Ad Hoc Network Security

References:

How to share a secret [Shamir 1979]

\((K, N)\) threshold scheme

- Secret \(D\) is represented by \(N\) pieces \(D_1, \ldots, D_N\)
 - \(D\) is easily computable from any \(K\) or more pieces
 - \(D\) cannot be determined with knowledge of \(K-1\) or fewer pieces

- Tradeoff between reliability and security
 - Reliability: \(D\) can be recovered even if \(N-K\) pieces are destroyed
 - Security: foe can acquire \(K-1\) pieces and still cannot uncover \(D\)

- Tradeoff between safety and convenience
 - Example—A company’s checks must be (digitally) signed by three executives
(K, N) scheme by polynomial interpolation

Given K points in 2D, \((x_1, y_1), \ldots, (x_K, y_K)\), with distinct \(x_i\)'s,

- there is one and only one polynomial \(q(x)\) of degree \(K-1\) such that \(q(x_i) = y_i\) for all \(i\).

Let the secret \(D\) be a number.

- Randomly select a \(K-1\) degree polynomial
 \[
 q(x) = a_0 + a_1x + \ldots + a_{k-1}x^{K-1}
 \]
 where \(a_0 = D\)

- Compute \(N\) values of \(q(x)\)
 \[
 D_1 = q(1), \ldots, D_i = q(i), \ldots, D_N = q(N)
 \]
Scheme by polynomial interpolation (cont.)

- Given any subset of K of the \((i, D_i)\) pairs, the coefficients of \(q(x)\) can be found by interpolation\(^1\) (or solving a set of K linear equations with K unknowns)

 - The secret D is \(q(0)\)

- Knowledge of just K-1 of the \((i, D_i)\) pairs provides no information about D
Explanation of the previous claim

- Consider the special case of a finite field $GF(p)$ where p is a prime number (larger than D, larger than N)
 - The coefficients, a_1, \ldots, a_{K-1}, are randomly chosen from a uniform distribution over the integers in $[0, p)$
 - D_1, \ldots, D_N are computed modulo p

- Suppose $K-1$ of the (i, D_i) pairs are revealed to a foe. For each value D' in $[0, p)$, the foe can construct one and only one polynomial $q'(x)$ of degree $K-1$.
 - These p possible polynomials are equally likely. So there is nothing the foe can deduce about the real value of D.
Useful properties

- Size of each piece D_i is not larger than size of secret D.
- When K is kept fixed, D_i pieces can be dynamically added or deleted.
- Individual D_i pieces can be changed without changing the secret D.
 - Such changes enhance security over the long term.
 - How?
 - Use a new polynomial with the same a_0 value (D).
- VIPs can be given more than one D_i pieces.
Application to mobile ad hoc networks
[Kong et al. 2001]
Distributed Certificate Authority

- A mobile ad hoc network has no infrastructure support

- **Requirement**: No single node in the network knows the *system secret*, i.e., the key for signing digital certificates
 - N nodes hold *secret shares* of the system secret (signing key)

- K nodes with secret shares in a one-hop locality jointly sign new certificates
 - *Certificates* enable data confidentiality, authenticity, and integrity
Distributed Certificate Authority (cont.)

- Design Challenges for mobile ad hoc networks
 - Security breach of some nodes over a large time window is likely
 - Mobility - anywhere service
 - Network dynamics - nodes join, leave, fail
 - Scalability

- Certificates signed by K nodes in a neighborhood
 - Tolerant of up to K-1 collaborative intruders, N-K failures
Two possible intrusion models

A node's private key will not be exposed for a certain period of time (even after capture by an intruder)

- Each node updates its certificate periodically for a new public key (and private key)

- Intruder cannot get the correct private key in time to respond to a challenge

A node's private key may be exposed but its ID, v_i, is not forgeable by an intruder or any intruder's attempt to pretend to be v_i can be detected.
RSA

- The system certification authority (CA)'s RSA key pair is \(\{SK, PK\} \) where SK is the signing key (system secret).

- For message \(M \), large primes, \(p \) and \(q \), and \(n=pq \), the signed message is

\[M^{SK} \mod n \]
Notation

- Each node v_i
 - may hold a secret share, P_{v_i},
 - maintains an individual RSA key pair (sk_i, pk_i) and
 - holds a certificate $\langle v_i, pk_i, T_{\text{sign}}, T_{\text{expire}} \rangle$

where T_{sign} is signing time and T_{expire} is certificate expiration time

$$T_{\text{expire}} \leq T_{\text{sign}} + T_{\text{renew}}$$
Certificate issuing

- At network initialization, nodes can obtain their certificates from a trusted central manager.

- Later on, when a node joins the network, a node wishes to renew its certificate, or recovers from a crash, it will obtain a certificate from K nodes with secret shares within a one-hop neighborhood.
 - out of bound physical proofs - human perceptions, biometrics, etc.
Certificate revocation

- **Implicit** — A node’s certificate expires if it is not renewed prior to its expiration time

- **Explicit** — If \(v_x \)'s certificate is considered compromised, a \(SK \)-signed counter-certificate with time stamp \(T^C_{\text{sign}} \) is flooded over the network
 - Neighbor nodes can safely exchange their local certificate revocation list (CRL) cache
 - With implicit certificate revocation, each node only needs to maintain counter certificates signed within the past \(T_{\text{renew}} \) time.
Protocol design using Shamir's scheme

- At system initialization, a trusted secret share dealer obtains the RSA signing key \(<d, n>\) and randomly selects a secret polynomial \(f(x)\) with degree \(K-1\)

\[
f(x) = d + f_1x + ... + f_{K-1}x^{K-1}
\]

- Each node \(v_i\) (\(i=1, 2, ..., N\)) holds a secret share

\[
P_{v_i} = f(v_i) \mod n
\]
Interpolation polynomial in the Lagrange form

Given K points in 2D, \((v_1, f(v_1)), \ldots, (v_K, f(v_K))\), with distinct \(v_i\)'s,

\[
L(x) = \sum_{j=1}^{K} f(v_j) \ell_{v_j}(x) = \sum_{j=1}^{K} P_{v_j} \ell_{v_j}(x)
\]

where

\[
\ell_{v_j}(x) = \prod_{i=1, i \neq j}^{K} \frac{(x - v_i)}{(v_j - v_i)}
\]

Since \(\ell_{v_j}(v_j) = 1\) and \(\ell_{v_j}(v_i) = 0\), we have

\[
L(v_j) = f(v_j) \text{ for } 1 \leq j \leq K
\]

Thus \(L(x) = f(x)\)
The system secret d

- Given K secret share holders in a neighborhood

\[d = f(0) = L(0) \quad \leftarrow \text{system secret} \]

\[\equiv \sum_{j=1}^{K} (P_{v_j} \ell_{v_j}(0) \mod n) \equiv \sum_{j=1}^{K} SK_j \mod n \]

where SK_j is computed by secret share holder j using P_{v_j} and $\{v_1, \ldots, v_K\}$

- The system secret d as well as secret shares $\{SK_i\}$ should not be revealed!
A multi-signature

- Let M be the new public key certificate of a node to be signed.
- Each of the K secret share holders provides a partially signed certificate, for $i = 1, \ldots, K$, without revealing its private SK_i,

 $$M^{SK_i} \mod n$$

- Having collected K partial certificates, the requesting node can obtain the fully signed certificate with some more work.
Partially signed certificates

Figure 3. Localized Certification Service
K-bounded coalition offsetting

The product of the K partial certificates is

\[M^{SK_1} \cdot M^{SK_2} \cdot ... \cdot M^{SK_K} = M^{SK_1 + SK_2 + ... + SK_K} \]

The system secret is however

\[d = (\sum_{i=1}^{K} SK_i) \mod n \]

Thus

\[\sum_{i=1}^{K} SK_i = t \cdot n + d \]

for some integer t

The signed certificate should be \(M^d \)
K-bounded coalition offsetting (cont.)

- From modular arithmetic, SK_i is a value from 0 to $n-1$
 - Thus t satisfies $0 \leq t \leq K$
 - Try each possible value of t. Decrypt using the system’s public key and find the correct t value with help of the original message M

- Complexity is the sum of $O(1)$ exponentiation, $O(K)$ modular multiplications, and $O(K)$ RSA public operations
 - RSA public key operation is relatively fast
Becoming a secret share holder

- Each certificate-holding node v_x can also obtain a secret share P_{v_x}, which it uses to derive SK_x to become a secret share holder.

- K secret share holders can compute the secret share of v_x by Lagrange interpolation:

$$P_{v_x} = f(v_x) = \sum_{j=1}^{K} P_{v_j} \ell_{v_j}(v_x) \equiv \sum_{j=1}^{K} SS_{x,j} \pmod{n}$$

- **Problem**—Since $\{v_i\}$ of the K secret share holders are publicly known, v_x can derive P_{v_j} from $SS_{x,j}$ and $\ell_{v_i}(v_x)$.
Becoming a secret share holder (2)

- Shuffling scheme—A random nonce is exchanged between any two members of the K share holders (the one with lower id creates the nonce)
 - The node with larger id treats it as a positive number
 - The other node treats it as a negative number.
 - Each share holder, \(v_i \), has K-1 such nonces. It sums the nonces and \(SS_{x,j} \). The sum is sent to \(v_x \)

- It is easy to show that \(v_x \) gets the same value
Becoming a secret share holder (3)

- Each nonce is encrypted with the individual public key of the intended receiver

- The requester forwards encrypted nonces

- Still K-out-of-N secure if there are at least two uncompromised nodes in the K nodes
Conclusions

- Application of Shamir’s idea to mobile ad hoc networks
- Most results borrowed from crypto literature
- Authors claim that prior work assumes a fixed number of secret share holders, not applicable to large networks with dynamic node membership
 - In this paper, existing secret shares and the current signing key are not affected by membership changes

(We have omitted many details in the paper.)
The End