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4.1 DNF Formulas

Our goal is to learn polynomial sized DNF formulas with runtime and mistake bound 2Õ(
√

n).

4.1.1 The Algorithm

Use the demotion algorithm to learn t-decision lists where t = 2
√

n log s + 1.

4.1.2 Runtime and Mistake Bound

The runtime and mistake bound follows easily since the demotion algorithm for decision lists has
time and mistake bound nt.

nt = n2
√

n log s+1

= nO(
√

n log s)

= 2Õ(
√

n log s) Since Õ hides log factors

= 2Õ(
√

n) Since the term length is polynomial in n

4.1.3 Correctness

The correctness of this algorithm is less clear. We will demonstrate that for any DNF with n variables
and s terms there is a t-decision list that computes the same function where t = 2

√
n log s + 1. We

begin by introducing the concepts of augmented decision trees and augmented decision lists.

Definition 1 An augmented decision tree is a decision tree with DNF formulas at the leaves.
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When evaluating a bit string it proceeds as a normal decision tree until reaching a leaf. Then it
evaluates the DNF formula on the bit string and returns the result.

Definition 2 An augmented t-decision list is a t-decision list with DNF formulas at the output of
a basic block.

As in an augmented decision tree, an augmented t-decision list proceeds as normal but on output
provides the result of computing the DNF rather than a zero or one.

Recall from previous lectures that we can transform a decision tree into a decision list. The same
procedure can be applied to transform an augmented decision tree into an augmented decision list.

Lemma 1 An augmented decision tree of rank r can be transformed into a augmented r-decision
list

We now prove that an augmented t-decision list with DNF formulas containing terms of length no
greater than l can be transformed into an equivalent t + l-decision list.

Lemma 2 For every augmented t-decision list with term length l there is an equivalent t+ l-decision
list

Consider a augmented t-decision list. Every basic block has a conjuction (call it Ci) of length at
most t and a DNF formula at its output with each conjunctive term of length at most l (call them
Tij). For each basic block in the augmented decision list we will create a t + l-decision list. We will
then append these decision lists together to make a t + l-decision list equivalent to the augmented
decision list.

For each basic block we create a decision list as follows. For each term in the DNF of the basic
block we create a new basic block. The conjunction in each basic block will be the conjuction of Ci

and Tij and the output will be 1. This decision list will output a 1 in exactly those cases where the
original basic block would have output a 1. The original ith basic block would output a 1 if and
only if Ci is true and for some j, Tij is true. This same requirement holds in our t + l-decision list.

The concatenation of all such decision lists will compute the same function as the original augmented
decision list.
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Illustration: Given the augmented decision list:

Suppose C1 = X1 ∧X2 ∧X3 and DNF1 = T1 ∨ T2 ∨ T3 The resulting t + l-decision list for the first
basic block:

So all that remains is to show an equivalence between DNF formulas and augmented decision trees.

Lemma 3 For any s-term DNF formula and for any t ≥ 1 there is an equivalent augmented decision
tree of rank ≤ 2n

t log s + 1 with DNF formulas of term length ≤ t at the leaves

We prove this by demonstrating how to construct an augmented decision tree from a DNF formula.

First consider the base case. If all terms in the DNF formula are of length ≤ t we are done; place
the DNF formula at the leaf. If exactly one term in the DNF formula has length > t create a long
branch

Otherwise, find the most common literal among terms of length > t. We choose this literal as the
root of our augmented decison tree. On the branch of the decision tree where this literal is set to
zero, we eliminate all terms that contained it. On the other branch we eliminate the terms that
contain the negation of the literal and eliminate the literal from terms that contain it.

Definition 3 R(n, p) is the maximum rank produced by running this algorithm on a DNF with n
variables and p terms with length > t

Lemma 4 R(n, p) ≤ 2n/t log p + 1

Note that R(n, 0) = 0 since this corresponds to our base case.

Although more subtle, note also that R(n, 1) = 1. This will result in a tree that has a long arm with
null DNFs (zeros) on the zero branch of the arm and eventually a leaf with a DNF on the one side.
Such a tree has rank 1.

Recall that in the zero branch of the decision tree we eliminated all terms that contained the most
common literal. There are n variables which can each be negated or not, giving 2n distinct literals.
With p terms of length greater than t there are at least pt total literals in these terms. The most
common literal therefore occurs at least pt

2n times. And therefore at least pt
2n terms will be eliminated

from the zero branch.
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Additionally both branches will have one fewer variable.

Recall that the rank of a tree is either the maximum rank of its subtrees or, if its subtrees are of
equal rank, the rank of the tree is one greater than the rank of its subtrees.

So there are three cases to consider, the rank of the one subtree is greater or the rank of the zero
subtree is greater or they have equal rank.

R(n, p) = R(n− 1, p)
or

R(n, p) = R(n− 1, p− pt

2n
)

or

R(n, p) = 1 + R(n− 1, p− pt

2n
)

In the first two cases the rank doesn’t increase since we are trying to show an upper bound on the
rank we will examine only the third case. Each time the rank increases by 1 the number of terms
with length > t decreases by pt

2n . So each time p is being multiplied by 1 − t
2n . In order to get to

our base case of p = 1 this multiplication will need to occur log1− t
2n

1/p times. The base case where
p = 1 gives us a rank of 1. Therefore R(n, p) = 1 + log1− t

2n
1/p.

R(n, p) = 1 + log1− t
2n

1/p

= 1− log1− t
2n

p

= 1− log p

log(1− t
2n )

= 1− log p

−( t
2n + ( t

2n )2/2)

= 1 +
log p

t
2n + ( t

2n )2/2

≤ 1 +
log p

t
2n

= 1 +
2n

t
log p

≤ 2n

t
log s + 1

Since we can construct a r = 2n
t log s + 1 rank augmented decision tree with DNF formulas with

term length t at the leaves, we can construct an augmented r-decision list with DNF formulas of the
same term length. And since we can construct such an augmented r-decision list, we can construct
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a r + t-decision list. We now choose t to give the required bound. Let t = 2
√

n.

r + t =
2n

t
log s + 1 + t

=
2n

2
√

n
log s + 1 + 2

√
n

=
√

n log s + 1 + 2
√

n

≤ 2
√

n log s + 1 Assuming s ≥ 4

4.2 Linear Threshold Functions

Definition 4 A linear threshold function is a binary function f of the form f = SIGN(
∑n

i=1 αiXi−
θ) where αi ∈ R and Xi ∈ {0, 1}
LTFs define half spaces in n dimensional space. LTFs are efficiently learnable in the Mistake Bound
model. The proof is a refinement of the proof that they are efficiently learnable in the PAC model.
Consider a bit string and label (0110110, 1) from this we know that α2 + α3 + α5 + α6 ≥ θ. Each
example presented will give another such inequality. These inequalities can be solved efficiently with
linear programming.

The fact that LTFs are efficiently learnable also implies that decision lists are efficiently learnable.

Lemma 5 For any decision list we can construct an equivalent LTF.

Without loss of generality consider a decision list with n basic blocks. Index them by position p
from the head to tail such that the index of the head is 0 and the tail is n. Let the literal in the
pth basic block be Lp and the output be Op (either 0 or 1). For each variable Xi in position p set
αi = (2Op − 1)2n−p. If the literal is negated then this coefficient is multiplied by (1 − Xi) rather
than Xi. Set θ = 0.5.

Example:

2nX3 − 2n−1X4 + 2n−2(1−X7) + ...− 0.5
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4.3 Polynomial Threshold Functions

Definition 5 A polynomial threshold function is a total degree d polynomial in n variables with real
coefficients. f(x) = SIGN(P (x)− θ)

Polynomial threshold functions can be learned by using variable subsitution to map them to linear
threshold functions. Let each monomial be named Yi there are nd such monomials. So by learning
a LTF with nd variables we can learn a PTF with n variables and degree d.


