from Appendix
3:

(IMPLIES (AND (NUMBERP N)
(NUMBERP K)
(LESSP 0 K))
(EQUAL (SUBSC (SASL-FROM N) K}
(SUBT (PLUS N K))))

Suppose that one defines interpretations for the function symbols
NUMBERP, LESSP, SUBSC, SUB1, and PLUS on ¥ in the "obvious” way, ie.
s0 that NUMBERP returns false on all non-numbers (even BOTTOM), SUBSC
is list subscription, SUBT returns O on every value that is not a positive
integer (just as it does in the term model), and PLUS coerces its
arguments to natural numbers by replacing other values by 0. Now even
though these are not SASL functions (except for SUBSC, in a sense)
because they fail to be continuous, still one can add these symbols Lo the
language (which thus far has had only "= and constants for elements of C)
and require that V-~ be an elementary submodel of ¥ with respect to

this larger language. In this manner one can make perfect sense out of
functions such as NUMBERP and even REAL-LENGTH, INF-LIST, and so on.
However, we see no particularly clean uniform way to do this at this point
S0, we'll leave that open and end our discussion of soundness here.
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PART 3: AN ALTERNATE APPROACH

The approach described in the first two parts can be needlessly
awkward when dealing only with finite structures. In this parl we present
an approach, appropriate for some such situations, which avoids reasoning
about BOTTOM. We illustrate this approach with a couple of examples.

3.A The alternate initial library and outline of soundness

The alternate approach involves use of an initial SASL library which
differs somewhat from the one described heretofore. Moreover, the LIFT
event is no longer allowed. These are however the only two changes to the
Prover from the version aiready described.

The alternate initial SASL library is in Appendix 4. The difference
between this and the original SASL library is in the way the set of ali
lists is divided into the "finite” and "infinite” lists. As before, a2 "finite”
list is once again a finite tree, except that this time one does not aliow
functions (LITATOMs) or BOTTOM in the tree. Such lists constitute the
shell with recognizer SLIST ("S" for "strict”, but that doesn't matter) and
constructor SCONS, and accessors SHD and STL. Thus, the type
restrictions are that the first argument of SCONS not be a LITATOM, a
LISTP, or BOTTOM and that the second argument be an SLIST. Notice that
the default values are SASL-NIL, so that for example (SHD (SASL-NIL)
equals (SASL-NIL). However, this is not a problem, since the function
SASL-HD is defined so that (SASL-HD (SASL-NIL)) equals (BTM); for X
an SLIST, we have (SASL-HD X) = (SHD X) only when X = (SASL-NIL).

A most thorough approach here would parallel the contents of Part 2.
However, it is more convenient (to us and to the reader!) merely to
indicate the changes needed in Part 2 in order to establish soundness for
the alternate approach given in this Part.

Of course, Section 2.A (construction of a term model) is general and
applies to this Part as well. Next, consider Section 2.B: interpretations
corresponding to sequences of events. Subsection (i) defined a countable
subuniverse of the SASL domain as well as a term model and an
isomorphism between them. This Lime the term model is for a sef of
shells in which the SLIST shell replaces the FINLISTP shell. The
isomorphism is as before, except that one breaks the SASL lisis into
“finite” and "infinite” ones as indicated above, and builds the isomorphism
accordingly. Subsection (ii) defined the initial interpretation. For the
alternate approach one replaces CONS-INF, HD-INF, and TL-INF by LCONS,



LHD, and LTL respectively. (The "L" is for "lazy” in honor of infinite lists,
but that doesn't matter.) This time, we find it convenient to set (LHD X)
and (LTL X) egual to (BTM) when X isnota LISTP, but otherwise
Subsection (ii) and the rest of Section 2.B remain essentially unchanged
for the alternate approach. Section 2.C is irrelevant for the aiternate
approach, since LIFT events are no longer allowed.

Section 2.D -- type prescriptions -- remains unchanged through Lemma
2.7. The initial function type assumption also remains unchanged, except
that the type prescriptions for CONS-INF, HD-INF, and TL-INF are
replaced by:

O LCONS: <[LISTP)L(}>
[ LHD: <UNIVERSE, (P>
OLTL: «[LISTP,5LIST,BTMP], (D>

Then the proof of Lemma 2.8 remains unchanged. (The use of a version of
directed completeness near the end of the proof has nothing to do with
notions of "finiteness” for lists.) Finally, the soundness results of Section
2.E go through unchanged (except that one should now ignore the LIFT
command).

3B Proof of correctness of a SASL pattern-matching programg

Consider the problem of defining a function which tests a list P of
strings against a list D of strings, to see if the "pattern” P matches the
list D inthe following sense. Two empty lists of strings always match,
but if just one list is empty then they do not match. The string "*" in P
matches any finite positive number of strings in D, so that for example

["ab","*","cd"]

matches

["ab","123","4567","Matt","cd"]

but does not match ["ab","cd’]. Finally, the string "7" matches any single
string, so that for example

42



["ab","?7","cd"]
matches
["ab","uvw","cd"]

but does not match ["ab","123","456","cd"]. The following recursive Pure
Lisp program is presented on page 325 of Winston [20] (with the
modification indicated at the top of page 327) as a solution to this
problem. (Actually, in Lisp one considers lists of symbols rather than
lists of strings, but that difference is trivial.)

{(DEFINE (MATCHP D)
(COND ((AND (NULL P) (NULL DN T)
{{OR (NULL P) (NULL D)) NIL)
({OR (EQUAL (CAR P)'?7)
(EQUAL (CAR P) (CAR D))
(MATCH (CDR P) (CDR D))}
((EQUAL (CAR P) %)
(COND ({(MATCH (CDR P) (CDR D))
((MATCH P (CDR DYDY

However, in our attempt to mechanically prove correctness of a SASL
analogue of this program, we found a small error in the above program!
Consider, for example, the question of whether the pattern

('* 'do)
matches

("* ‘howdy 'do)
According to the informal specification given at the start of this section,
the given pattern should match the given list, as the symbol * is allowed

to correspond to the list ("* ’howdy). However, the condition

(OR (EQUAL (CAR P)'7?)
(EQUAL (CAR P) (CAR D))

is satisfied, and this test comes before the test for whether (CAR P)



equals * in the program above. The guestion thus reduces to whether the
pattern (‘do) matches the pattern (‘howdy 'do), and this of course comes
out false.

Obviously it's easy to correct this error by switching the order of the
tests which check for eguality of the first member of the patternto > or
7. The result translates to SASL as follows:

match P D =
P=[] & D=[] -» TRUE;
P=[11D=[] -> FALSE;
hd P = "¥" -» match (&1 P) (1 D) | match P (U] D;
hdP="7"1nhdP=nhdD->match (1] P) {tl D);
FALSE

The seguence of events comprising the proof of correctness of this
program appears in Appendix 5. To state correctness we use some
auxiliary notions. How does one assert that pattern P matches list D7
We illustrate our approach by way of the following example. Consider the
pattern

P =["hi", "*" "boo", "?", "fido"],
which matches the list of strings

D =["hi", "a","b", "boo”, "c”, "fido"}.
Now consider an "intermediate” list

L =["hi", ["a","b"], "boo”, "¢", "fido"].

The list L has the following properties: (1) P and L are lists which
agree at every coordinate, except that when "*" occurs at a given position
of P then an arbitrary list of strings occurs at the same position of L,
and when "?" occurs at a given position of P then an arbitrary string
occurs at the same position of L;and (2) D is obtained from L by
flattening out L -~ for example, the element ["2","b"] of L isreplaced by
two corresponding elements of D. in the pariance of Appendix 5, we say
that (EXPANSION P L) equals T and (FLATTENL) equals D.

The statement of correctness is thus broken into two directions. The
theorem SUFFICIENCY-FOR-MATCH of Appendix 5 states that if P and D
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are "finite" lists of strings for which a "finite” list L exists meeting the
requirements above, then (MATCH P D) equals TRUE. Conversely, the
theorem NECESSITY-OF-MATCH states that if P and D are "finite” lists
of strings for which (MATCH P D) is TRUE (or in fact, does not equal
FALSE), then such L exists. In fact, the existence of such L is givenas a
function W ("witness”) of P and D.

3.C Proof of correctness of a SASL unification program

The paper Manna-Waldinger [12] presents a careful proof of correctness
of a unification algerithm, with an eye toward possible machine
certification of the proof. Paulson [13] outlines a successful
machine-aided verification of a unification program using an enhanced
version of Edinburgh LCF [3], which Paulson calls Cambridge LCF. we
decided to try such a verification with the Prover for two reasons. First,
we wanted to present verification of executable code in an actual
language. Paulson’s program is close to meeting this criterion, though his
functions are actually given by axioms. The other reason is that there is a
well-defined semantics for the SASL language and (as argued above)
soundness for the Prover, which in our view makes verification much more
meaningful.

The reader is referred to [12] for suitable background, including 2
development of a unification algorithm.

Our proof used 623 events in addition to those in the alternate initial
SASL library, cf. Kaufmann [6]. 10 70 save space, we include here only a
statement of the final theorem. The definitions of the SASL unification
function and its supporting cast are given in Appendix &. But let us give
here a brief description of the functions mentioned in this theorem.

A lterm is either a variable, a constant, or (recursively) a list of terms,
and (TERMX) is T exactly if X isaterm. (For our purposes, a var/abl/e -
is a string beginning with the character 'v', and a constant is any other
string.) A substitution is a "finite” list of variable-term pairs, and
(SUBSTP X) is true exactly if X is asubstitution. The function SUBST
and its finite analog SUBST- take two arguments, and return the result of
substituting into the second argument (presumably a term) using the first
argument (presumably a substitution). The function UNIFY is the desired
unification function, so that (UNIFY L M) produces a substitution which
unifies the given terms L and M, if such a substitution exists, and
otherwise returns "FAIL". The function COMPOSE (with finite analog



COMPOSE-) takes two substitutions and produces a new substitution which
acts like their composition, in the sense that the result of applying SUBST
to this result and a given term is the same as the result of successively
applying SUBST to each of the given substitutions (and the given term).
IDEMP recognizes /dempofent substitutions, i.e. ones whose domain is
disjoint from the set of variables occurring in the range. (it follows that
the result of composing an idempotent substitution with itself is itself.)
The function SSUBSET recognizes whether its first argument is a subset
of its second argument. The SUB-VARS of a substitution is a list of ali
variables which belong to its domain or occur in its range, while the VARS
of a term is a list of all variables occurring in that term. Finally, (FAIL)
is just the string "FAIL"

The main theorem is a conjunction of the following two implications.
The idea of the first implication is that if there exists a unifier of given
terms L and M, then (UNIFY L M) is aunifier with nice properties, while
the second implication states if (UNIFY L M) isnot aunifierof L and M
(i.e., by the first implication we know that there is no unifier of L and
M), then (UNIFY L M) equals "FAIL"

Before stating these two parts of the main theorem, we make a few
comments about the first of them. Notice that the last few parts of the
conclusion assert the equivalence of various functions with their finite
analogs, under certain assumptions. The hypothesis
(EQUAL (SUBST- SUB L) (SUBST- SUB M)) states that there is some unifier
of terms L and M, namely SUB. The fourth conclusion says that, under
the given assumptions (especially the one just mentioned), (UNIFYL M) is
aunifierof L and M. The second conclusion says that in fact it is a mos?
genera/ unifier (cf. [12]). We let the other conclusions speak for
themselves, Here, then, are the two implications.
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(IMPLIES (AND (TERM L)
(TERMM)
(SUBSTP SUB)
(EQUAL (SUBST- SUB L) (SUBST- SUB M))
(TERM Z))
(AND (SUBSTP (UNIFY L ™M)
(EQUAL
(SUBST- (COMPOSE- (UNIFY L M) 5UB) 2)
(SUBST- SUB 2))
(IDEMP (UNIFY L ™M)
(EQUAL
(SUBST- (UNIFY L M) L)
(SUBST- (UNIFY L M) M)
(TERM (SUBST- (UNIFY LM L))
(TERM (SUBST- (UNIFY L M) M))
(SUBSTP (COMPOSE- (UNIFY L M) 5UB))
(SSUBSET
(SUB-VARS (UNIFY L M)
(APPEND- (VARS L) (VARS M)))
(EQUAL
(SUBST- (UNIFY L M) 2)
(SUBST (UNIFY L M) 2))
(EQUAL
(SUBST- SUB 2)
(SUBST SUB Z))
(EQUAL
(COMPOSE- (UNIFY L M) SUB)
(COMPOSE (UNIFY L M) SUB))
(EQUAL
(SUBST- (COMPOSE- (UNIFY L M) SUB) Z)
(SUBST (COMPOSE (UNIFY L M) SUB) 2))))

(IMPLIES (AND (TERM L)
(TERM M)
{OR (AND (SUBSTP (UNIFY L M)
(EQUAL
(SUBST- (UNIFY L M) L)
(SUBST- (UNIFY L M) M)
(EQUAL (UNIFY L M) (FAILID)
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APPENDIX 1: AN INTRODUCTORY EXAMPLE USING THE PROVER

What follows 1s a sequence of events which has been run by the
Prover (on a Symbolics 3640). Everything following a semicolon on
a line is a comment. We give only the input to the Prover,
omitting the output. This appendix is adapted from Kaufmann [ 9 ].

533 We begin by recalling the library of SASL facts:
(NOTE-LIB ">thm>sasl.lib" ">thm>sasl.lisp'")
;3; Now we begin feeding the Prover events.

(SASL-DEFN FACT1 (N)
(SASL-IF (SASL-EQUAL N 0)
1
(SASL-TIMES N (FACT! (SASL-DIFFERENCE N 1)))))

(SASL-DEFN FACT2 (ACC N)
(SASL-IF (SASL-EQUAL N 0)
ACC
(FACT2 (SASL-TIMES ACC N) (SASL-DIFFERENCE N 1))))

Having made these definitions, we would like to prove the theoren
FACT~-IS-FACT below. However, this is quite impossible for the
Prover, as it would in fact be for any human, unless

it is derived as a special case of the more general
FACT-~-IS-FACT-LEMMA below. It would be nice if the Prover could
just prove this latter lemma without any hints, but there are
three reasons why this isn't so easy. For one, in the current
environment 1t really doesn't "know" much number theory, though
there are existing files of number-theoretic facts that would
solve that problem. Since we're not getting those files here,
the theorem-prover 1s told below to prove them for us. Here, then,
i3 the number theory that turns out to be needed.

Wwo Wwe Mo We WO \We we WO we We We e

B We W WO WO WE We WO wWwe ws Wwe o
Wwo Wwe W WD Wwa Mo We We We Wwo wo e

(PROVE-LEMMA TIMES-ID (REWRITE)
(IMPLIES (NUMBERP X)
(AND (EQUAL (TIMES X 1) X)
(EQUAL (TIMES 1 X) X))))

(PROVE~LEMMA ASSOC-QOF-TIMES (REWRITE)
(IMPLIES (AND (NUMBERP X)
(NUMBERP Y)
(NUMBERP Z))
(EQUAL (TIMES X (TIMES Y Z))
(TIMES (TIMES X Y) Z))))



is; The next, more serious problem is that the induction used to prove
;53 FACT-IS-FACT-LEMMA isn't quite a simple induction on N. Here is an
;53 outline of the inductive step of the proof:

ACC * ((N+1) * FACTI(N)) (by def. of FACT1)

(ACC * (N+1)) * FACTI(N)) (by associativity of ¥)

FACT2 (ACC*¥(N+1)) N (by the inductive hypothesis)
FACT2 ACC (N+1) (by def. of FACT2)

ACC * FACTT(N+1)

S R FI T

Mo wa we we

Notice that when the inductive hypothesis is applied, it is applied
where ACC is replace by (ACC ¥ (N+1)). The Prover can't

figure that out on its own, s0 we give 1t a definition FACT-IS-FACT-IND
below, and then give a hint for the proof of FACT-IS~FACT-LEMMA to

do the proof by induction, using the induction principle generated

when the FACT-IS~-FACT~IND definition was accepted.

ws we Wwe we we we

Wo s wo wa we we
ws ws wa ws wo wo

(DEFN FACT-IS-FACT-IND (ACC N)
(IF (ZEROP N)
T
(FACT-IS~FACT~IND (TIMES ACC N) (SUB1 N))))

;53 But even this hint isn't enough, as the Prover can't yet prove
;53 FACT-IS-FACT-LEMMA at this stage. One problem is shown by the
;33 following output, which appears in the attempted proof:

(IMPLIES (AND (NUMBERP X)
(NUMBERP ACC)
(NOT (EQUAL X 0))
(NOT (NUMBERP (FACT1 X)))
(NOT (NEGATIVEP (FACT1 X))))
(EQUAL (TIMES ACC (BTM))
(TIMES (TIMES ACC (ADD1 X))
(FACT1 X))))

we s We W %ee we wo we

;33 Why is the theorem-prover considering (TIMES ACC (BTM)) here?

;33 ( (BTM) denotes the "bottom" value of the SASL domain.) It would
;55 have seemed that we should only be dealing with numbers. Well, the
;33 hypothesis (NOT (NUMBERP (FACT1 X))) seems to contradict the

;53 hypothesis (NUMBERP X), but the theorem-prover isn't aware .of this
;55 fact. What's more, the theorem~prover can't prove that this is a
;33 contradiction, at least not without some help. So we ask it to

;35 prove that FACT! always returns a non-negative number. However,
555 1t gets stuck there as well, so first we give it an appropriate

;33 induction.

(DEFN FACT1-IS-NUMBERP-IND (N)
(IF (ZEROP N)
T
(FACT1~IS~-NUMBERP-IND (SUBT N))))

(PROVE-LEMMA FACT1-IS-NUMBERP (REWRITE)
(IMPLIES (NUMBERP N)
(NUMBERP (FACT? N)))
((INDUCT (FACT1-~IS~NUMBERP-IND N))))
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::; It turns out to be useful to disable the definition of TIMES at
;;: this point.

(DISABLE TIMES)

;33 Finally we are ready to prove the main lemma and then easily derive
;3; the desired theorem.

(PROVE-LEMMA FACT-IS-FACT~LEMMA (REWRITE)
(IMPLIES (AND (NUMBERP N)
(NUMBERP ACC))
(EQUAL (TIMES ACC (FACT? N))
(FACT2 ACC N)))
( (INDUCT (FACT-IS-FACT-IND ACC N))))

(PROVE-LEMMA FACT-IS-FACT (REWRITE)
(IMPLIES (AND (NUMBERP N)
(NUMBERP ACC))
(EQUAL (FACT? N)
(FACT2 1 N))))
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APPENDIX 2: THE INITIAL SASL LIBRARY

(ADD-SHELL BTM NIL BTMP NIL)
(DCL SASL~CHAR (X))

(DCL SASL-DECODE (X))

(DCL SASL-CODE (X))

(ADD~SHELL FINPAIR SASL-NIL FINLISTP
((FINHD
(NONE-OF LISTP)
BTM)
(FINTL :
(ONE-OF BTMP FINLISTP)
BTM)))

(DCL CONS-INF (X Y))

(ADD-AXIOM CONS-~INF-~LISTP (REWRITE)
(LISTP (CONS-INF X Y)))

(DEFN SASL-CONS (X Y)
(IF (OR (LISTP X)
(LISTP Y))
(CONS-INF X Y)
(FINPAIR X Y¥)))

(DCL HD-INF (X))

(DEFN SASL-HD (X) (IF (LISTP X) (HD-INF X) (FINHD X)))

(DCL TL-INF (X))

(DEFN SASL-TL (X) (IF (LISTP X) (TL-INF ¥X) (FINTL X)))

(DCL AP (FN X))
(DEFN SASL-TRUE () T)
(DEFN SASL-FALSE () F)

(DEFN SASL-LIST (X)
(IF (EQUAL X (BTM))
(BTM)
(IF (FINLISTP X)
T
(LISTP X))))



(DEFN SASL~LOGICAL (X)
(IF (EQUAL X (BTM))
(BTM)
(IF X :
(IF (EQUAL X T) T F)
T)))

; SASL-CHAR defined near the beginning

(DEFN SASL~FUNCTION (X)
(IF (EQUAL X (BTM))
(BTM)
(LITATOM X)))

(DEFN SASL~INTEGER (X)
(IF (EQUAL X (BTM))
(BTM)
(OR (NUMBERP X)
(AND (NOT (EQUAL X (MINUS 0)))
(NEGATIVEP X)))))

(DEFN SASL-IF (X Y Z)
(IF X
(IF (EQUAL X T) Y (BTM))
Z))

(DEFN SASL-AND (X Y)
(IF X

(IF (EQUAL X T)

(IF Y
(IF (EQUAL Y T)
T
(BTM))
F)
(BTM) )

F))

(DEFN SASL-OR (X Y)
(IF X
(IF (EQUAL X T) T (BTM))
(IF Y
(IF (EQUAL Y T) T (BTM))
F)))

(DEFN SASL-NOT (X)

(IF X
(IF (EQUAL X T) F (BTM))
T))
(ADD~AXIOM HD-INF-TL-INF-ELIMINATION
(ELIM)
(IMPLIES
(LISTP X)

(EQUAL (CONS-INF (HD-INF X) (TL-INF X)) X)))
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(ADD~AXIOM HD-INF-SASL-AND-TL~INF-OF-NONLISTS
(REWRITE)
(IMPLIES
(NOT (LISTP X))
(AND (EQUAL (HD-INF X) (BTM))
(EQUAL (TL-INF X) (BTM)))))

(ADD-AXIOM TL-INF-REWRITE (REWRITE)
(OR (LISTP (TL-INF X))
(FINLISTP (TL-INF X))
(EQUAL (TL-INF X) (BTM))))

(ADD-AXIOM HD~INF-OF-SASL-CONS
(REWRITE)
(IMPLIES (OR (LISTP X)
(LISTP Y))
(EQUAL (HD-INF (CONS-INF X Y)) X)))

(ADD-AXIOM TL-INF-QOF-SASL-CONS
(REWRITE)
(IMPLIES (OR (LISTP X)
(LISTP Y))
(EQUAL (TL-INF (CONS-INF X Y))
(IF (SASL-LIST Y) Y (BTM)))))

(DCL SASL-PLUS- (X Y))

(DEFN SASL-PLUS (X Y)
(IF (AND (NUMBERP X) (NUMBERP Y))
(PLUS X Y)
(IF (OR (AND (NOT (NEGATIVEP X))
(NOT (NUMBERP X)))
(AND (NOT (NEGATIVEP Y))
(NOT (NUMBERP Y))))
(BTM)
(SASL-PLUS~ X ¥Y))))

(DCL SASL-TIMES- (X Y))

(DEFN SASL~-TIMES (X Y)
(IF (AND (NUMBERP X) (NUMBERP Y))
(TIMES X Y)
(IF (OR (AND (NOT (NEGATIVEP X))
(NOT (NUMBERP X)))
(AND (NOT (NEGATIVEP Y))
(NOT (NUMBERP Y))))
(BTM)
(SASL-TIMES- X Y))))

(DCL SASL-DIFFERENCE- (X Y))

AZ2.3



(DEFN SASL-DIFFERENCE (X Y)
(IF (AND (NUMBERP X) (NUMBERP Y))
(DIFFERENCE X Y)
(IF (OR (AND (NOT (NEGATIVEP X))
(NOT (NUMBERP X)))
(AND (NOT (NEGATIVEP Y))
(NOT (NUMBERP Y))))
(BTM)
(SASL-DIFFERENCE- X Y))))

(DCL SASL-DIV- (X Y))

(DEFN SASL-DIV (X Y)
(IF (AND (NUMBERP X) (NUMBERP Y))
(IF (EQUAL Y 0)
(BTM)
(QUOTIENT X Y))
(IF (OR (AND (NOT (NEGATIVEP X))
(NOT (NUMBERP X)))
(AND (NOT (NEGATIVEP Y))
(NOT (NUMBERP Y))))
(BTM)
(SASL-DIV~ X Y))))

(DCL SASL-REM-~ (X Y¥))

(DEFN SASL-REM (X Y)
(IF (AND (NUMBERP X) (NUMBERP Y))
(IF (EQUAL Y 0)
(BTM)
(REMAINDER X Y))
(IF (OR (AND (NOT (NEGATIVEP X))
(NOT (NUMBERP X)))
(AND (NOT (NEGATIVEP Y))
(NOT (NUMBERP Y))))
(BTM)
(SASL-REM~ X Y))))

(DEFN EXP (X Y)
(IF (ZEROP Y)
1
(TIMES X (EXP X (SUBT ¥)))))

(DCL SASL-EXP- (X Y))

(DEFN SASL-EXP (X Y)
(IF (AND (NUMBERP X) (NUMBERP Y))
(IF (AND (EQUAL X 0) (EQUAL Y 0))
(BTM)
(EXP X Y))
(IF (OR (AND (NOT (NEGATIVEP X))
(NOT (NUMBERP X)))
(AND (NOT (NEGATIVEP ¥))
(NOT (NUMBERP Y¥))))
(BTM)
(SASL-EXP~ X ¥Y))))
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(DEFN SASL-GT (X Y)
(IF (OR (EQUAL X (MINUS 0))
(EQUAL Y (MINUS 0)))
(BTM) .
(IF (NUMBERP Y)
(IF (NUMBERP X)
(GREATERP X Y)
(IF (NEGATIVEP X)
F
(BTM)))
(IF (NEGATIVEP Y)
(IF (NUMBERP X)
T
(IF (NEGATIVEP X)
(LESSP (NEGATIVE-GUTS X)
(NEGATIVE-GUTS Y))
(BTM)))
(BTM)))))

(DEFN SASL-LT (X Y)
(IF (OR (EQUAL X (MINUS 0))
(EQUAL Y (MINUS 0)))
(BTM)
(IF (NUMBERP Y)
(IF (NUMBERP X)
(LESSP X Y)
(IF (NEGATIVEP X)
T
(BTM)))
(IF (NEGATIVEP Y)
(IF (NUMBERP X)
F
(IF (NEGATIVEP X)
(GREATERP (NEGATIVE-GUTS X)
(NEGATIVE-GUTS Y))
(BTM)))
(BTM)))))

(DEFN SASL-GTE (X Y)
(IF (OR (EQUAL X (MINUS 0))
(EQUAL Y (MINUS 0)))
(BTM)
(IF (NUMBERP Y)
(IF (NUMBERP X)
(GEQ X Y)
(IF (NEGATIVEP X)
F
(BTM)))
(IF (NEGATIVEP Y)
(IF (NUMBERP X)
T
(IF (NEGATIVEP X)
(LEQ (NEGATIVE-GUTS X)
(NEGATIVE-GUTS Y))
(BTM)))
(BTM)))))
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(DEFN SASL-LTE (X Y)
(IF (OR (EQUAL X (MINUS 0))
(EQUAL Y (MINUS 0)))
(BTM) .
(IF (NUMBERP Y)
(IF (NUMBERP X)
(LEQ X Y)
(IF (NEGATIVEP X)
T
(BTM)))
(IF (NEGATIVEP Y)
(IF (NUMBERP X)
F
(IF (NEGATIVEP X)
(GEQ (NEGATIVE-GUTS X)
(NEGATIVE-GUTS Y))
(BTM)))
(BTM)))))

(DCL RENAME (X))

(ADD~AXIOM SASL-LOGICALREP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-LOGICAL) X)
(SASL~LOGICAL X)))

(ADD~AXIOM SASL-CHARREP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-CHAR) X)
(SASL-~CHAR X)))

(ADD-AXIOM SASL-INTEGERREP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-INTEGER) X)
(SASL-INTEGER X)))

(ADD-AXIOM SASL~LIST-REP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-LIST) X)
(SASL-LIST X)))

(ADD-~AXIOM SASL-FUNCTIONREP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-FUNCTION) X)
(SASL-FUNCTION X)))

(ADD~AXIOM SASL-CONS-REP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-CONS) X) Y)
(SASL-CONS X Y¥Y)))
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(ADD~AXIOM SASL-HD-REP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-HD) X)
- (SASL-HD X)))

(ADD-AXIOM SASL-TL-REP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-TL) X)
(SASL-TL X)))

(ADD~AXIOM SASL-IFREP
(REWRITE)
(EQUAL (AP (AP (AP (RENAME 'SASL-IF) X) Y) Z)
(SASL-IF X Y Z)))

(ADD-AXIOM SASL-~ANDREP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-AND) X) Y)
(SASL-AND X Y)))

(ADD~AXIOM SASL~-ORREP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-0OR) X) Y)
(SASL-OR X Y)))

(ADD-AXIOM SASL-NOTREP
(REWRITE)
(EQUAL (AP (RENAME 'SASL-NOT) ¥X)
(SASL-NOT X)))

(ADD~AXIOM SASL-PLUSREP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-PLUS) X) Y)
(SASL~PLUS X Y)))

(ADD~AXIOM SASL~TIMESREP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-TIMES) X) Y)
(SASL-TIMES X Y)))

(ADD-AXIOM SASL-DIVREP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-DIV) X) Y)
(SASL-DIV X ¥Y)))

(ADD~AXIOM SASL-REMREP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-REM) X) Y)
(SASL~-REM X Y)))

(ADD-AXIOM SASL-LTREP
(REWRITE)
(EQUAL (AP (AP (RENAME 'SASL-LT) ¥XJ) Y)
(SASL-LT X ¥)))
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(ADD-AXIOM

(ADD-AXIOM

(ADD-AXIOM

(ADD-AXIOM

(ADD~AXIOM

(ADD~AXIOM

(ADD-AXIOM

(ADD-AXIOM

(ADD-AXIOM

(ADD-~AXIOM

SASL~GTREP

(REWRITE)

(EQUAL (AP (AP (RENAME 'SASL-GT) X) Y)
~ (8SASL-GT X ¥Y)))

SASL-GTE-REP

(REWRITE)

(EQUAL (AP (AP (RENAME 'SASL-GTE) X) Y)
(SASL-GTE X Y)))

SASL-LTE-REP

(REWRITE)

(EQUAL (AP (AP (RENAME 'SASL-LTE) X) Y)
(SASL-LTE X Y)))

SASL-EXPREP

(REWRITE)

(EQUAL (AP (AP (RENAME 'SASL-EXP) X) Y)
(SASL-EXP X Y)))

SASL~CONS-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-CONS) X))
(NOT (LISTP (AP (RENAME 'SASL-CONS) X)))
(NOT (FINLISTP (AP (RENAME 'SASL-CONS) X)))))

SASL-IF~FN-1
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-IF) X))
(NOT (LISTP (AP (RENAME 'SASL-IF) X)))
(NOT (FINLISTP (AP (RENAME 'SASL-IF) X)))))

SASL-IF-FN-2
(REWRITE)
(AND (LITATOM (AP (AP (RENAME 'SASL-IF) X) Y))
(NOT (LISTP (AP (AP (RENAME 'SASL-IF) X) Y)))
(NOT (FINLISTP (AP (AP (RENAME 'SASL-IF) X) Y)))))

SASL~AND~FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-AND) X))
(NOT (LISTP (AP (RENAME 'SASL-AND) X)))
(NOT (FINLISTP (AP (RENAME 'SASL-AND) X)))))

SASL-OR-FN
(REWRITE)
(AND (LITATOM (AP (RENAME *SASL-OR) X))
(NOT (LISTP (AP (RENAME 'SASL-0OR) X)))
(NOT (FINLISTP (AP (RENAME 'SASL-OR) X)))))

SASL-PLUS-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-PLUS) X))
(NOT (LISTP (AP (RENAME 'SASL-PLUS) X)))
(NOT (FINLISTP (AP (RENAME 'SASL-PLUS) X)))))
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{ADD~AXIOM

(ADD-AXIOM

(ADD-AXIOM

(ADD~AXIOM

(ADD-AXIOM

(ADD~AXIOM

(ADD-AXIOM

(ADD~AXIOM

(ADD-AXIOM

SASL-TIMES-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-TIMES) X))

(NOT (LISTP (AP (RENAME 'SASL-TIMES) X)))

(NOT (FINLISTP (AP (RENAME 'SASL-TIMES) X)))))

SASL~-DIFFERENCE-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-DIFFERENCE) X))
(NOT (LISTP (AP (RENAME 'SASL-DIFFERENCE) X)))
(NOT (FINLISTP (AP (RENAME 'SASL-DIFFERENCE) X)))))

SASL-DIV-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-DIV) X))

(NOT (LISTP (AP (RENAME 'SASL-DIV) X)))

(NOT (FINLISTP (AP (RENAME 'SASL-DIV) X)))))

SASL~REM~FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-REM) X))

(NOT (LISTP (AP (RENAME 'SASL-REM) X)))

(NOT (FINLISTP (AP (RENAME 'SASL-REM) X)))))

SASL-EXP-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-EXP) X))
(NOT (LISTP (AP (RENAME 'SASL-EXP) X)))
- (NOT (FINLISTP (AP (RENAME 'SASL-EXP) X)))))

SASL~LT-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-~LT) X))

(NOT (LISTP (AP (RENAME 'SASL-LT) X)))

(NOT (FINLISTP (AP (RENAME 'SASL-LT) X)))))

SASL~-LTE-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-LTE) X))

(NOT (LISTP (AP (RENAME 'SASL-LTE) X)))

(NOT (FINLISTP (AP (RENAME 'SASL-LTE) X)))))

SASL-GTE-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-GTE) X))

(NOT (LISTP (AP (RENAME °'SASL~GTE) X)))

(NOT (FINLISTP (AP (RENAME T"SASL-GTE) X)))))

SASL-GT-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-GT) X))

(NOT (LISTP (AP (RENAME 'SASL-GT) X)))

(NOT (FINLISTP (AP (RENAME 'SASL-GT) X)))))
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(DEFN SUBSC (X N)
(IF (NUMBERP N)
(IF (EQUAL N 0)

(BTM)
(IF (EQUAL N 1)
(SASL-HD X)

(IF (EQUAL (SASL-LIST (SASL~TL X)) T)
(SUBSC (SASL-TL X) (SUB1 N))
(BTM)))) ,
(BTM)))

(DEFN AP-QUTER (X Y)
(IF (EQUAL (SASL-LIST X) T)
(SUBSC X Y)
(IF (LITATOM X)
(AP X Y)
(BTM))))

(DCL EXTENSIONALITY-WITNESS (X Y))

(ADD-AXIOM SASL-CONS-OF-~NON~FINOBJS
NIL
(EQUAL (LISTP (SASL-CONS X Y))
(OR (LISTP X) (LISTP Y))))

(ADD-AXIOM EXTENSIONALITY
(REWRITE)
(IMPLIES (AND
(LITATOM X)
(LITATOM Y)
(NOT (EQUAL X ¥)))
(NOT (EQUAL (AP X (EXTENSIONALITY-WITNESS X Y))
(AP Y (EXTENSIONALITY-WITNESS X Y))))))

(ADD-AXIOM FUNCTION-RENAME (REWRITE)
(LITATOM (RENAME X)))

(DEFN SASL-EQUAL (X Y)
(IF (OR (EQUAL X (BTM))
(EQUAL Y (BTM)))
(BTM)
(IF (AND (SASL-LIST X)
(NOT (EQUAL X (SASL-NIL)))
(SASL-LIST Y)
(NOT (EQUAL Y (SASL-NIL))))
(SASL-AND (SASL-EQUAL (SASL-HD X) (SASL-HD Y))
(SASL-EQUAL (SASL-TL X) (SASL-TL Y)))
(IF (AND (LITATOM X)
(LITATOM Y))
(BTM)
(EQUAL X ¥Y))))
NIL T)

(ADD-AXIOM SASL-EQUAL-TYPE (REWRITE)
(OR (EQUAL (SASL-EQUAL X Y) T)
(EQUAL (SASL-EQUAL X Y) F)
(EQUAL (SASL-EQUAL X Y) (BTM))))
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(ADD~AXIOM SASL-EQUAL-FN
(REWRITE)
(AND (LITATOM (AP (RENAME 'SASL-EQUAL) X))
(NOT (LISTP (AP (RENAME 'SASL-EQUAL) X)))
(NOT (FINLISTP (AP (RENAME 'SASL-EQUAL) X)))))

(DEFN REAL-LENGTH (X)
(IF (EQUAL (SASL-LIST X) T)
(IF (EQUAL X (SASL~NIL))
0
(IF (NUMBERP (REAL-LENGTH (SASL-TL X)))
(ADD1 (REAL-LENGTH (SASL-TL X)))
(BTM)))
0) NIL T)

(ADD-AXIOM REAL-LENGTH-TYPE (REWRITE)
(OR (NUMBERP (REAL-LENGTH X))
(BTMP (REAL-LENGTH X))))

(DEFN INF-LIST (X)
(AND (LISTP X) (EQUAL (REAL~LENGTH X) (BTM))))
(PROVE~LEMMA FINHD-GEN (GENERALIZE)
(NOT (LISTP (FINHD X))))
(PROVE-LEMMA FINTL-GEN (GENERALIZE)
(OR (FINLISTP (FINTL X))
(EQUAL (FINTL X) (BTM))))

(ADD~AXIOM SASL-CHAR-BTM (REWRITE)
(EQUAL (SASL-CHAR (BTM)) (BTM)))
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APPENDIX 3: SOME EXAMPLES

;: See Section 1.D for events regarding a SASL append function.

( PROVE-LEMMA SASL-LIST~SASL-LOGICAL
NIL
(OR (EQUAL (SASL-LIST X) T)
(EQUAL (SASL-LIST X) F)
(EQUAL (SASL-LIST X) (BTM))))

(PROVE-LEMMA SASL-LIST-BTM
NIL
(EQUAL (EQUAL (SASL-LIST X) (BTM)) (EQUAL X (BTM))))

(PROVE-LEMMA SASL-LIST-BTM2 NIL
(EQUAL (SASL-LIST (BTM)) (BTM)))

(PROVE-LEMMA SASL-NIL-IS-A-LIST
NIL
(EQUAL (SASL-LIST (SASL-NIL)) T))

(PROVE-LEMMA SASL-NOT-A-LIST

NIL

(IMPLIES (OR (EQUAL X T)
(EQUAL X F)
(NUMBERP X)
(NEGATIVEP X)
; (CHARP X)
(LITATOM X))

(EQUAL (SASL-LIST X) F)))

(PROVE-LEMMA COUNT-LISTP (REWRITE)
(IMPLIES (LISTP X) (NOT (EQUAL (COUNT X) 0)))
((INDUCT (LENGTH X))))

(SASL-DEFN SASL-STRING (L)
(SASL-OR (SASL~EQUAL L (SASL-NIL))
(SASL~AND (SASL~CHAR (SASL-HD L))
(SASL-STRING (SASL-TL L)))))

(SASL-DEFN SASL-ALL (P L)
(SASL-IF (SASL-EQUAL L (SASL-NIL))
(SASL-TRUE)
(SASL-AND (AP-OUTER P (SASL-HD L))
(SASL-ALL P (SASL-TL L)))))

(SASL-DEFN SASL-TREE (L)

(SASL-OR (SASL-STRING L)
(SASL-ALL (RENAME 'SASL-TREE) L)))

A3.1



(SASL-DEFN SASL-MAP (FN L)
(SASL-IF (SASL~EQUAL L (SASL-NIL))
(SASL~NIL)
(SASL-IF (SASL-NOT (SASL-LIST L))
(BTM)
(SASL~CONS (AP-OUTER FN (SASL-HD L))
(SASL-MAP FN (SASL-TL L))))))

(SASL-DEFN SASL~CONCAT (L)
(SASL-IF (SASL-EQUAL L (SASL-NIL))
(SASL-NIL)
(SASL~APPEND (SASL-HD L)
(SASL-CONCAT (SASL-TL L))Y)))

(SASL-DEFN SASL-GLUE (L)
(SASL~IF (SASL-STRING L)
L
(SASL-CONCAT (SASL~MAP (RENAME 'SASL-GLUE) L))))

(DEFN STRING (L)
(IF (EQUAL L (BTM))
(BTM)
(IF (NOT (FINLISTP L))
(BTM)
(IF (EQUAL L (SASL-NIL))
T
(SASL~AND (SASL-CHAR (FINHD L))
(STRING (FINTL L)))))))

(PROVE~LEMMA STRING-IS-STRING (REWRITE)
(IMPLIES (NOT (LISTP L))
(EQUAL (SASL-STRING L)
(STRING L))))

(DEFN AUX-TREE (FLAC L)
(IF (EQUAL L (SASL-NIL))

T

(IF (NOT (FINLISTP L))
(BTM)
(IF FLAG

(SASL~-OR (STRING L)
(SASL-AND (AUX-TREE T (FINHD L))
(AUX~TREE F (FINTL L))))
(SASL~AND (AUX-TREE T (FINHD L))
(AUX-TREE F (FINTL L)))))))

(PROVE-LEMMA TREE-IS-TREE (REWRITE)
(IMPLIES (NOT (LISTP L))
(AND
(EQUAL (SASL~TREE L)
(AUX~-TREE T L))
(EQUAL (SASL-ALL (RENAME 'SASL-TREE) L)
(AUX-TREE F L)))))



(DEFN CONCAT (L)
(IF (NOT (FINLISTP L))

(BTM)
(IF (EQUAL L (SASL-NIL))
(SASL-NIL)

(APPEND (FINHD L)
(CONCAT (FINTL L))))))

(PROVE~LEMMA CONCAT-IS-CONCAT (REWRITE)
(IMPLIES (NOT (LISTP L))
(EQUAL (SASL-CONCAT L)
(CONCAT L))))

(DEFN AUX~GLUE (FLAG L)
(IF (NOT (FINLISTP L))
(BTM)
(IF (EQUAL L (SASL-NIL))
(SASL-NIL)
(IF FLAG
(SASL~IF (SASL~STRING L)
L
(CONCAT (FINPAIR (AUX-GLUE T (FINHD L))
(AUX-GLUE F (FINTL L)))))
(FINPAIR (AUX-GLUE T (FINHD L))
(AUX~GLUE F (FINTL L)))))))

(PROVE~LEMMA AUX-GLUE-IS-GLUE-AND-MAP-GLUE NIL
(IMPLIES (NOT (LISTP L))
(EQUAL (AUX~GLUE FLG L)
(IF FLG
(SASL-GLUE L)
(SASL~-MAP (RENAME 'SASL-GLUE) L)))))

(PROVE-LEMMA AUX~-GLUE-IS-GLUE~AND-MAP-GLUE-REWRITE (REWRITE)
(IMPLIES (NOT (LISTP L))
(EQUAL (SASL-GLUE L) (AUX-GLUE T L
((USE (AUX~GLUE~IS~GLUE~AND-~-MAP~GLUE (FLG T
(DISABLE AUX-GLUE)))

)))
)))

(PROVE~LEMMA THEOREM-AUX-GLUE NIL
(IMPLIES (AND (NOT (LISTP L))
(EQUAL (AUX~TREE FLG L) T))
(IF FLG
(EQUAL (STRING (AUX~GLUE FLG L)) T)
(EQUAL (STRING (CONCAT (AUX~GLUE FLG L))) T))))

(PROVE~LEMMA THEOREM-SASL-GLUE (REWRITE)
(IMPLIES (NLISTP L)
(IMPLIES (EQUAL (SASL~TREE L) T)
(EQUAL (SASL~STRING (SASL-GLUE L)) T)))
((USE (THEOREM~AUX-CLUE (FLGC T)))))

(LIFT THEOREM~SASL~GLUE~LIFTED NIL THEOREM-SASL-GLUE (L))
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(SASL~-DEFN SASL-LENGTH (L)
(SASL~IF (SASL-LIST L)
(SASL-~IF (SASL-EQUAL L (SASL-NIL))
0
(SASL-PLUS 1 (SASL-LENGTH (SASL-TL L))))
(BTM)))

(DEFN LEN (L)
(IF (FINLISTP L)
(IF (EQUAL L (SASL-NIL))
0
(SASL~PLUS 1 (LEN (FINTL L))))
(BTM)))

(PROVE~LEMMA LEN-LEN (REWRITE)
(IMPLIES (NLISTP L)
(EQUAL (SASL-LENGTH L) (LEN L))))

(PROVE-LEMMA LEN-TYPE (REWRITE)
(OR (EQUAL (LEN X) (BTM))
(NUMBERP (LEN X))))

(PROVE~LEMMA LEN-APP (REWRITE)
(IMPLIES (AND (NLISTP L)
(SASL-LIST L)
(EQUAL (LEN L) (BTM)))
(EQUAL (APPEND L K) L)))

(PROVE~LEMMA LEN-APP2 (REWRITE)
(IMPLIES (NLISTP L)
(IMPLIES (AND
(SASL-LIST L)
(EQUAL (SASL-LENGTH L) (BTM)))
(EQUAL (SASL-APPEND L K) L))))

(LIFT LEN~APP2~LIFTED (REWRITE) LEN-APP2 (L))

(PROVE-LEMMA SASL~LEN-TYPE (REWRITE)
(IMPLIES (NLISTP X)
(OR (EQUAL (SASL-LENGTH X) (BTM))
(EQUAL (SASL-GTE (SASL-LENGTH X) 0) T))))

(LIFT SASL-LEN-TYPE~-LIFTED (REWRITE) SASL-LEN-TYPE (X))

(PROVE-LEMMA SASL-LEN-TYPE-TYPE-SET (REWRITE)
(OR (EQUAL (SASL-LENGTH X) (BTM))

(NUMBERP (SASL-LENGTH X)))

((USE (SASL-LEN-TYPE-LIFTED))))

(DEFN HACK (N L)
(IF (ZEROP N)
T
(HACK (SUBT N) (SASL-TL L))))
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(PROVE~LEMMA SASL~LENGTH-0O (REWRITE)
(EQUAL (EQUAL (SASL-LENGTH L) 0)
(EQUAL L (SASL-NIL)))
((USE (SASL-LENGTH))))

(PROVE-LEMMA SASL-LENGTH-IS-SOMETIMES~REAL-LENGTH NIL
(IMPLIES (AND
(EQUAL N (SASL-LENGTH L))
(NUMBERP N))
(EQUAL (SASL-LENGTH L)
(REAL-LENGTH L)))
((INDUCT (HACK N L))))

(PROVE~LEMMA INFLIST-LENGTH-IS-BTM (REWRITE)
(IMPLIES (INF-LIST L)
(EQUAL (SASL-LENGTH L) (BTM)))
((USE (SASL-LENGTH-IS-SOMETIMES-REAL-LENGTH
(N (SASL-LENGTH L))))))

(PROVE-LEMMA LEN-APP2-LIFTED-INF (REWRITE)
(IMPLIES (INF-LIST L)
(EQUAL (SASL-APPEND L K) L)))

(SASL~DEFN SASL-REVERSE (L)
(SASL~IF (SASL~LIST L) ,
(SASL-IF (SASL-EQUAL L (SASL-NIL))
(SASL-NIL)
(SASL~APPEND (SASL-REVERSE (SASL-TL L))

(SASL~CONS (SASL-HD L) (SASL-NIL))))
(BTM)))

(DEFN REVERSE (L)
(IF (FINLISTP L)
(IF (EQUAL L (SASL-NIL))
(SASL-NIL)
(APPEND (REVERSE (FINTL L)) o
(FINPAIR (FINHD L) (SASL-NIL))))
(BTM)))

(PROVE-LEMMA NUMBERP-LEN-APP (REWRITE)
(IMPLIES (AND (NUMBERP (LEN X))
(NUMBERP (LEN Y)))
(NUMBERP (LEN (APPEND X Y)))))

(PROVE-LEMMA REVERSE-~GEN (GENERALIZE)
(IMPLIES (NUMBERP (LEN X))
(NUMBERP (LEN (REVERSE X)))))

(PROVE-LEMMA LEN-REV (REWRITE)
(IMPLIES (NOT (EQUAL (LEN L) (BTM)))
(EQUAL (REVERSE (REVERSE L))
L)))
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(PROVE~LEMMA SASL-REVERSE-IS-REVERSE (REWRITE)
(IMPLIES (NLISTP X)
(EQUAL (SASL-REVERSE X)
(REVERSE X))))

(PROVE-LEMMA SASL-REV-REV (REWRITE)
(IMPLIES (NLISTP X)
(IMPLIES (NOT (EQUAL (SASL-LENGTH X)
(BTM)))
(EQUAL (SASL-REVERSE (SASL-REVERSE X))
X))))

(LIFT SASL-REV-REV-LIFTED (REWRITE) SASL-REV-REV (X))

(SASL-DEFN SASL-FROM (N)
(SASL-CONS N (SASL-FROM (SASL-PLUS 1 N))))

(DEFN TYPE-~HELP (K N)
(IF (NUMBERP K)
(IF (EQUAL K 0)
0
(TYPE~-HELP (SUB1 K) (ADD1 N)))
0))

(PROVE~LEMMA TYPE~OF-SASL-FROM (REWRITE)
(IMPLIES (AND (NUMBERP N)
(NUMBERP (REAL~LENGTH (SASL~FROM N)))
(NUMBERP X))
(AND (EQUAL (GREATERP (REAL-LENGTH (SASL-FROM N)) K) T)
(NUMBERP (REAL~LENGTH (SASL~FROM (ADD?1 N))))))
((INDUCT (TYPE-HELP K N))))

(PROVE-LEMMA NOT-~NUMBERP-SASL-FROM (REWRITE)
(IMPLIES (NUMBERP N)
(EQUAL (NUMBERP (REAL-LENGTH (SASL-FROM N))) F))
((USE (TYPE~QF-SASL-FROM (K (REAL-LENGTH (SASL-FROM N)))))
(DISABLE TYPE~-QF-~-SASL-FROM)))

(PROVE-LEMMA CORRECT-~TYPE-QOF-SASL-FROM (REWRITE)
(OR (FINLISTP (SASL-FROM N))
(LISTP (SASL-FROM N)))
((USE (SASL-FROM))))

(PROVE~LEMMA FINPAIRS-HAVE-FINITE~REAL-LENGTH (REWRITE)
(IMPLIES (FINLISTP L)
(EQUAL (NUMBERP (REAL-LENGTH L)) T))
((INDUCT (APPEND L Z))))

(PROVE~LEMMA SASL-FROM-YIELDS-LISTP (REWRITE)
(IMPLIES (NUMBERP N)
(EQUAL (LISTP (SASL-FROM N)) T))
((USE (NOT-NUMBERP-SASL~FROM)
(FINPAIRS-HAVE-FINITE-REAL-LENGTH (L (SASL-FROM N))))))
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( PROVE~-LEMMA SASL-FROM-YIELDS-INFLIST (REWRITE)
(IMPLIES (NUMBERP N)
(EQUAL (INF-LIST (SASL-FROM N)) T))
((DISABLE NOT-NUMBERP~SASL-FROM)
(USE (NOT-NUMBERP~SASL-FROM))))

(PROVE~LEMMA FROM-SUBSC (REWRITE)
(IMPLIES (AND (NUMBERP N)
(NUMBERP K)
(LESSP 0 K))
(EQUAL (SUBSC (SASL~FROM N) X)
(SUB1 (PLUS N K))))
((INDUCT (TYPE-HELP XK N))))
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APPENDIX 4: THE ALTERNATE INITIAL SASL LIBRARY

(ADD~SHELL BTM NIL BTMP NIL)
(DCL SASL-CHAR (X))

(DCL SASL-DECODE (X))

(DCL SASL-CODE (X))

; Here is a shell for finite trees whose leaves are all atoms,
; 1.e. are not bottom, infinite trees, or functions.

(ADD~SHELL SCONS SASL-NIL SLIST
((SHD
(NONE~OF BTMP LISTP LITATOM)
could have been (ONE-OF SCONS TRUEP FALSEP NUMBERP NEGATIVEP CHARP)

°
3

SASL-NIL) ; notice that (SHD (SASL-NIL)) = (SASL-NIL), which is OK
; since SHD will only be called on SLISTs that are not
; (SASL-NIL)
(STL

(ONE-OF SLIST)
SASL-NIL)))

In this approach I'11 merely DECLARE the SASL~CONS function, and add its
definition as a rewrite axiom. This will make 1t easier to disable
SASL-CONS. But I'll do this by means of the auxiliary function
SASL~CONSO in order to take advantage of the type-prescription machinery.

°
3
°
3
°
3
°
?

(DCL SASL-CONS (X Y))
(DCL LCONS (X Y)) ; for the leftover cases not covered by SCONS

(DEFN SASL-CONSO (X Y)
(IF (OR (LISTP X)
(LITATOM X)
(EQUAL X (BTM))
(NOT (SLIST Y)))
(LCONS X Y)
(SCONS X Y)))

(ADD~AXIOM SASL~CONS-DEF (REWRITE)
(EQUAL (SASL-CONS X Y)
(SASL~CONSO X Y)))

(ADD~AXIOM CONS-INF-LISTP (REWRITE)
(LISTP (LCONS X Y)))

; The following abbreviation should add substantially to readability and

; may also be useful in proving theorems. As with SASL-CONS, I'11 actually
; declare 1t and add its definition as a rewrite axiom.
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(DEFN FINDEFOQO (X)
(AND (NOT (EQUAL X (BTM)))
(NOT (LISTP X))
(NOT (LITATOM X))))

(DCL FINDEF (X))

(ADD-AXIOM FINDEF-DEF (REWRITE)
(EQUAL (FINDEF ¥X)
(FINDEFO X)))

(ADD-AXIOM DECODE-TYPE-1 (REWRITE)
(NOT (OR (LISTP (SASL-DECODE X))
(LITATOM (SASL-DECODE X)))))

(ADD~AXIOM DECODE~TYPE~2 (REWRITE)
(IMPLIES (AND (GREATERP X 0)
(LESSP X 129))
(AND (NOT (BTMP (SASL-DECODE X)))
(NOT (EQUAL (SASL~DECODE X) (BTM))))))

(ADD-AXIOM CHAR~DECODE-1 (REWRITE)
(SASL-CHAR (SASL-DECODE X)))

(ADD-AXIOM CHAR-DECODE-2 (REWRITE)
(IMPLIES (AND (GREATERP X 0)
(LESSP X 129))
(EQUAL (SASL-CHAR (SASL-DECODE X)) T)))

(ADD-AXIOM SASL-CHAR-TYPE-1 (REWRITE)
(IMPLIES (AND (NOT (EQUAL (SASL-CHAR X) T))
(NOT (EQUAL X (BTM))))
(EQUAL (SASL-CHAR X) F)))

(ADD-AXIOM SASL-CHAR-TYPE-2 (REWRITE)
(IMPLIES (OR (SLIST X)
(LISTP X)
(NUMBERP X)
(EQUAL X T)
(EQUAL X F))
(EQUAL (SASL-CHAR X) F)))

(ADD~AXIOM SASL-CHAR-TYPE-~3 NIL
(IMPLIES (AND (NEGATIVEP X)
(NOT (EQUAL X (MINUS 0))))
(EQUAL (SASL~CHAR X ) F)))

(DCL LHD (X))

(DEFN SASL-HDO (X)
(IF (SLIST X)
(IF (EQUAL X (SASL-NIL))
(BTM)
(SHD X))
(LHD X))

(DCL SASL-HD (X))
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(ADD~AXIOM SASL-HD-DEF (REWRITE)
(EQUAL (SASL-HD X)
(SASL-HDO X)))

(DCL LTL (X))

(ADD~AXIOM LTL-TYPE (REWRITE)
(OR (LISTP (LTL X))
(SLIST (LTL X))

(EQUAL (LTL X) (BTM))))

(DEFN SASL-TLO (X)
(IF (SLIST X)
(IF (EQUAL X (SASL-NIL))
(BTM)
(STL X))
(LTL X)))

(DCL SASL-TL (X))

(ADD~AXIOM SASL-TL-DEF (REWRITE)
(EQUAL (SASL-TL X)
(SASL-TLO X)))

(PROVE-LEMMA SASL-~TL-TYPE (REWRITE)
(OR (LISTP (SASL-TL X))
(SLIST (SASL-TL X))
(EQUAL (SASL-TL X) (BTM))))

(DCL AP (FN X))

(DEFN SASL-LISTO (X)
(IF (EQUAL X (BTM))
(BTM)
(IF (SLIST X)
T
(LISTP X))))

(DCL SASL-~LIST (X))

(ADD~AXIOM SASL-LIST-DEF (REWRITE)
(EQUAL (SASL-LIST X)
(SASL-LISTO X)))

(PROVE-LEMMA SASL-LIST-TYPE (REWRITE)
(OR (EQUAL (SASL-LIST X) T)
(EQUAL (SASL-LIST X) F)
(EQUAL (SASL-LIST X) (BTM))))

; Most of the rest of the events are quite analogous to the

; ones in the earlier version (Appendix 2), so we omit them

; here. Below 1s a criterion for equality, FINDEF-EQUAL-EQUAL,
; which is very useful. (First, we establish the induction used
; for its proof.) We conclude with two other useful lemmas.
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(DEFN FINDEF-EQUAL-~EQUAL-IND (X Y)
(IF (OR (NOT (SLIST X))

(EQUAL X (SASL-NIL))
(NOT (SLIST Y))
(EQUAL Y (SASL-NIL)))

T

(AND (FINDEF-EQUAL~EQUAL-IND (SHD X) (SHD Y))
(FINDEF~-EQUAL-EQUAL-IND (STL X) (STL Y)))))

(PROVE-LEMMA FINDEF-EQUAL-EQUAL (REWRITE)
(IMPLIES (AND (FINDEF X)
(FINDEF Y))
(EQUAL (SASL-EQUAL X Y)
(EQUAL X Y)))
((INDUCT (FINDEF-~EQUAL-EQUAL-IND X Y))))

(PROVE-LEMMA FINDEF-TL (REWRITE)
(IMPLIES (AND (SLIST L)
(NOT (EQUAL L (SASL-NIL))))
(AND (SLIST (STL L))
(FINDEF (STL L)))))

(PROVE-LEMMA FINDEF-HD (REWRITE)
(IMPLIES (AND (SLIST L)
(NOT (EQUAL L (SASL-NIL))))
(FINDEF (SHD L))))

: It's important to note that with this sequence of events,
; the 1lifting principle is no longer sound.
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APPENDIX 5:
A MECHANICALLY-CHECKED PROCEF OF CORRECTNESS OF A SASL
PATTERN-MATCHING PROGRAM

This sequence of events 13 organized into parts as follows.

Part I: Definitions of the relevant functions, including lemmas on
the equivalences between the SASL functions and their
corresponding "finite analogues"™. For example, early on we
define a SASL function MATCH and then a corresponding functicn
MATCH~, and then prove that these agree on finite definite
lists of strings (see MATCH-IS-MATCH some time later).
The "finite analogues" are generally closely related to their
"parents", but they use the theorem-prover's boolean functions
IF, AND, and so on rather than the more complex SASL versions,
and they also use the "strict" list-processing functions SCONS,
SHD, STL.

Part II: Proof of one direction of correctness of pattern-matching
function MATCH:

(SLIST P) (SLIST D) (SLIST L)

(STRINGLISTO P) (STRINGLISTO D)

(EXPANSION P L) ( (FLATTEN L) = D)
==> (MATCH P D) =T

Part I1II: Proof of other direction of correctness of MATCH:

(SLIST P) /\ (SLIST D) /A
(STRINGLISTO P) /\ (STRINGLISTO D) /\ {(MATCH P D)
==> for some L,
[ (EXPANSION P L) =T /N (FLATTEN L) =T ].

(In fact, this L is defined as a function (W P D) of
P and D.)

These events are run in the context of the alternate initial SASL
library which is summarized in Appendix 4. They are taken
from Kaufmann [&].



: PART I: Definitions of the relevant functions ~- general set-up.

(SASL-DEFN Q () -;; the string "2"
(SASL-CONS (SASL-DECODE 63) (SASL-NIL)))

(SASL-DEFN STAR () ;; the string "*v
(SASL-CONS (SASL-DECODE 42) (SASL-NIL)))

(SASL-DEFN MATCH (P D)
(SASL-IF
(SASL-AND (SASL-EQUAL P (SASL-NIL))
(SASL-EQUAL D (SASL~-NIL)))
T ;3 empty lists match
(SASL-IF
(SASL-OR (SASL-EQUAL P (SASL-NIL))
(SASL~EQUAL D (SASL-NIL)))
F ;3 because o¢one string is NIL but the other is not
(SASL-IF
(SASL-EQUAL (SASL-HD P) (STAR))
(SASL-OR (MATCH (SASL-TL P) (SASL-TL D))
(MATCH P (SASL-TL D)))
(SASL-IF
(SASL~-OR (SASL-EQUAL (SASL~HD P) (Q))
(SASL-EQUAL (SASL-HD P) (SASL-HD D)))
(MATCH (SASL-TL P) (SASL-TL D))
F)))))

(DEFN MATCH- (P D)
(IF (OR (NOT (SLIST P))
(NOT (SLIST D)))
F
(IF (AND (EQUAL P (SASL-NIL))
(EQUAL D (SASL-NIL)))
T
(IF (OR (EQUAL P (SASL-NIL))
(EQUAL D (SASL~NIL)))
F
(IF (EQUAL (SHD P) (STAR))
(OR (MATCH- (STL P) (STL D))
(MATCH- P (STL D)))
(IF (OR (EQUAL (SHD P) (Q))
(EQUAL (SHD P) (SHD D)))
(MATCH- (STL P) (STL D))
F))))))

(SASL-DEFN STRING (L)
(SASL~IF (SASL-NOT (SASL-LIST L))
F
(SASL-IF (SASL-EQUAL L (SASL-NIL))
T
(SASL-AND (SASL-CHAR (SASL-HD L))
(STRING (SASL-TL L))))))
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(DEFN CHARP (X)
(EQUAL (SASL-CHAR X) T))

(DEFN STRING- (L)
(IF (NOT (SLIST L))
F
(IF (EQUAL L (SASL-NIL))
T
(AND (CHARP (SHD L))
(STRING-~ (STL L))))))

(PROVE-LEMMA Q-IS-STRING (REWRITE)
(STRING-~ (SCONS (SASL-DECODE 63) (SASL-NIL))))

(PROVE~LEMMA STAR-IS~STRING (REWRITE)
(STRING- (SCONS (SASL-DECODE 42) (SASL-NIL))))

(PROVE-LEMMA STRING-IS-STRING (REWRITE)
(IMPLIES (FINDEF L)
(EQUAL (STRING L)
(STRING-~ L))))

(SASL-DEFN STRINGLISTO (L)
(SASL-IF (SASL-NOT (SASL-LIST L))
F
(SASL~IF (SASL~EQUAL L (SASL-NIL))
T
(SASL~AND (STRING (SASL-HD L))
(STRINGLISTO (SASL-TL L))))))

(DEFN STRINGLISTO~ (L)
(IF (NOT (SLIST L))
F
(IF (EQUAL L (SASL-NIL))
T
(AND (STRING-~ (SHD L))
(STRINGLISTO~ (STL L))))))

(PROVE-LEMMA STRINGLISTO-IS-STRINGLISTO (REWRITE)
(IMPLIES (FINDEF L)
(EQUAL (STRINGLISTO L)
(STRINGLISTO-~ L))))

(PROVE-LEMMA STRINGLISTO-IS-STRINGLISTO-AGAIN (REWRITE)
(IMPLIES (SLIST L)
(EQUAL (STRINGLISTO L)
(STRINGLISTO~ L))))

(SASL~DEFN STRINGLIST (L)

(SASL-AND (STRINGLISTO L)
(SASL-NOT (SASL~EQUAL L (SASL-NIL)))))
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(DEFN STRINCLIST- (L)
(AND (STRINGLISTO- L)
(NOT (EQUAL L (SASL-NIL)))))

(PROVE-LEMMA STRINGLIST-IS-STRINGLIST (REWRITE)
(IMPLIES (FINDEF L)
(EQUAL (STRINGLIST L)
(STRINGLIST- L))))

(PROVE~LEMMA MATCH-IS-MATCH (REWRITE)
(IMPLIES (AND (FINDEF P)
(FINDEF D)
(EQUAL (STRINGLISTO P) T)
(EQUAL (STRINGLISTO D) T))
(EQUAL (MATCH P D)
(MATCH-~ P D)))

((EXPAND (MATCH (SCONS (SCONS (SASL-DECODE 42) (SASL-NIL))

(SASL-NIL))
(STL D)))
(INDUCT (MATCH- P D))))

at the same position in L, every Q in P corresponds to an

positions.
Notice the use of STRINGLIST rather than STRINGLISTO, as

commented in the following definition. That's because STAR
matches a positive (not zero!) number of strings.

We Wwa we Wwo w5 We We WO ‘eo
We Wwa swe WMo W ws We two

( SASL-DEFN EXPANSION (P L)
(SASL-IF
 (SASL-AND (SASL-EQUAL P (SASL-NIL))
(SASL-EQUAL L (SASL-NIL)))
T
(SASL-IF
(SASL-0OR (SASL-EQUAL P (SASL-NIL))
(SASL-EQUAL L (SASL-NIL)))
F
(SASL-IF
(SASL-EQUAL (SASL-HD P) (STAR))

(SASL~AND (STRINGLIST (SASL-HD L)) ;not STRINGLISTO, cf.

(EXPANSION (SASL-TL P) (SASL-TL L)))
(SASL-IF
(SASL~EQUAL (SASL-HD P) (Q))
(SASL~AND (STRING (SASL-HD L))
(EXPANSION (SASL-TL P) (SASL-TL L)))
(SASL~IF (SASL-EQUAL (SASL-HD P) (SASL-HD L))
(EXPANSION (SASL-TL P) (SASL-TL L))
F)J)))))
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(DEFN EXPANSION- (P L)
(IF (OR (NOT (SLIST P))
(NOT (SLIST L)))
F
(IF (AND (EQUAL P (SASL-NIL))
(EQUAL L (SASL-NIL)))
T
(IF (OR (EQUAL P (SASL-NIL))
(EQUAL L (SASL-NIL)))
F
(IF (EQUAL (SHD P) (STAR))
(AND (STRINGLIST- (SHD L))
(EXPANSION-~ (STL P) (STL L)))
(IF (EQUAL (SHD P) (Q))
(AND (STRING-~ (SHD L))
(EXPANSION-~ (STL P) (STL L)))
(IF (EQUAL (SHD P) (SHD L))
(EXPANSION- (STL P) (STL L))
F)))))))

(PROVE~LEMMA EXPANSION-IS-EXPANSION (REWRITE)
(IMPLIES (AND (SLIST P)
(SLIST L))
(EQUAL (EXPANSION P L)
(EXPANSION~- P L)))
((DISABLE STRING STRINGLIST))) ; such hints tend to save time

(SASL~DEFN APPEND (L M)
(SASL~IF (SASL-LIST L)
(SASL-IF (SASL-EQUAL L (SASL-NIL))
(SASL-IF (SASL-LIST M)
M
(BTM))
(SASL-CONS (SASL-HD L)
(APPEND (SASL-TL L) M)))
(BTM)))

(DEFN APPEND~ (L M)
(IF (NOT (SLIST L))
M ; this ruins equivalence of APPEND functions over non-lists,
; but avoids the need to introduce BTM needlessly
(IF (EQUAL L (SASL-NIL))
M
(SCONS (SHD L) (APPEND~ (STL L) M)))))

(PROVE~LEMMA APPEND-IS-APPEND (REWRITE)
(IMPLIES (AND (SLIST L)
(SLIST M))
(EQUAL (APPEND L M)
(APPEND- L M))))



(SASL~-DEFN FLATTEN (L)
(SASL~IF (SASL-NOT (SASL-LIST L))
(BTM)
(SASL-IF (SASL-EQUAL L (SASL-NIL))
(SASL-NIL)
(SASL~IF (STRINGLIST (SASL-HD L))
(APPEND (SASL-HD L)
(FLATTEN (SASL-TL L)))
(SASL~CONS (SASL-HD L)
(FLATTEN (SASL-TL L)))))))
(DEFN FLATTEN- (L)
(IF (NOT (SLIST L))
(SASL-NIL)
(IF (EQUAL L (SASL-NIL))
(SASL-NIL)
(IF (STRINGLIST- (SHD L))
(APPEND~ (SHD L) (FLATTEN~-

(STL L)))
(SCONS (SHD L) (FLATTEN-

(STL L)))))))
(PROVE-LEMMA FLATTEN-SLIST (REWRITE)
(IMPLIES (SLIST L)
(SLIST (FLATTEN~ L))))

(PROVE-LEMMA FLATTEN-IS-FLATTEN (REWRITE)
(IMPLIES (SLIST L)
(EQUAL (FLATTEN L)
(FLATTEN- L)))
((EXPAND (STRINGLISTO- (SHD L))))) ; needed in order to apply
; APPEND-IS-APPEND
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; PART II: One direction of correctness.

Qur approach will be to prove the desired result (as described in

the introduction) in terms of the "finite analogues" first. We'll
then rely on the various equivalences proved in Part I in order to
obtain the desired results.

ws ws we o

wo we woe wu
Wwo wo ws we

;55 The following function P1 is an abbreviation for the aforementioned
553 "finite analogue®™ of the desired result.

(DEFN P1 (P L D)
(IMPLIES (AND (STRINGLISTO- P)
(STRINGLISTO- D)
(EXPANSION- P L)
(EQUAL (FLATTEN- L) D))
(MATCH- P D)))

(DEFN CONS1 (A L)
(SCONS (SCONS A (SHD L)) (STL L)))

(DISABLE MATCH)

(DEFN TAIL1 (L)
(SCONS (STL (SHD L))
(STL L)))

555 We will prove the desired result by induction as indicated by the
;33 following definition.

(DEFN P1~IND (P L D)
(IF (OR (NOT (SLIST P))
(NOT (SLIST L))
(NOT (SLIST D)))

T
(IF (EQUAL P (SASL-NIL))
T
(IF (EQUAL L (SASL-NIL))
T
(IF (EQUAL D (SASL-NIL))

T
(IF (EQUAL (SHD P) (STAR))
(IF (EQUAL (STL (SHD L)) (SASL-NIL))
(P1-IND (STL P) (STL L) (STL D))
(P1~IND P (TAILT L) (STL D)))
(P1~IND (STL P) (STL L) (STL D)))))))»)

;3; The approach now is to prove each of the induction cases, cne
;33 at a time.

(PROVE-LEMMA P1-1 (REWRITE)
(IMPLIES (OR (NOT (SLIST P))
(NOT (SLIST L))
(NOT (SLIST D)J))
(P1 P L D)))
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(PROVE-LEMMA

(PROVE~LEMMA

( PROVE-LEMMA

(PROVE-LEMMA

(PROVE~LEMMA

(PROVE~LEMMA

(PROVE-LEMMA

(PROVE~LEMMA

(PROVE-LEMMA

(DISABLE NIL~-

P1-2 (REWRITE)
(IMPLIES (EQUAL P (SASL-NIL))
(P1T P L D))

P1~3 (REWRITE)
(IMPLIES (EQUAL L (SASL-NIL))
(P1 P L D))

P1-4 (REWRITE)
(IMPLIES (AND (EQUAL D (SASL-NIL))
(NOT (EQUAL P (SASL-NIL))
(NOT (EQUAL L (SASL-NIL))
P L D)))

)
))
(P1
NIL-FLATTEN (REWRITE)
(IMPLIES (AND (SLIST V)

(EQUAL (FLATTEN- V) (SASL-NIL)))
(EQUAL (EQUAL V (SASL-NIL)) T)))

P1-5 (REWRITE)

(IMPLIES (AND (NOT (EQUAL P (SASL-NIL)
)

(NOT (EQUAL
(EQUAL (SHD
(EQUAL (STL

))
L (SASL-NIL)))
P) (STAR))
(SHD L)) (SASL-NIL))

(P1 (STL P)
P L D)))

(STL L) (STL D)))
(P1

APPEND-NOT-NIL (REWRITE)
(IMPLIES (AND (SLIST L)
(NOT (EQUAL L (SASL-NIL))))
(NOT (EQUAL (APPEND~ L M) (SASL-NIL)))))

P1-6 (REWRITE)
(IMPLIES (AND (NOT (EQUAL P (SASL-NIL)))
(NOT (EQUAL L (SASL-NIL)))

(EQUAL (SHD
(NOT (EQUAL
(P1

(Pt P L D)))

P (TAILY

P) (STAR))
(STL (SHD L)) (SASL~NIL)))
L) (STL D)))

STRING-STRINGLIST (REWRITE)
(IMPLIES (AND (STRINGLISTO- L)

(STRING- L))

(EQUAL (EQUAL L (SASL-NIL)) T)))

P1-7 (REWRITE)
(IMPLIES (AND (NOT (EQUAL
(NOT (EQUAL
(NOT (EQUAL
(Pt (STL P)
(P1T P L D)))

FLATTEN)

(DISABLE STRING-STRINGLIST)

(DISABLE APPEND-NOT-NIL)

P (SASL-NIL)))

L (SASL~NIL)))
(SHD P) (STAR)))
(STL L) (STL DJ)))



(PROVE-LEMMA SUFFICIENCY-FOR-MATCH-LEMMA NIL
(P1 P L D)
((INDUCT (P1-IND P L D))

(DISABLE STRINGLISTO-~ EXPANSION- FLATTEN- MATCH- P1)))

Notice that in the following theorem, the third through
hypotheses are weaker than what would be sufficient for
purposes; for example, "(STRINGLISTO P)" means the same
"(NOT (EQUAL (STRINGLISTO P) F))", which is weaker than

w5 Wwo we Wa Wwe wo

Wwe we ws Wws e wa

can only strengthen the theorem ~~ i.e. there'’s no harm

fifth

our

thing as
asserting

"(EQUAL (STRINGLISTO P) T)". Of course, weakening the hypotheses

in doing so.

RS R R RS R TSR EEEEEELEEEEEEEEEEEEEEEEEEEE SRR EEEEEREEEREE Y IR E R

; HALF OF THE THEOREM
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(PROVE-LEMMA SUFFICIENCY-FOR~MATCH (REWRITE)
(IMPLIES (AND (SLIST P)
(SLIST D)
(SLIST L)
(STRINGLISTO P)
(STRINGLISTO D)
(EXPANSION P L)
(EQUAL (FLATTEN L) D))
(EQUAL (MATCH P D) T))
({(USE (SUFFICIENCY~FOR~-MATCH-LEMMA))))
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3

Part III: The other direction.

(DISABLE P1-1)

(DISABLE P1-2)

(DISABLE P1-3)

(DISABLE P1-4)

(DISABLE P1-5)

(DISABLE P1-6)

(DISABLE P1-7)

(DISABLE SUFFICIENCY-FOR-MATCH)

W we we we ws

wo we We we we
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The "other direction" says that if pattern P matches stringlist

D, then an appropriate list L exists, 1.e. there is a list L

such that the hypotheses of the theorem above hold. To find this
list L, we need to define the appropriate witnessing function. Then
we will prove:

(IMPLIES (AND (STRINGLISTO- P)
(STRINGLISTO-~ D)
(MATCH- P D))
(AND (EXPANSION- P L)
(EQUAL (FLATTEN- L) D)))

where L = (W P D).

(DEFN W (P D)

-
9

@
b

(

IF (OR (NOT (SLIST PB)) ;: This case
(NOT (SLIST D))) ;3 should
(SASL-NIL) s : never arise

(IF (AND (EQUAL P (SASL-NIL))
(EQUAL D (SASL-NIL)))

(SASL~NIL)
(IF (OR (EQUAL P (SASL~-NIL)) ;3 This case
(EQUAL D (SASL-NIL))) ;; should
(SASL-~NIL) ;; never arise

(IF (EQUAL (SHD P) (STAR))
(IF (MATCH- (STL P) (STL D))
(SCONS (SCONS (SHD D) (SASL-NIL))
(W (STL P) (STL D)))
(CONS1 (SHD D) (W P (STL D))))
(SCONS (SHD D) (W (STL P) (STL D))))))y)»)

The following lemma went through on the first try, with no hints!
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(PROVE~LEMMA W-EXPANSION (REWRITE)
(IMPLIES (AND (STRINGLISTO- P)
(STRINGLISTO~ D)
(MATCH~ P D))
(EXPANSION~ P (W P D))))

(DISABLE W-EXPANSION)

;33 Let's let P2 name the second half of our desired goal.

(DEFN P2 (P D)
(IMPLIES (AND (STRINGLISTO- P)
(STRINGLISTO~ D)
(MATCH- P D))
(EQUAL (FLATTEN- (W P D)) D)))

;33; We'll prove P2 by induction along the definition of

(PROVE~LEMMA P2-1 (REWRITE)
(IMPLIES (OR (NOT (SLIST P))
(NOT (SLIST D)))
(P2 P D)))

(PROVE~-LEMMA P2-2 (REWRITE)
(IMPLIES (AND (EQUAL P (SASL-NIL))
(EQUAL D (SASL-NIL)))
(P2 P D)))

(PROVE~LEMMA P2-3 (REWRITE)
(IMPLIES (OR (EQUAL P (SASL-NIL))
(EQUAL D (SASL-NIL)))
(P2 P D)))

(PROVE-LEMMA P2-4 (REWRITE)
(IMPLIES (AND (EQUAL (SHD P) (STAR))
(MATCH~ (STL P) (STL D))
(P2 (STL P) (STL D)))
(P2 P D)))

(PROVE-LEMMA P2-5-LEMMA-1 (REWRITE)
(IMPLIES (AND (STRINGLISTO-~ (STL P))
(STRINGLISTO~ D)
(EQUAL (SHD P) (STAR))
(MATCH~ P D))
(STRINGLISTO- (SHD (W P D)))))

(PROVE-LEMMA P2-5~LEMMA-2 (REWRITE)
(IMPLIES (AND (MATCH~ P D)
(NOT (EQUAL P (SASL-NIL)))
(EQUAL (SHD P) (STAR)))
(NOT (EQUAL (SHD (W P D))
(SASL-NIL)))))

W.



(PROVE~LEMMA P2-5 (REWRITE)
(IMPLIES (AND (EQUAL (SHD P) (STAR))
(NOT (MATCH- (STL P) (STL D)))
(P2 P (STL D)))
(P2 P D)))

(ENABLE STRING~STRINGLIST)

(PROVE-LEMMA P2-6 (REWRITE)
(IMPLIES (AND (NOT (EQUAL P (SASL-NIL)))
(NOT (EQUAL D (SASL-NIL)))
(NOT (EQUAL (SHD P) (STAR)
(P2 (STL P) (STL D)))
(P2 P D))

))

(DISABLE P2-5-LEMMA-1)
(DISABLE P2-5-LEMMA-2)

(PROVE-~LEMMA P2-ALWAYS-HOLDS NIL
(P2 P D)
((INDUCT (W P D))
(DISABLE P2 FLATTEN- MATCH- STRINGLISTO- W)))

(ENABLE W~EXPANSION)

;3 See the comment proceeding the previous direction, which applies
;3 here as well.

LR EEELEE ST RS A SRR EEEEEEEERFEEEEEE L EEEEE LS A I I I

b
;  OTHER HALF OF THE THEOREM
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(PROVE-LEMMA NECESSITY-OF-MATCH (REWRITE)
(IMPLIES (AND (SLIST P)
(SLIST D)
(STRINGLISTO P)
(STRINGLISTO D)
(MATCH P D))
(AND (EQUAL (EXPANSION P (W P D)) T)
(EQUAL (FLATTEN (W P D)) D)))
((USE (P2~ALWAYS-HOLDS))
(DISABLE MATCH- EXPANSION- FLATTEN- W)))
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APPENDIX 6: SASL DEFINITIONS FOR SASL UNIFICATION FUNCTION

STRING L =
(SASL-LIST L) &
(L =[] | ((CHAR (HD L)) & (STRING (TL L))))
CHAR-V = 'V!

VAR L

H

(STRING L) & (T L =[]) & (HD L = CHAR-V)
CONST L = (STRING L) & (- VAR L)

FAIL

it

NRAILY
SECOND L = HD (TL L)

MK-PAIR X Y = [X,Y]

APPEND L M = LIST L -> (L=[] -> (LIST M -> M; BOTTOM);
HD L : APPEND (TL L) M);
BOTTOM
OCCURS V L = (VAR L) -> V=L;
(CONST L) -> FALSE;
OCCURS V (HD L) | OCCURS V (TL L)
IDENT = []

MK-SUB V L = MK-PAIR V L : []

SASL-LOOKUP TABLE DEFAULT OBJECT =
TABLE = [] -> DEFAULT;
OBJECT = (HD (HD TABLE)) -> SECOND (HD TABLE);
SASL-LOOKUP (TL TABLE) DEFAULT OBJECT

&
VAR-SUBST SUB V = SASL-LOOKUP SUB V V
SUBST SUB L = VAR L -> VAR-SUBST SUB L;
CONST L -> L;
SUBST SUB (HD L) : SUBST SUB (TL L)
MAP FN L = L=[] -> [];
LIST L -> FN (HD L) : MAP FN (TL L);
BOTTOM
SUBST2 SUB L = MK~PAIR (HD L) (SUBST SUB (SECOND L))
VAR-UNIFY V L = V=L -> IDENT;

OCCURS V L -> FAIL;
MK-SUB V L
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COMPOSE SUB1 SUB2 = SUB1=FAIL | SUB2=FAIL -> FAIL;
APPEND (MAP (SUBST2 SUB2) SUB1) SUB2

UNIFY L M = VAR L -> VAR-UNIFY L M;
VAR M -> VAR-UNIFY M L;
(CONST L) | (CONST M) -> (L=M -> IDENT; FAIL);
COMPOSE SUBHD SUBTL

WHERE
SUBHD = UNIFY (HD L) (HD M)
SUBTL = UNIFY (SUBST SUBHD (TL L))

(SUBST SUBHD (TL M))
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FOOTNOTES

1. "NORMA" is an acronym for Normal Crder Reduction MAchine, which is
so-named because it is a combinator graph reduction machine which uses
the normal-order reduction strategy. This strategy supporis what is
known as "lazy evaluation”, which in turn allows for infinite data
structures.

2. Actually, SASL also includes real numbers along with sorme constructs
for handling 1/0, which we ignore in this paper. For simplicity, we also
ignore some of the syntactic sugar, such as WHERE clauses,
pattern-matching, and ZF-expressions (cf. Richards [14], [15]).

3. Certainly a parser from SASL to Lisp would be a nice package to put on
top of the Prover, among others.

4. Using more of the constructs available in SASL, we can write these
definitions more clearly and elegantly as follows:

primes = sieve [2 .]

sieve (a:L) = a: sieve (filteral)

filtera(bL)=(bREMa) =0 -> filteral;
b:filteral

Still more elegantly:

primes = sieve [2 ]
sieve (aL) =a:sieve[b <~ L;bREMa ~= Q]

5. More formally, a type restriction for the ith argument is a term with Xi
as the only variable and TRUE, FALSE, previously introduced shell
recognizers, and the current shell recognizers as the only function
symbols.

6. Though the semantics of SASL are given in [11], any standard reference
on denotational semantics (e.g. Stoy [16]) should be adequate to provide a
good idea of what is going on. In the jargon of that field, the SASL domain
is the (least) solution to the domain equation



V=R+C+B+V +[V -]

where

7. We may take (OTHER t) to be an abbreviation for

NOT (\/ ((rt) r a recognizer]), though this differs a bit from the
system's implementation,

8. Some of these type prescriptions are implemented using the ADD-AXIOM
command (in Appendix 2). Others remain unimmplemented, which results
in the default type prescription <UNIVERSE, (}>, which is of course the
weakest possible and hence does not harm soundness.

9. The material in this section is based on Kaufmann [5],

10. Two minor modifications of the PROVE-LEMMA command were added to

the Prover to facilitate the proof. Nefther of these af fects the logic. The
PROVE-LEMMA-TAUT command instructs the Prover to forget all of the

rewrite rules that 1t has stored except for some very basic facts about

arithmetic and such, though an optional argument can be given to change

this. The PROVE-LEMMA-ALLOW command is similar, except that the user
Specifies rewrite rules which are not to be thus disabled. Both of these
commands are useful for directing a proof. For example, a given /
complicated fact may follow tautologically from some simpler facts, and /
Lo obtain that final fact one would like to turn off the rewrite rules ]
(which can slow things down immensely). -‘
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