
To appear in EPTCS.

© Matt Kaufmann and J Strother Moore

This work is licensed under the

Creative Commons Attribution License.

Enhancements to ACL2 in Versions 5.0, 6.0, and 6.1

Matt Kaufmann

Dept. of Computer Science,
University of Texas at Austin

kaufmann@cs.utexas.edu

J Strother Moore

Dept. of Computer Science,
University of Texas at Austin

moore@cs.utexas.edu

We report on highlights of the ACL2 enhancements introduced in ACL2 releases since the 2011

ACL2 Workshop. Although many enhancements are critical for soundness or robustness, we focus

in this paper on those improvements that could benefit users who are aware of them, but that might

not be discovered in everyday practice.

1 Introduction

This paper discusses ACL2 enhancements introduced in releases made since the ACL2 Workshop in

November, 2011: Versions 5.0 (August, 2012), 6.0 (December, 2012), and 6.1 (expected February, 2013).

We thus discuss enhancements made after the release of ACL2 Version 4.3 in July, 2011.

The release notes [3] for those three versions report approximately 200 enhancements, which typi-

cally were made in direct response to user feedback or were important to soundness or robustness of the

system. Our goal in this paper is not simply to rehash the release notes; rather, it is to highlight important

improvements that ACL2 users are not likely to discover by the routine use of ACL2. We do not discuss

lower-level improvements to the system that are reported in comments in source file ld.lisp for the

release notes (e.g., (deflabel note-5-0 ...)). Those who dive into the ACL2 sources may wish

to peruse these; for example, they will notice that starting in ACL2 6.0, defrec defines a recognizer

predicate.

Because of the maturity of ACL2, many of the improvements pertain to aspects of ACL2 that may be

unfamiliar to novice users. Our hope, however, is that this paper will have value to those users as well,

by suggesting new ideas about what can be done with ACL2.

As in a preceding paper of a similar nature in the previous ACL2 workshop [5], we write “see

:DOC” to highlight documentation topics. For example, see :DOC release-notes and its subtopics (e.g.,

see :DOC note-6-0 for changes introduced in ACL2 Version 6.0). Documentation topics are also refer-

enced implicitly using underlining; for example, the topic advanced-features provides a handy summary

of advanced features of ACL2 in one place. Each documentation topic reference (of either type) is a

hyperlink in the online version of this paper.

Unlike the preceding paper mentioned above, we choose here to organize the paper in the way that

we have organized the release notes for several years, as follows.

• Changes to existing features

• New features

• Heuristic improvements

• Bug fixes

• Changes at the system level

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
http://www.cs.utexas.edu/users/moore/acl2/current/NOTE-6-0.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADVANCED-FEATURES.html

2 Enhancements to ACL2

In each of the five sections corresponding to these topics, we present a few topics in some detail, but in

many cases we simply note an improvement and point to relevant documentation.

There are typically two other categories: Emacs support and Experimental/alternate versions. The

former has changed little in the last few release notes. As for the latter, there have been significant

improvements to ACL2(h), ACL2(p), and ACL2(r); but for these we live within our space limitations,

referring readers to the release notes.

One outlier, not included in the categories above, is a series of changes related to licensing and

distribution. For Version 5.0, changes were made to satisfy University of Texas policies: the license

changed from GPL “Version 2 or later” to GPL Version 2, and the community books [1] — basically,

what has been called the regression suite — were moved away from the University of Texas, and are

hosted by Google Code. For Version 6.0 we changed the license to a BSD-style license, in order to make

it easier for industry groups to take advantage of ACL2.

Acknowledgements

We thank members of the ACL2 community whose feedback has led us to continue making improve-

ments to ACL2, including the following, each mentioned for one or more specific items in the release

notes for Version 5.0, 6.0, or 6.1: Harsh Raju Chamarthi, Jared Davis, Ruben Gamboa, Shilpi Goel, Dave

Greve, David Hardin, Marijn Heule, Warren Hunt, Anthony Knape, Robert Krug, Camm Maguire, Pete

Manolios, Francisco J. Martin Mateos, David Rager, Jose Luis Ruiz-Reina, Anna Slobodova, Eric Smith,

Rob Sumners, Sol Swords, Sarah Weissman, and Nathan Wetzler. We expressly thank Warren Hunt for

his continued support of the use of ACL2, in particular in projects at the University of Texas. Finally, we

thank the reviewers for helpful comments, one of which led us to improve :DOC provisional-certification

for the next release.

This material is based upon work supported by DARPA under Contract No. N66001-10-2-4087, by

ForrestHunt, Inc., and by the National Science Foundation under Grant Nos. CCF-0945316 and CNS-

0910913.

2 Changes to existing features

There are over 50 release note items about changes to existing features. Here we list a few and then

present a few others in a bit more detail.

• Functions READ-ACL2-ORACLE, READ-RUN-TIME, GET-TIMER, and MAIN-TIMER are no

longer untouchable; you can call them in your programs.

• vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Macros can take an argument named STATE, or which is the name of a stobj. However, these

variables are not bound to the “live objects” as you might expect but are treated just like other

macro variables.

• The macros MEMOIZE and UNMEMOIZE now cause a warning rather than an error in (regular,

non-HONS) ACL2.

• The macro DEFUNDmay now be used without error with :PROGRAMmode specified in an XARGS

declaration.

• The functions SYS-CALL and SYS-CALL-STATUS are now guard-verified :LOGICmode func-

tions.

http://www.cs.utexas.edu/users/moore/acl2/current/HONS-AND-MEMOIZATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/PARALLELISM.html
http://www.cs.utexas.edu/users/moore/acl2/current/REAL.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROVISIONAL-CERTIFICATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/READ-RUN-TIME.html
http://www.cs.utexas.edu/users/moore/acl2/current/STOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/MEMOIZE.html
http://www.cs.utexas.edu/users/moore/acl2/current/UNMEMOIZE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUND.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUND.html
http://www.cs.utexas.edu/users/moore/acl2/current/XARGS.html
http://www.cs.utexas.edu/users/moore/acl2/current/SYS-CALL.html
http://www.cs.utexas.edu/users/moore/acl2/current/SYS-CALL-STATUS.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/LOGIC.html

Matt Kaufmann and J Strother Moore 3

• The environment variable ACL2_COMPILE_FLG provides a default for CERTIFY-BOOK; it was

formerly named COMPILE_FLG.

Some other changes

It has been the case since Version 3.6 (August, 2009) that the definition of a function symbol can

mention that symbol in the guard and measure. Now, guards specified in ENCAPSULATE signatures

may similarly refer to the functions being introduced in the same ENCAPSULATE event.

Some utilities have been improved, so you might want to try them again even if you gave up on them

in the past. For example, consider :PL applied to a non-symbol. It didn’t work for macro calls, but now

it performs macroexpansion (and other transformations to internal form) as a first step; and moreover,

among the rule classes that it shows is now the :LINEAR class. Another utility that has been improved

is TOP-LEVEL, which no longer causes calls of LD to stop.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The “with-error-trace” utility, WET, has also been improved. Finally, if you haven’t yet tried DEFATTACH,

because your code seemed to run a bit slowly using attachments, consider trying again, as efficiency has

improved for this utility.

The abbreviated proof output offered by gag-mode is now on by default. See :DOC SET-GAG-MODE

for a description of gag-mode. If you want a bit of control over the printing of induction schemes and

guard conjectures in gag-mode, see the discussion of :GAG-MODE in :DOC SET-EVISC-TUPLE.

For a macro mac, you can now add a pair (mac . fn) to the MACRO-ALIASES-TABLE even

when fn has not been defined as a function symbol. This can be useful if you want to define a set of

macros early. See :DOC ADD-MACRO-ALIAS.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

When functions such as FMT-TO-STRING (see :DOC printing-to-strings) was introduced in Version

4.3, it printed with a right margin set to 10,000, but now the default right margin settings are used. Thus,

for example, the string returned as shown below had no newline characters in Version 4.3. We can return

to the default behavior as shown.

ACL2 !>(fmt-to-string "~x0"

(list (cons #\0 (make-list 20))))

(0

"

(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

")

ACL2 !>(fmt-to-string "~x0"

(list (cons #\0 (make-list 20)))

:fmt-control-alist

`((fmt-soft-right-margin . 10000)

(fmt-hard-right-margin . 10000)))

(81

"

(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)")

ACL2 !>

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The extended metafunctions have been reworked, with improved handling of forcing and also with

the option of returning a tag-tree. Also, a unifying substitution has been added to metafunction contexts,

accessed with function MFC-UNIFY-SUBST. See :DOC extended-metafunctions).

http://www.cs.utexas.edu/users/moore/acl2/current/CERTIFY-BOOK.html
http://www.cs.utexas.edu/users/moore/acl2/current/ENCAPSULATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/SIGNATURE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PL.html
http://www.cs.utexas.edu/users/moore/acl2/current/TOP-LEVEL.html
http://www.cs.utexas.edu/users/moore/acl2/current/LD.html
http://www.cs.utexas.edu/users/moore/acl2/current/WET.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFATTACH.html
http://www.cs.utexas.edu/users/moore/acl2/current/SET-GAG-MODE.html
http://www.cs.utexas.edu/users/moore/acl2/current/SET-EVISC-TUPLE.html
http://www.cs.utexas.edu/users/moore/acl2/current/MACRO-ALIASES-TABLE.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADD-MACRO-ALIAS.html
http://www.cs.utexas.edu/users/moore/acl2/current/PRINTING-TO-STRINGS.html
http://www.cs.utexas.edu/users/moore/acl2/current/EXTENDED-METAFUNCTIONS.html

4 Enhancements to ACL2

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Printing of numbers now pays attention to the print radix; see :DOC SET-PRINT-RADIX. For

example, before Version 6.0 the final value was printed below as ABCD1234. Notice the use of #u to

allow underscores in numbers, which is new.

ACL2 !>(set-print-base 16 state)

<state>

ACL2 !>(set-print-radix t state)

<state>

ACL2 !>#uxabcd_1234

#xABCD1234

ACL2 !>

3 New features

Of the approximately 50 release note items about new features, we list a few here and then elaborate on

a few others below.

• See :DOC PRINT-SUMMARY-USER for a way to add to what is printed in event summaries.

• Commands :PL and :PR now have analogues in the proof-checker.

• vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

See :DOC provisional-certification for how to certify books in parallel even when they they are

ordered linearly by INCLUDE-BOOK.

• vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

ACL2 now supports multiple instances of a stobj (whether conventional or abstract), known as

congruent stobjs. See :DOC DEFSTOBJ and see :DOC DEFABSSTOBJ.

• Access to the host Lisp’s disassembler is now provided in the ACL2 loop by the DISASSEMBLE$

utility.

• vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

See :DOC DEFTHEORY-STATIC for a variant of DEFTHEORY that behaves the same when a

book containing such an event is included, as it does when when the book was certified.

• vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

See :DOC :PSOF for a variant of :PSO that directs proof output hidden by gag-mode to a file.

Also see :DOC WOF for a general utility for directing output to a file.

• A new macro, DEFND is just DEFN (i.e., DEFUN with a guard of T) plus a disable just as

DEFUND is DEFUN plus a DISABLE.

• vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

New utilities ORACLE-FUNCALL, ORACLE-APPLY, and ORACLE-APPLY-RAW, provide a sort

of higher-order capability, by calling a function argument on specified arguments.

• Both INLINE and NOTINLINE declarations are now supported for the FLET utility.

• See :DOC GC-VERBOSE for how to control, in some host Lisps, the printing of garbage-collection

messages.

• The utility ADD-MACRO-FN, which is a replacement for ADD-BINOP, lets you choose whether

macros are to be displayed as flat right-associated calls, for example, (append x y z) rather

than (append x (append y z)).

http://www.cs.utexas.edu/users/moore/acl2/current/SET-PRINT-RADIX.html
http://www.cs.utexas.edu/users/moore/acl2/current/PRINT-SUMMARY-USER.html
http://www.cs.utexas.edu/users/moore/acl2/current/PL.html
http://www.cs.utexas.edu/users/moore/acl2/current/PR.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROOF-CHECKER.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROVISIONAL-CERTIFICATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/INCLUDE-BOOK.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFSTOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFABSSTOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/DISASSEMBLE$.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFTHEORY-STATIC.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFTHEORY.html
http://www.cs.utexas.edu/users/moore/acl2/current/PSOF.html
http://www.cs.utexas.edu/users/moore/acl2/current/PSO.html
http://www.cs.utexas.edu/users/moore/acl2/current/GAG-MODE.html
http://www.cs.utexas.edu/users/moore/acl2/current/WOF.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFND.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFN.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/DISABLE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUND.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN.html
http://www.cs.utexas.edu/users/moore/acl2/current/ORACLE-FUNCALL.html
http://www.cs.utexas.edu/users/moore/acl2/current/ORACLE-APPLY.html
http://www.cs.utexas.edu/users/moore/acl2/current/ORACLE-APPLY-RAW.html
http://www.cs.utexas.edu/users/moore/acl2/current/FLET.html
http://www.cs.utexas.edu/users/moore/acl2/current/GC-VERBOSE.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADD-MACRO-FN.html

Matt Kaufmann and J Strother Moore 5

• vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The new TIME-TRACKER utility supports annotating your programs to display information dur-

ing a computation about elapsed runtime.

• The tau system is discussed in Section 4.

Some other new features

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
The utility DEFUN-NX has been improved, for example by avoiding stobj restrictions in the :LOGIC

component of an MBE call. Here is an example from Jared Davis that motivated this change; note the
call of function MY-IDENTITY on a stobj even though MY-IDENTITYwas not declared to take a stobj
argument.

(defstobj foo (fld))

(defun-nx my-identity (x) x)

(defun my-fld (foo)

(declare (xargs :stobjs foo))

(mbe :logic (my-identity foo)

:exec (let ((val (fld foo)))

(update-fld val foo))))

But there now is another way to violate signatures in non-executable code: by using the utility,
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
NON-EXEC. Note that this time, MY-IDENTITY is defined with DEFN (which is DEFUN with a guard
of T), not by DEFUN-NX.

(defstobj foo (fld))

(defn my-identity (x) x)

(defun my-fld (foo)

(declare (xargs :stobjs foo))

(non-exec (my-identity foo)))

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

There have been many improvements to the documentation, but here we focus on two new topics. The

topic advanced-features summarizes some cool features of ACL2 that might not all be widely known, yet

may be of interest, especially to experienced users. Another new topic provides a guide to programming

with the ACL2 state; see :DOC programming-with-state.

A new event, DEFABSSTOBJ, provides an interface to conventional single-threaded objects known

as abstract stobjs [2]. These can provide advantages over conventional stobjs in several arenas: execution

speed, proof efficiency, use of symbolic simulation, and modularity of proof development.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
ACL2 now provides a way to direct the host Lisp compiler to inline calls of a given function. See

:DOC DEFUN-INLINE. We expect that you can generally use this utility just as you would use DEFUN
to define a function. However, we say a bit more, in part to motivate our design of this utility. Funda-
mentally, DEFUN-INLINE is simply a macro, as we illustrate by expanding a call of this macro.

ACL2 !>:trans1 (defun-inline f (x)

(declare (xargs :guard (consp x)))

(integerp (car x)))

(PROGN (DEFMACRO F (X) (LIST 'F$INLINE X))

(ADD-MACRO-FN F F$INLINE)

(DEFUN F$INLINE (X)

(DECLARE (XARGS :GUARD (CONSP X)))

(INTEGERP (CAR X))))

ACL2 !>

http://www.cs.utexas.edu/users/moore/acl2/current/TIME-TRACKER.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN-NX.html
http://www.cs.utexas.edu/users/moore/acl2/current/STOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/MBE.html
http://www.cs.utexas.edu/users/moore/acl2/current/NON-EXEC.html
http://www.cs.utexas.edu/users/moore/acl2/current/DOCUMENTATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/ADVANCED-FEATURES.html
http://www.cs.utexas.edu/users/moore/acl2/current/STATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROGRAMMING-WITH-STATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFABSSTOBJ.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN-INLINE.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN.html

6 Enhancements to ACL2

Notice that F is defined to be a macro whose calls expands to a corresponding calls of a function,

F$INLINE. The invocation of ADD-MACRO-FN arranges that theory functions understand F to mean

F$INLINE and that proof output will display calls of F$INLINE as corresponding calls of F. But why

didn’t we simply support the Common Lisp form (declaim (inline f))? The reason is the sup-

port that ACL2 provides for undoing. Imagine that you want F to be inline and then you change your

mind — or maybe F is defined in a book that you include locally. How can we arrange for Common Lisp

to undo the directive to inline calls of F? Sadly, the Common Lisp language [6] does not provide for a

way to do that. The best we can do is to direct F to be notinline — but that could defeat the host

Lisp’s appropriate inlining of some subsequent definition of F. Our solution is always to direct inlining

for functions whose name ends in the string "$INLINE", and to provide the illusion that we are defining

a function F rather than F$INLINE, using ADD-MACRO-FN as discussed above. Note that analogous

considerations hold for utility DEFUN-NOTINLINE.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

We invite the ACL2 community to help us to convert ACL2 system functions from :PROGRAMmode

to guard-verified :LOGICmode. This mechanism is described in some detail in an online document [4].

Here, in brief, are the steps to follow; we would be happy to provide more details leading to improvement

of the online document.

1. Install a local copy of ACL2, and build it using make.

2. Develop a book that includes VERIFY-TERMINATION and VERIFY-GUARDS forms for one or

more system functions. For simplicity we assume here that there is a single such function, FN.

3. When necessary, modify ACL2 definitions in your copy, for example by replacing some calls of

NULL by corresponding calls of ENDP or by adding or modifying guard declarations. Rebuild

your local copy of ACL2 using make.

4. Email us your ACL2 changes and your book, and we will do what is necessary in order to incor-

porate your book into the ACL2 community books [1] and your changes into the ACL2 sources.

5. Henceforth, the default build of ACL2 will accordingly mark FN as a guard-verified :LOGIC

mode function.

We, the ACL2 developers, will check each release that such proofs still go through, using a build that

leaves FN in :PROGRAM mode.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

If you have written :META rules or :CLAUSE-PROCESSOR rules, you may have been frustrated

that your meta functions and clause processor functions could not assume the correctness of prover

computations, for example as performed using MFC-TS (see :DOC extended-metafunctions). A new

mechanism, designed with Sol Swords, now provides such a capability; see :DOC meta-extract). The

community book clause-processors/meta-extract-simple-test.lisp provides illus-

trative examples.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

ACL2 rule names, or runes, form the basis of ACL2 theories. But runes do not take into account

macro aliases for function symbols. For example, (:definition binary-append) is a rune,

and you can use append in a theory expression to abbreviate the set of runes, {(:definition

binary-append), (:induction binary-append)}; but you cannot use (:definition

append) in a theory expression. Now, however, you can use (:d append) in a theory expression

to designate the rune (:definition binary-append). There are four new such abbreviation

http://www.cs.utexas.edu/users/moore/acl2/current/ADD-MACRO-FN.html
http://www.cs.utexas.edu/users/moore/acl2/current/DEFUN-INLINE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROGRAM.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/LOGIC.html
http://www.cs.utexas.edu/users/moore/acl2/current/VERIFY-TERMINATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/VERIFY-GUARDS.html
http://www.cs.utexas.edu/users/moore/acl2/current/META.html
http://www.cs.utexas.edu/users/moore/acl2/current/CLAUSE-PROCESSOR.html
http://www.cs.utexas.edu/users/moore/acl2/current/EXTENDED-METAFUNCTIONS.html
http://www.cs.utexas.edu/users/moore/acl2/current/META-EXTRACT.html
https://acl2-books.googlecode.com/svn/trunk/clause-processors/meta-extract-simple-test.lisp
http://www.cs.utexas.edu/users/moore/acl2/current/RUNE.html
http://www.cs.utexas.edu/users/moore/acl2/current/THEORIES.html
http://www.cs.utexas.edu/users/moore/acl2/current/MACRO-ALIASES-TABLE.html

Matt Kaufmann and J Strother Moore 7

mechanisms, as follows, where symb is a symbol and symb’ is the macro-aliases dereference of symb;

e.g., binary-append is the macro-aliases dereference of append, while car is the macro-aliases

dereference of itself.

• (:d symb . r) designates the rune (:definition symb’ . r).

• (:e symb . r) designates the rune (:executable-counterpart symb’ . r).

• (:i symb . r) designates the rune (:induction symb’ . r).

• (:t symb . r) designates the rune (:type-prescription symb’ . r).

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Take a new look at ACL2 output when you have large case splits, which in the past could be difficult

to debug. Now, "Splitter Notes" can help you locate sources of your case splits. See :DOC splitter.

4 Heuristic improvements

As ACL2 is a heuristic theorem prover, it orchestrates many techniques to support effective automation

of reasoning. The large regression suite, contributed by many users over about 20 years, has helped

to tune the prover heuristics so that they often need relatively little of our attention. However, we have

made improvements since Version 5.0 that include avoidance of some rewriting loops, two strengthenings

of type-set reasoning, and tweaks to the heuristics for automatically expanding recursive function calls

during proofs by induction.

ACL2 now expands away calls of so-called guard-holders before storing induction schemes. These

include THE as well as all calls of RETURN-LAST. The latter include MBE, PROG2$,and equality-variants

— for example, a call of MEMBER expands to the corresponding call of MEMBER-EQUAL. Such expan-

sion also occurs before storing constraints generated by ENCAPSULATE events.

We may think of the break-rewrite utility as a heuristic, since, when enabled, it chooses debugging

information to display to the user. This utility had incurred significant overhead even when disabled, as

it is by default. That has been fixed, resulting in elimination of more than 10% of the time required for

an ACL2 regression.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The remainder of this section discusses a feature introduced in Version 5.0 that contributes to the set

of primary prover heuristics: the tau system. This system is a decision procedure designed to exploit pre-

viously proved theorems about monadic Boolean functions. The tau system was extended and improved

in Versions 6.0 and 6.1.

The system mines all the axioms, definitions, and proved rules (of any rule class) relating Boolean

function symbols of one argument. One might think of these function symbols as recognizing “soft

types” such as integerp, consp, alistp, n32-bit-numberp, etc. The tau of a term is the set

of all such recognizers known to hold of the value of the term. The tau of a term is typically computed

in a context specifying the tau of other terms (typically including variables and subterms). For example,

if an IF has the test (integerp i), then when the tau of the true branch is computed, the variable i

is known to have a tau that contains integerp and all the recognizers it is known to imply.

For purposes of the tau system, Boolean monadic functions are tracked, as are equalities and inequal-

ities with constants. As of Version 6.1, the tau system was extended to track intervals. For example, the

tau for a term might, in addition to saying that the value of the term is an integer (and thus also a rational

and not a cons), lies in the interval between 0 and 15 but is not 3 or 7.

http://www.cs.utexas.edu/users/moore/acl2/current/SPLITTER.html
http://www.cs.utexas.edu/users/moore/acl2/current/THE.html
http://www.cs.utexas.edu/users/moore/acl2/current/RETURN-LAST.html
http://www.cs.utexas.edu/users/moore/acl2/current/MBE.html
http://www.cs.utexas.edu/users/moore/acl2/current/PROG2$.html
http://www.cs.utexas.edu/users/moore/acl2/current/EQUALITY-VARIANTS.html
http://www.cs.utexas.edu/users/moore/acl2/current/ENCAPSULATE.html
http://www.cs.utexas.edu/users/moore/acl2/current/EVENTS.html
http://www.cs.utexas.edu/users/moore/acl2/current/BREAK-REWRITE.html
http://www.cs.utexas.edu/users/moore/acl2/current/TAU-SYSTEM.html
http://www.cs.utexas.edu/users/moore/acl2/current/RULE-CLASSES.html

8 Enhancements to ACL2

Of special importance are signature rules that allow the tau system to compute the tau of a function

application by computing the tau of the actuals. Tau also tracks other forms of rules that relate the known

predicates, and it allows signatures for the various values returned by multiple-value functions. The tau

system also provides a way for the user to define, verify, and install “bounder” functions which can be

used to compute an interval containing a function’s output from the intervals containing its input.

It is possible to prove certain theorems by tau reasoning alone. Such formula are often, informally,

thought of as being mere consequences of “type checking.” The tau system is designed to recognize such

formulas rapidly. It is thought the tau system, if properly “programmed” with rules, will be helpful in

verifying guard conjectures.

The tau documentation has grown extensively since Version 5.0. We recommend that the interested

reader see :DOC introduction-to-the-tau-system.

5 Bug fixes

We have continued to improve ACL2 by eliminating more than 50 bugs. In this section we mention only

a few that may have the most effect on how people use ACL2.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The time reports in event summaries have been much improved. As far as we know, they now

accurately report runtime (cpu time). Of course, you can use the TIME$utility for reports of realtime

and runtime that avoid the accounting done by ACL2.

The FLET construct no longer has any requirements for returning stobjs.

6 Changes at the system level

In this section we pick a few additions and improvements that are outside the realm of what one might

normally think of as “ACL2 features”.

The character encoding for reading from files — and for some host Lisps also for reading from the

terminal — is now iso-8859-1, also known as latin-1. See :DOC character-encoding.

You can now build the ACL2 documentation locally (using make DOC). Previously, the graphics

had been omitted when doing so.

If you want to run a parallel regression using ‘make’, you should now avoid the ‘-j’ option. Instead,

use ACL2_JOBS=n where n is the maximum number of jobs to run in parallel. This change is in support

of including the centaur/ books in such regressions. (Those books had formerly only been certified

in regressions done for ACL2(h); see :DOC hons-and-memoization.) Note that you should still use ‘-j’

if you are certifying books residing in a particular directory, rather than doing a full regression.

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The search button near the top of the ACL2 home page will lead you to two search utilities: one for

the documentation, and one for the community books.

7 Conclusion

We have presented an outline of changes to ACL2 in Versions 5.0, 6.0, and 6.1. Our focus has been to

describe changes that can affect one’s daily use of ACL2 but might otherwise go unnoticed. Many more

changes (close to 200 altogether) may be found in the

http://www.cs.utexas.edu/users/moore/acl2/current/BOUNDERS.html
http://www.cs.utexas.edu/users/moore/acl2/current/GUARD.html
http://www.cs.utexas.edu/users/moore/acl2/current/INTRODUCTION-TO-THE-TAU-SYSTEM.html
http://www.cs.utexas.edu/users/moore/acl2/current/TIME$.html
http://www.cs.utexas.edu/users/moore/acl2/current/FLET.html
http://www.cs.utexas.edu/users/moore/acl2/current/CHARACTER-ENCODING.html
http://www.cs.utexas.edu/users/moore/acl2/current/DOCUMENTATION.html
http://www.cs.utexas.edu/users/moore/acl2/current/HONS-AND-MEMOIZATION.html
http://www.cs.utexas.edu/users/moore/acl2/

Matt Kaufmann and J Strother Moore 9

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

release notes for these three versions, and many changes at a lower level are described in comments in

the source code for those release notes ((deflabel note-5-0 ...) etc.).

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

A critical component in the continued evolution of ACL2 is feedback from the user community. We

hope that you’ll keep that feedback coming! Another contribution of the user community is the large

body of Community Books [1], which put demands on the system and help us to test improvements.

Please keep these coming, too!

References

[1] The ACL2 community: ACL2 Community Books. See URL https://code.google.com/p/

acl2-books/.

[2] Shilpi Goel, Warren A. Hunt, Jr. & Matt Kaufmann (2013): Abstract Stobjs and Their Application to ISA

Modeling. In: Proceedings 11th International Workshop on the ACL2 Theorem Prover and its Applications.

[3] Matt Kaufmann & J Strother Moore: ACL2 documentation topic: RELEASE-NOTES. See URL http://

www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html.

[4] Matt Kaufmann & J Strother Moore: Instructions for modifying ACL2 system code. See URL http://www.

cs.utexas.edu/users/moore/acl2/open-architecture/how-to-make-patches.txt.

[5] Matt Kaufmann & J Strother Moore (2011): How Can I Do That with ACL2? Recent Enhancements to ACL2.

In David Hardin & Julien Schmaltz, editors: ACL2, EPTCS 70, pp. 46–60. Available at http://dx.doi.

org/10.4204/EPTCS.70.4.

[6] Guy L. Steele, Jr. (1990): Common LISP: the language (2nd ed.). Digital Press, Newton, MA, USA.

http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
https://code.google.com/p/acl2-books/
https://code.google.com/p/acl2-books/
http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
http://www.cs.utexas.edu/users/moore/acl2/current/RELEASE-NOTES.html
http://www.cs.utexas.edu/users/moore/acl2/open-architecture/how-to-make-patches.txt
http://www.cs.utexas.edu/users/moore/acl2/open-architecture/how-to-make-patches.txt
http://dx.doi.org/10.4204/EPTCS.70.4
http://dx.doi.org/10.4204/EPTCS.70.4

	Introduction
	Changes to existing features
	New features
	Heuristic improvements
	Bug fixes
	Changes at the system level
	Conclusion

