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ACL2 has long supported user-defined simplifiers, so-called metafunctions and clause processors,
which are installed when corresponding rules of class :meta or :clause-processor are proved.
Historically, such simplifiers could access the logical world at execution time and could call certain
built-in proof tools, but one could not assume the soundness of the proof tools or the truth of any facts
extracted from the world or context when proving a simplifier correct. Starting with ACL2 Version
6.0, released in December 2012, an additional capability was added which allows the correctness
proofs of simplifiers to assume the correctness of some such proof tools and extracted facts. In this
paper we explain this capability and give examples that demonstrate its utility.

1 Introduction

The meta rule and clause processor facilities of the ACL2 theorem proving system [6] are designed
to allow users to write custom proof routines which, once proven correct, can be called by the ACL2
prover1. These facilities descend from the meta reasoning capability provided by earlier Boyer-Moore
provers [3]. Relevant background can be found in earlier ACL2 papers on meta reasoning [5] and clause
processors [7], along with ACL2 documentation [1].

Such meta-level proof routines have historically been limited in their use of ACL2’s database of
stored facts and its built-in prover functions. For example, a metafunction could call the ACL2 rewriter,
but when proving this metafunction correct, the result of calling the rewriter could not be assumed to be
equivalent to the input — that is, the rewriter could not be assumed to be correct. Similarly, metafunctions
and clause processors could both examine the ACL2 world (the logical state of the prover, including the
database of stored facts), but in proving the correctness of these functions, facts extracted from the world
could not be assumed to be correct.

Meta-extract is an ACL2 feature first introduced in Version 6.0 (December, 2012). It allows for
certain facts stored in the ACL2 world and certain ACL2 prover routines to be assumed correct when
proving the correctness of metafunctions and clause processors. In particular, additional meta-extract
hypotheses that capture the correctness of such routines and facts are allowed to be present in these
correctness theorems. These additional hypotheses preserve the soundness of metareasoning in ACL2
because they encode assumptions that we are already making — that the facts stored in the ACL2 logical
world are true and that ACL2’s prover routines are sound.

Note that meta-extract hypotheses can be used to help prove theorems to be stored as meta rules or as
clause-processor rules, but they have no effect on how those rules are applied during subsequent proofs.
For that, we refer readers to existing papers [5, 7] as well as documentation [1] topics including META,
CLAUSE-PROCESSOR, and EXTENDED-METAFUNCTIONS. Also see the topic META-EXTRACT

1 Clause processors may alternatively be “trusted” — used without proof — but at the cost of a trust tag marking this use as
a source of potential unsoundness. [7]
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for additional user-level documentation. Note that references to documentation topics, such as those
above, are underlined to denote hyperlinks to topics in the online documentation [1] for ACL2 and its
books.

This paper primarily addresses metafunctions rather than always referring to both metafunctions and
clause processors. The correctness arguments are analogous. The meta-extract functionality available for
clause processors is a subset of the functionality available for metafunctions: the global facts discussed
below are available for both, but contextual facts need contexts that are only available below the clause
level.

1.1 Meta-extract Hypotheses

We next introduce the various meta-extract hypotheses and explain informally why it is sound to in-
clude them. See the Essay on Correctness of Meta Reasoning in the ACL2 source code for a rigorous
mathematical argument.

Correctness theorems for metafunctions are stated using a function that we will call a pseudo-
evaluator, typically defined via the defevaluator macro. (Elsewhere in the ACL2 literature this is
simply referred to as an evaluator; however, we want to emphasize the difference between a pseudo-
evaluator and a real term evaluator.) A pseudo-evaluator is a constrained function about which only
certain facts are known; these facts are ones that would also be true of a “real” evaluator capable of
fully interpreting any ACL2 term. The intention is for these facts to suffice for proving a metafunction
correct, without the need for a real term evaluator2. To prove a metafunction correct the user must show
that the pseudo-evaluation of the term output by the metafunction is equal (or equivalent) to the pseudo-
evaluation of the input term. Intuitively, if this can be proved of a pseudo-evaluator, and the only facts
known about the pseudo-evaluator are ones that are also true of the real evaluator of ACL2 terms, then
this must also be true of the real evaluator: that is, the evaluations of the input and output terms of the
metafunction are equivalent, and thus the metafunction is correct.

The meta-extract feature allows certain additional hypotheses in the statement of the correctness
theorem of a metafunction. These meta-extract hypotheses are applications of the pseudo-evaluator to
calls of either the function meta-extract-global-fact+, its less general version meta-extract-

global-fact, or the function meta-extract-contextual-fact. These functions produce various
sorts of terms by extracting facts from the ACL2 world and calling ACL2 prover subroutines, constructed
so that if ACL2 and its logical state are sound, the terms produced should always be true. For example,
these functions can produce:

• the body of a previously proven theorem;

• the definitional equation of a previously defined function;

• a term equating a call of a function on quoted constants to the quoted value of that call;

• a term equating some term a to the result of rewriting a using mfc-rw; or

• a term describing the type of a, according to ACL2’s type-set reasoning.

When we use such facts in our metafunction, meta-extract hypotheses allow us to assume that they are
true according to the pseudo-evaluator while doing the correctness proof.

2 It would be unsound to define what we are calling a real evaluator in ACL2 — in particular, one that could evaluate terms
containing calls of the evaluator itself, or functions that call the evaluator. In order to fix our handwavy argument, you could
instead think of introducing an evaluator that can interpret all functions that are defined at the point when the metafunction is
being applied.
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Intuitively, adding meta-extract hypotheses to a metafunction’s correctness theorem is allowable be-
cause we expect the (real) evaluation of any term produced by one of the meta-extract functions to return
true. If we prove the pseudo-evaluator theorem with meta-extract hypotheses and, as before, reason that
since the theorem is true of the pseudo-evaluator, it is also true of the real evaluator, then the final step
is to observe that meta-extract hypotheses are true using the real evaluator (or else ACL2 is already un-
sound). Therefore, even with meta-extract hypotheses, we can still conclude that the evaluations of the
metafunction’s output and input terms are equivalent.

Why not somehow axiomatize the idea that the contents of the ACL2 world are correct? Simply put,
we don’t see how to do that, and ideas we have heard along those lines have been unsound. At the least,
one would seem to need to formalize the complex notion of a valid world.

1.2 Organization of This Paper

In Section 2 we provide examples of meta-extract hypotheses and summary documentation of their vari-
ous forms. Section 3 presents a community book that provides a convenient way to use the meta-extract
facility. Next we present applications in Section 4 and finally, we conclude with Section 5.

2 Meta-extract

Next we explain meta-extract by first giving two examples and then summarizing the general forms of
meta-extract hypotheses.

2.1 Tutorial Examples

We present two examples for the two kinds of meta-extract hypotheses, corresponding to evaluation
of calls of meta-extract-contextual-fact and of meta-extract-global-fact. (Since a call
(meta-extract-global-fact obj state) is an abbreviation for (meta-extract-global-fact+
obj state state), we are thus effectively illustrating meta-extract-global-fact+ as well.)

2.1.1 Meta-extract-contextual-fact

Our first example is intentionally contrived and quite trivial, intended only to provide an easy introduction
to meta-extract. It illustrates the use of meta-extract-contextual-fact. The intent is to simplify
any term of the form (nth x lst), when x is easily seen by ACL2 to be a symbol in the current context,
to (car lst).

In ACL2, the use of metafunctions is always supported by an evaluator, called a pseudo-evaluator
in the preceding section. Let us introduce an evaluator that “knows” about the functions relevant to this
example.

(defevaluator nthmeta-ev nthmeta-ev-lst

((typespec-check ts x)

(nth n x)

(car x)))

Next we define a metafunction, intended to replace any term (nth n x) by a corresponding term (car

x) when n is known to be a symbol using type-set reasoning.3

3For details such as the meaning of :forcep nil, see the documentation for meta-extract.
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(defun nth-symbolp-metafn (term mfc state)

(declare (xargs :stobjs state))

(case-match term

((’nth n x)

(if (equal (mfc-ts n mfc state :forcep nil)

*ts-symbol*)

(list ’car x)

term))

(& term)))

When the input term matches (nth n x), this calls mfc-ts to deduce the possible types of n. If that
type-set equals *ts-symbol* then that term must evaluate to a symbol, and the term can be reduced to
(car x).4

Now we can present a meta rule with a meta-extract hypothesis. Without that hypothesis the formula
below is not a theorem, because the function mfc-ts has no axiomatic properties; all we know about it
below is what we are told by the meta-extract hypothesis, as discussed further below.

(defthm nth-symbolp-meta

(implies (nthmeta-ev (meta-extract-contextual-fact ‘(:typeset ,(cadr term))

mfc

state)

a)

(equal (nthmeta-ev term a)

(nthmeta-ev (nth-symbolp-metafn term mfc state) a)))

:rule-classes ((:meta :trigger-fns (nth))))

To see what the meta-extract hypothesis above gives us, consider the following theorem provable by
ACL2.

(equal (meta-extract-contextual-fact ‘(:typeset ,x)

mfc

state)

(list ’typespec-check

(list ’quote

(mfc-ts x mfc state :forcep nil))

x))

At a high level, this theorem shows us that meta-extract-contextual-fact returns a term of the
form (typespec-check (quote ts) x), which asserts that the term x belongs to the set of values
represented by ts. The meta-extract hypothesis applies the pseudo-evaluator to this term, and since
typespec-check is one of its known functions, the hypothesis reduces to

(typespec-check (mfc-ts (cadr term) mfc state :forcep nil)

(nthmeta-ev (cadr term) a)).

The interesting case in proving our metafunction correct is when this mfc-ts call equals *ts-symbol*.
In this case the hypothesis becomes

4Requiring the type-set to equal *ts-symbol* is an an unnecessarily strong check, chosen merely for ease of presentation:
it requires that ACL2’s determination of the term’s possible types include all three of the basic types T, NIL, and non-Boolean
symbols.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MFC-TS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____TYPESPEC-CHECK
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(typespec-check *ts-symbol* (nthmeta-ev (cadr term) a))

which, when expanded, implies that the evaluation of (cadr term) must be a symbol, which enables
the proof of nth-symbolp-meta.

Recall that meta-extract hypotheses do not affect the applications of meta rules; they only support
their proofs. Therefore, the following test of the example above yields no surprises.

(defstub foo (x) t)

(thm (implies (symbolp (foo x))

(equal (nth (foo x) y) (car y)))

:hints (("Goal" :in-theory ’(nth-symbolp-meta))))

2.1.2 Meta-extract-global-fact

Our second example is from community book “demos/nth-update-nth-meta-extract.lisp”, which uses
meta-extract-global-fact. Let us begin by considering what problem this book is attempting to
solve.

Consider a defstobj event, (defstobj st fld1 fld2 ... fldn). A common challenge in
reasoning about stobjs is the simplification of read-over-write terms, of the form (fldi (update-fld j

v st)), which indicate that we are to read fldi after updating fld j. That term simplifies to (fldi st)

when i 6= j, and otherwise it simplifies to v. How do we get ACL2 to do such simplification automati-
cally? The following two approaches are standard.

• Disable the stobj accessors and updaters after proving rewrite rules to simplify terms of the form
(fldi (update-fld j val st)), to val if i = j and to (fldi st) if i 6= j.

• Let the stobj accessors and updaters remain enabled, relying on a rule such as the built-in rewrite
rule nth-update-nth to rewrite terms, obtained after expanding calls of the accessors and up-
daters, of the form (nth i (update-nth j val st)).

The first of these requires n2 rules, which is generally feasible but can perhaps get somewhat unwieldy.
The second of these provides a simple solution, but when proofs fail, the resulting checkpoints can be
more difficult to comprehend.

Here, we outline a solution that addresses both of these concerns: a macro that generates a suitable
meta rule. Details of this proof development may be found in community book “demos/nth-update-nth-
meta-extract.lisp”. First we introduce our metafunction. Next, we prove a meta rule for a specific stobj.
Finally, we mention a macro that generates a version of this rule that is suitable for an arbitrary specified
stobj.

Our metafunction returns the input term unchanged unless it is of the form (r (w v x)), where r
and w are reader (accessor) and writer (updater) functions defined to be calls of nth and update-nth,
on explicit indices: (r x) = (nth ’i x) and (w v x) = (update-nth ’i v x). In that case, the
function nth-update-nth-meta-fn-new-term computes a new term: v if i = j, and otherwise, (r
x).

(defun nth-update-nth-meta-fn (term mfc state)

(declare (xargs :stobjs state)

(ignore mfc))

(or (nth-update-nth-meta-fn-new-term term state)

term))

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFSTOBJ
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Notice below that in computing the new term, the definitions of the reader and writer are extracted
from the logical world using the function, meta-extract-formula, which returns the function’s defi-
nitional equation. For example:

ACL2 !>(meta-extract-formula ’atom state)

(EQUAL (ATOM X) (NOT (CONSP X)))

ACL2 !>

We thus rely on the correctness of meta-extract-formula for the equality of the input term and the
term returned by the following function.

(defun nth-update-nth-meta-fn-new-term (term state)

(declare (xargs :stobjs state))

(case-match term

((reader (writer val x))

(and (not (eq reader ’quote))

(not (eq writer ’quote))

(let* ((reader-formula (and (symbolp reader)

(meta-extract-formula reader state)))

(i-rd (fn-nth-index reader reader-formula)))

(and

i-rd ; the body of reader is (nth ’i-rd ...)

(let* ((writer-formula (and (symbolp writer)

(meta-extract-formula writer state)))

(i-wr (fn-update-nth-index writer writer-formula)))

(and

i-wr ; the body of writer is (update-nth ’i-wr ...)

(if (eql i-rd i-wr)

val

(list reader x))))))))

(& nil)))

Next we introduce a (pseudo-)evaluator to use in our meta rule.

(defevaluator nth-update-nth-ev nth-update-nth-ev-lst

((nth n x)

(update-nth n val x)

(equal x y)))

We need to define one more function before presenting our meta rule. It takes as input a term ( f t1
. . . tn) with list of formals (v1 . . . vn), and builds an alist that maps each vi to the value of ti in a given
alist. Like our metafunction, it consults meta-extract-formula to obtain the formal parameters of
f . An earlier attempt to use the function, formals, failed: the meta rule’s proof needs these formals to
connect to those found by our metafunction.

(defun meta-extract-alist-rec (formals actuals a)

(cond ((endp formals) nil)

(t (acons (car formals)

(nth-update-nth-ev (car actuals) a)

(meta-extract-alist-rec (cdr formals) (cdr actuals) a)))))

(defun meta-extract-alist (term a state)



M. Kaufmann & S. Swords 7

(declare (xargs :stobjs state :verify-guards nil))

(let* ((fn (car term))

(actuals (cdr term))

(formula (meta-extract-formula fn state)) ; (equal (fn ...) ...)

(formals (cdr (cadr formula))))

(meta-extract-alist-rec formals actuals a)))

We now define a stobj and prove a corresponding meta rule.

(defstobj st

fld1 fld2 fld3 fld4 fld5 fld6 fld7 fld8 fld9 fld10

fld11 fld12 fld13 fld14 fld15 fld16 fld17 fld18 fld19 fld20)

(defthm nth-update-nth-meta-rule-st

(implies

(and (nth-update-nth-ev ; (f (update-g val st))

(meta-extract-global-fact (list :formula (car term)) state)

(meta-extract-alist term a state))

(nth-update-nth-ev ; (update-g val st)

(meta-extract-global-fact (list :formula (car (cadr term)))

state)

(meta-extract-alist (cadr term) a state))

(nth-update-nth-ev ; (f st) -- note st is (caddr (cadr term))

(meta-extract-global-fact (list :formula (car term)) state)

(meta-extract-alist (list (car term)

(caddr (cadr term)))

a state)))

(equal (nth-update-nth-ev term a)

(nth-update-nth-ev (nth-update-nth-meta-fn term mfc state) a)))

:hints ...

:rule-classes ((:meta :trigger-fns (fld1 fld2 ... fld20))))

The proof of the theorem below takes no measurable time, and applies the metafunction proved correct
above.

(in-theory (disable fld1 ... fld20 update-fld1 ... update-fld20))

(defthm test1

(equal (fld3 (update-fld1 1

(update-fld2 2

(update-fld3 3

(update-fld4 4

(update-fld3 5

(update-fld6 6 st)))))))

3))

Notice that there is nothing about the meta rule above that is specific to the particular stobj, st,
except for the :trigger-fns that it specifies. In the community book mentioned above (“demos/nth-
update-nth-meta-extract.lisp”), we define a macro that automates the generation of such a meta rule for
an arbitrary stobj. Our macro takes the name of a stobj, s, and does two things: it disables all of the
stobj’s accessors and updaters, and it proves a meta rule that simplifies every term of the form (r (w v
s)), where r and w are an accessor and updater, respectively, for the stobj s.
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The meta rule above uses three meta-extract-global-fact hypotheses corresponding to uses
of three particular facts. Enumerating all of the facts potentially used in the metafunction in this way
could easily become unwieldy; in Section 3 we discuss a utility that solves this problem, allowing one
meta-extract-global-fact hypothesis and one meta-extract-contextual-fact hypothesis to
cover all of the facts that might be used.

2.2 General Forms

In this section we summarize briefly the forms of meta-extract hypotheses. Additional details may be
found in the documentation for meta-extract.

Below, let evl be the pseudo-evaluator (see Section 1.1) used in a meta rule. The two primary forms
of meta-extract hypotheses that can be used in a meta rule are as follows. In the first, aa represents an
arbitrary term; in the second, a must be the second argument of the two calls of the pseudo-evaluator in
the conclusion of the theorem.

(evl (meta-extract-global-fact obj state) aa)

(evl (meta-extract-contextual-fact obj mfc state) a)

The second form above is only legal for meta rules about extended metafunctions (which take argu-
ments mfc and state). The first form above is actually equivalent to the first form below, which in turn
is a special case of the second form below.

(evl (meta-extract-global-fact+ obj state state) aa)

(evl (meta-extract-global-fact+ obj st state) aa)

The last form supports clause processors that modify state as long as they do not change the logical
world; it produces the same value as the previous form as long as both st and state have equal world
fields.

If the arguments to the meta-extract-* function are somehow malformed, then it returns the trivial
term ’T, which is not of any use in proving a metafunction correct. Otherwise, each invocation produces
a term that states the “correctness” of an invocation of some utility, such as mfc-rw+ or meta-extract-
formula. The terms produced for different kinds of invocation vary according to the particular concept
of correctness appropriate to the utility in question.

We now describe the allowed obj arguments to meta-extract-global-fact and the terms they
produce. The documentation for extended-metafunctions explains meta-level functions discussed below,
such as mfc-rw and mfc-ap.

• (:formula f) produces the value of (meta-extract-formula f state), which allows meta-
functions to assume that any invocation of meta-extract-formula produces a true formula.
Meta-extract-formula looks up various kinds of formulas from the world:

– the body of f if it is a theorem name
– the definitional equation of f if it is a defined function
– the constraint of f if it is a constrained function
– the defchoose axiom of f if it is a defchoose function.

• (:lemma f n) produces a term corresponding to the nth rewrite rule stored in the lemmas prop-
erty of function f , which allows any such rule to be assumed correct in a metafunction. The term
returned is the value of

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____META-EXTRACT
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____EXTENDED-METAFUNCTIONS
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEFCHOOSE
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(rewrite-rule-term (nth ’n (getpropc ’ f ’lemmas nil (w state)))),

assuming that n is a valid index (does not exceed the length of the indicated list). Here rewrite-
rule-term transforms a rewrite-rule record structure into a term such as

(implies hyps (equiv lhs rhs)).

The rewrite rules stored in :lemmas are not simply theorem bodies, which could be accessed
using meta-extract-formula, but rewrite rule structures, which separately store the left-hand
side, right-hand side, equivalence relation, and hypotheses, and also contain heuristic information
such as the backchain limits and match-free mode.

• (:fncall f L) produces a term (equal c ’v), where c is the call that applies f to the quota-
tions of the values in argument list L, and v is the value of that call computed by magic-ev-fncall.
This allows metafunctions to assume that magic-ev-fncall correctly evaluates function appli-
cations.

The allowed obj arguments to meta-extract-contextual-fact are as follows.

• (:typeset term) produces a term stating the correctness of the type-set produced by mfc-ts

for term. Specifically, it produces the term (typespec-check ’ts term), where ts is the re-
sult of (mfc-ts term mfc state :forcep nil :ttreep nil) and (typespec-check ts

val) is true when val’s actual type is in the type-set ts.

• (:rw+ term alist obj equiv) produces a term stating that mfc-rw+ correctly rewrites term un-
der substitution alist with objective obj under equivalence relation equiv. The form of the term
produced is

(equiv term′ rw)

where term′ is the new term formed by substituting alist into term and rw is the result of the call
(mfc-rw+ term alist obj equiv mfc state :forcep nil :ttreep nil). The equiv argu-
ment may also be T, meaning IFF, or NIL, meaning EQUAL.

• (:rw term obj equiv) is similar to the :rw+ form above, but instead of mfc-rw+ it supports
mfc-rw, which takes no alist argument. Instead, NIL is used for the substitution.

• (:ap term) uses mfc-ap to derive a linear arithmetic contradiction indicating that term is false,
and produces (not term) if that is successful, that is, if (mfc-ap term mfc state :forcep

nil) returns true; otherwise it just produces ’T.

• (:relieve-hyp hyp alist rune target backptr) uses mfc-relieve-hyp to attempt to prove
that hyp holds under substitution alist, and produces the substitution of alist into hyp if success-
ful, that is, if (mfc-relieve-hyp hyp alist rune target backptr mfc state :forcep nil

:ttreep nil) returns true; otherwise, ’T.

We have seen there are two forms of meta-extract hypotheses: meta-extract-contextual-fact
and meta-extract-global-fact+ (and its less general form, meta-extract-global-fact). We
could have split each of these into several forms, resulting in eight forms for the eight kinds of values of
obj listed above. However, in the next section we describe a utility that essentially generalizes the two
supported forms, which eliminates the need for the user to think about the precise values of obj; it was
convenient to generalize two supported forms rather than eight.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____MAGIC-EV-FNCALL
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3 Using “meta-extract-user.lisp”

The community book “clause-processors/meta-extract-user.lisp” is designed to allow more convenient
use of the meta-extract facility. The main contribution of this book is in the event-generating macro
def-meta-extract. For a given pseudo-evaluator evl, def-meta-extract produces macros evl-

meta-extract-contextual-facts and evl-meta-extract-global-facts that expand to meta-
extract hypotheses where the obj argument is a call of a “bad-guy” (Skolem) function. This essentially
universally quantifies the obj argument: informally, the term

obj0 = (evl-meta-extract-contextual-bad-guy a mfc state)

is some obj for which the formula

ϕ = (evl (meta-extract-contextual-fact obj mfc state) a)

is false, if any such obj exists; so by asserting that ϕ is true for obj0, we assert (∀ obj) ϕ . Therefore,

(evl (meta-extract-contextual-fact

(evl-meta-extract-contextual-bad-guy a mfc state)

mfc state)

a)

implies that for any obj,

(evl (meta-extract-contextual-fact obj mfc state) a).

The def-meta-extract utility also proves several theorems about the pseudo-evaluator. They are
proven by functional instantiation of similar theorems proved in “meta-extract-user.lisp” about a base
evaluator that only supports the six functions typespec-check, if, equal, not, iff, and implies;
this means that evl must also support at least these six functions for the utility to work.

The theorems proved by def-meta-extract obviate the need for the user to reason about the
specifics of the definitions of meta-extract-contextual-fact and meta-extract-global-fact+

and the proper construction of their obj arguments, while still supporting all the facilities listed in Sec-
tion 2.2. For example, this rule shows that (evl-meta-extract-global-facts) implies the correct-
ness of meta-extract-formula (and makes no reference to the form of the obj argument to meta-

extract-global-fact):

(defthm evl-meta-extract-formula

(implies (and (evl-meta-extract-ev-global-facts)

(equal (w st) (w state)))

(evl (meta-extract-formula name st) a)))

This rule shows that (evl-meta-extract-contextual-facts a) implies the correctness of mfc-rw+
(specifically, when nil, meaning equal, is given as the equivalence relation argument):

(defthm evl-meta-extract-rw+-equal

(implies (evl-meta-extract-contextual-facts a)

(equal (evl (mfc-rw+

term alist obj nil

mfc state :forcep nil)

a)

(evl (sublis-var alist term) a))))

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____DEF-META-EXTRACT
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The above rule involves the system function sublis-var, which substitutes alist into term but reduces
ground calls of primitive functions5 to their values. In order to reason about sublis-var, the pseudo-
evaluator should support all of the primitive functions that it treats specially. The community book
“clause-processors/sublis-var-meaning.lisp” defines a pseudo-evaluator cterm-ev that supports exactly
these functions and proves the following theorem that describes how sublis-var evaluates:

(defthm eval-of-sublis-var

(implies (and (pseudo-termp x)

(not (assoc nil alist)))

(equal (cterm-ev (sublis-var alist x) a)

(cterm-ev x (append (cterm-ev-alist alist a) a)))))

To reason about mfc-rw+, mfc-rw, and mfc-relieve-hyp, whose meta-extract assumptions all in-
volve sublis-var, one can define a pseudo-evaluator that supports both the functions required for def-
meta-extract and for sublis-var. Community book “centaur/misc/context-rw.lisp”, for example,
defines a pseudo-evaluator supporting all these functions, uses def-meta-extract, and functionally
instantiates the above theorem about sublis-var to allow it to reason about mfc-rw+.

4 Applications

4.1 GL Symbolic Interpreter

The GL framework for bit-level symbolic execution [8, 9] is an important tool for hardware verification
efforts at Centaur Technology [2]. To prove a theorem, GL attempts to symbolically interpret the conclu-
sion and render it into a Boolean formula which can be proved via a satisfiability check. Given a bit-level
representation of each variable, the symbolic interpreter recursively computes a bit-level representation
of each subterm. It expands function definitions as needed, down to certain primitive functions for which
support is built in. Recent versions can also apply rewrite rules. It is implemented as a clause processor
and uses meta-extract to look up function definitions and rewrite rules from the world and to evaluate
ground terms using magic-ev-fncall.

GL was originally written before meta-extract, and used two tricks to replace its functionality. The
complexity of these tricks reflects the utility of meta-extract, since it allows GL to now avoid these
desperate measures.

• In order to justify the correctness of function definitions, GL would keep track of all definitions
that were used, and return each definitional equation as an additional proof obligation from the
clause processor. GL proof hints were orchestrated so as to use :by hints to attempt to cheaply
discharge these obligations. GL did not yet use rewrite rules, but they could have been handled
similarly.

• In order to apply functions to concrete arguments, each GL clause processor had an apply function
that could call a fixed set of functions by name using a case statement. GL provided automation
for defining new such clause processors so that users could build in their own set of functions.

5By “primitive functions” we mean built-in functions such as binary-+ that do not have defining events — that is, those
found in the ACL2 constant *primitive-formals-and-guards*.

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____GL
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4.2 Rewrite-bounds

The community book “centaur/misc/bound-rewriter.lisp” provides a tool for solving certain inequalities:
it replaces subterms of an inequality with known bounds if those subterms are in monotonic positions.
For example, the term a− b monotonically decreases as b increases, so if we wish to prove c < a− b
and we know B ≥ b, then it suffices to prove c < a−B. While this example would be easily handled
by ACL2’s linear arithmetic solver, there are problems that the bound rewriter can handle easily that
overwhelm ACL2’s nonlinear solver and cannot be solved with linear arithmetic – e.g.,
(implies (and (rationalp a) (rationalp b) (rationalp c)

(<= 0 a) (<= 0 b) (<= 1 c)

(<= a 10) (<= b 20) (<= c 30))

(<= (+ (* a b c) (* a b) (* b c) (* a c))

(+ (* 10 20 30) (* 10 20) (* 20 30) (* 10 30))))

This formula can’t be solved with linear arithmetic, because it is not a linear problem. (If each product
of variables is replaced by a fresh variable, the result is clearly not a theorem.) Moreover, the hint
:nonlinearp t causes ACL2 to hang indefinitely. However, the hint
(rewrite-bounds ((<= a 10)

(<= b 20)

(<= c 30)))

solves it instantaneously by replacing upper-boundable occurrences of a by 10, b by 20, and c by 30.
The same results are obtained — a quick proof using rewrite-bounds but an indefinite hang using
nonlinear arithmetic — if the arithmetic expression on the last line of the theorem is replaced by its
value, 7100.

The bound rewriter tool is implemented as a meta rule and uses meta-extract extensively. To deter-
mine which subterms are in monotonic positions, it uses type-set reasoning to determine the signs of
subterms. For example, a · b increases as b increases if a is nonnegative and decreases as b increases
if a is nonpositive; if we can’t (weakly) determine the sign of a, then we can’t replace b or any sub-
term with a bound. To determine whether a proposed bound of a subterm is (contextually) true, it
uses mfc-relieve-hyp to show it by rewriting, and if that fails, mfc-ap to show it by linear arith-
metic reasoning. The correctness of these uses of ACL2 reasoning utilities are justified by meta-extract-
contextual-fact hypotheses.

4.3 Context-rw

A meta rule for context-sensitive rewriting, accomplishing something similar to Greve’s “Nary” frame-
work [4], is defined in “centaur/misc/context-rw.lisp” (see contextual-rewriting). Like Nary, it supports
an analogue of congruence reasoning using contexts that are more general than equivalence relations. An
example of its use is to allow, e.g.,
(logbitp 4 (logand (logior a b c (logapp 6 d e)) f g))

to be simplified to
(logbitp 4 (logand (logior a b c d) f g))

without defining a rewrite rule specifically for that case. The context rewriter uses certain theorems to
justify rewriting subterms under new contexts, that is, with new calls wrapped around them. In this
case we might have a rule that says that (logbitp 4 ...) induces a (logand 16 ...) context;
this context can then be propagated through the logand and logior down to the logapp call, which
simplifies under that context to just d, using a traditional rewrite rule such as the following:

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____CONTEXTUAL-REWRITING
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(implies (and (syntaxp (and (quotep n) (quotep m)))

(equal (logtail m n) 0))

(equal (logand n (logapp m a b))

(logand n a)))

When interpreted as a context rule, the following says that logbitp induces a logand context, by
directing replacement of an instance of the right-hand side of the equality by the corresponding instance
of the left-hand side.

(implies (syntaxp (quotep n))

(equal (logbitp n (logand (ash 1 (nfix n)) m))

(logbitp n m)))

And the following rule says that logior propagates such a logand context onto its second argument:

(implies (syntaxp (quotep n))

(equal (logand n (logior a (logand n b)))

(logand n (logior a b))))

A syntactic requirement for context rules is that the left- and right-hand sides must be identical except
that some subterm of the LHS is replaced by a variable in the RHS (in this case b), and that is the only
occurrence of that variable in the RHS. That variable corresponds to the subterm onto which the context
will be propagated, and the corresponding subterm of the LHS reflects the context that will be propagated
onto it. So the rule immediately above says:

When logior occurs under a (logand n ...) context where n is a constant, propagate
the (logand n ...) context onto the second argument of the logior.

Experienced ACL2 users might note that the roles of the left- and right-hand sides are essentially reversed
in this usage; this is because often the reverse of a good context-propagation rule is also a good rewrite
rule.

The context rewriter uses meta-extract in order to trust rewrite rules extracted from the world and
results from mfc-rw+ and mfc-relieve-hyp, which it uses, respectively, to simplify subterms under
new contexts and to discharge hypotheses necessary for applying the context rules.

4.4 Others

A few other utilities from the community books use meta-extract solely to be able to extract a for-
mula from the world (using meta-extract-formula) and assume it to be true. For example, “clause-
processors/witness-cp.lisp” provides a framework for reasoning about quantification (see witness-cp); it
uses meta-extract-formula to look up a stored fact showing that a term representing a universal quan-
tification implies any instance of the quantified formula. A second, “clause-processors/just-expand.lisp”,
provides a clause processor and meta rule that force expansion of certain terms, somewhat similar to the
:expand hint. A third, “clause-processors/replace-equalities.lisp”, provides a tool for replacing known
equalities in ways that the rewriter can’t, e.g., replacing a variable with a term. For example, the following
is not a valid rewrite rule because its left-hand side is a variable, but it could be a good replace-equalities
rule:

(implies (matches pattern x)

(equal x

(patternsubst pattern (sigma pattern x))))

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index.html?topic=ACL2____WITNESS-CP
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5 Conclusion

This paper explains meta-extract hypotheses and shows how they can be put to good use, either directly
or by way of the def-meta-extract utility to obtain two simple, general meta-extract hypotheses. The
implementation and logical justification for meta-extract are delicate, so it made sense to implement only
the primitive notions of Section 2 in ACL2 and then introduce def-meta-extract in a book, with less
trusted code as a result.

The meta-extract facility has been successfully used to create specialized proof tools that are admitted
by ACL2 as fully verified metafunctions or clause-processors, including the GL bit-blasting framework,
which is in daily use at Centaur Technology. We hope that this paper contributes to wider successful use
of the meta-extract feature.
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