Sliding Window Protocol and TCP Congestion Control

Simon S. Lam
Department of Computer Science
The University of Texas at Austin
Sliding Window Protocol

- Consider an infinite array, Source, at the sender, and an infinite array, Sink, at the receiver.

Source:

P1
Sender

| 0 | 1 | 2 | a-1 | a | s-1 | s |

Send window

acknowledged

unacknowledged

Sink:

P2
Receiver

| 0 | 1 | 2 | r |

Next expected

Received

Delivered

Receive window

\(RW \) receive window size

\(SW \) send window size \((s - a \leq SW)\)

TCP Congestion Control (Simon S. Lam)
Sliding Windows in Action

- Data unit r has just been received by P2
 - Receive window slides forward
- P2 sends **cumulative ack** with sequence number it expects to receive next ($r+3$)

TCP Congestion Control (Simon S. Lam)
Sliding Windows in Action

- P1 has just received cumulative ack with \(r+3 \) as next expected sequence number
 - Send window slides forward

Source:

- P1 Sender
- Next expected sequence number: \(r+3 \)
- Next expected sequence number: \(r \)
- Sequence numbers: 0, 1, 2, a-1, a, s-1, s
- Send window: shaded in green
- Acknowledged: shaded in blue
- Delivered: shaded in yellow

Sink:

- P2 Receiver
- Sequence numbers: 0, 1, 2, r
- Receive window: shaded in yellow

TCP Congestion Control (Simon S. Lam)
Sliding Window protocol

- Functions provided
 - error control (reliable delivery)
 - in-order delivery
 - flow and congestion control (by varying send window size)

- TCP uses only cumulative acks

- Other kinds of acks
 - selective nack
 - selective ack (TCP SACK)
 - bit-vector representing entire state of receive window (in addition to first sequence number of window)
Sliding Windows for Lossy FIFO Channels

- A small number of bits in packet header for sequence number
- Necessary and sufficient condition for correct operation: \(SW + RW \leq \text{MaxSeqNum} \)
- Necessity:

Source:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & a-1 & a & & & \\
\end{array}
\]

\(\text{send window} \)

\(\text{acknowledged} \)

\(\text{unacknowledged} \)

Sink:

\[
\begin{array}{cccccccc}
0 & 1 & 2 & & & & & \\
\end{array}
\]

\(\text{delivered} \)

\(\text{next expected} \)

\(\text{receive window} \)

\(RW \) receive window size

\(SW \) send window size

TCP Congestion Control (Simon S. Lam)
Sliding Windows for Lossy FIFO Channels

- Interesting special cases
 - $SW = RW = 1$ alternating-bit protocol
 - $SW = 7, RW = 1$ out-of-order arrivals not accepted, e.g., HDLC
 - $SW = RW$
Sliding Windows for LRD Channels

(LRD stands for Lossy Duplicative Reordering)

- **Assumption**: Packets have bounded lifetime L
- Be careful how fast sequence numbers are consumed (i.e., data arrive for sending into network)

 \[(\text{send rate}) \times L < \text{MaxSeqNum}\]

- **TCP**
 - 32-bit sequence numbers
 - counts bytes
 - assumes that datagrams will be discarded by IP if too old
Window Size Controls Sending Rate

- \(\approx W \) packets per RTT when no loss

TCP Congestion Control (Simon S. Lam)
Throughput

- Limit the number of unacked transmitted packets in the network to window size W

- Max. throughput $\approx \frac{W}{RTT}$ packets/sec

$$\frac{W \times MSS}{RTT} \text{ bytes/sec}$$

(assuming no loss, MSS denotes maximum segment size)

- Where did we apply Little’s Law?

 Answer: Consider the TCP send buffer
Throughput or send rate?

- Previous formula provides an upper bound
 - Average number in the send buffer is less than W unless packet arrival rate to send buffer is infinite
 - If a packet is lost in the network with probability p, then the average time in send buffer is $(1 - p) \times RTT + p \times T_o$
 Since $T_o > RTT$, actual throughput is smaller.

- The throughput of a host’s TCP send buffer is the host’s send rate into the network (including original transmissions and retransmissions)
- As a result of loss, the end-to-end goodput is $(1 - p) \times \text{throughput}$
 or $(1 - p) \times \text{sendrate}$
TCP Window Control

- **Receiver flow control**
 - Avoid overloading receiver
 - rwnd: receiver (advertised) window
 - Receiver sends rwnd to sender

- **Network congestion control**
 - Sender tries to avoid overloading network
 - It infers network congestion from “loss indications”
 - cwnd: congestion window

- **Sender sets** $W = \min (cwnd, rwnd)$
Receiver Flow Control

- Size of `rwnd` indicates available space in receive buffer
 - decreased when data is received from IP layer and ack’d
 - increased when data is consumed by application process
- Receiver advertises `rwnd` in each packet it sends
Effect of Congestion

- W too big for many flows \rightarrow congestion
- Packet loss \rightarrow transmissions on links a packet has traversed prior to its loss are wasted
- Congestion collapse due to too many retransmissions and too much wasted transmission capacity
- October 1986, Internet had its first congestion collapse

TCP Congestion Control (Simon S. Lam)
Network Congestion Control

- Sender calculates cwnd from indications of network congestion

- Congestion indications
 - timeout (loss)
 - 3 dupACKs (loss likely)
 - queueing delay
 - mark (needs ECN)
TCP Congestion Control

- Tahoe (Jacobson 1988)
 - Slow Start
 - Congestion Avoidance (CA)
 - Fast Retransmit

- Reno (Jacobson 1990)
 - Fast Recovery
 - Variants: NewReno, SACK

- Vegas (Brakmo & Peterson 1994)
 - New Congestion Avoidance

- AQM
 - RED (Floyd & Jacobson 1993)
 - REM (Athuraliya & Low 2000)

- Others...
Slow Start

- Start with $cwnd = 1$
- On each successful ACK, increment $cwnd$
 $$cwnd \leftarrow cwnd + 1$$
- Exponential growth of $cwnd$
 each RTT: $$cwnd \leftarrow 2 \times cwnd$$
- Enter *Congestion Avoidance* when $cwnd \geq ssthresh$
- For initial slow start, $ssthresh$ is set to a very large value (e.g., 65 Kbytes)

Note: for clarity in these slides, $cwnd$, $rwnd$, and $ssthresh$ are counted in packets (segments) rather than in bytes
Slow Start

- **sender**
 - `cwnd` increases by 1 for each ACK
 - 1 RTT
 - Data packet

- **receiver**
 - ACK

TCP Congestion Control (Simon S. Lam)
Congestion Avoidance (CA)

- CA starts when $cwnd \geq ssthresh$
- On each successful ACK:

 $cwnd \leftarrow cwnd + \frac{1}{cwnd}$

- Linear growth of $cwnd$

 each RTT:

 $cwnd \leftarrow cwnd + 1$
Packet Loss

- Assumption: loss indicates congestion
- Packet loss detected by
 - Retransmission timeout (RTO timer)
 - Duplicate ACKs (at least 3)

Packets

1 2 3 4 5 6 7

Acknowledgements

2 3 4 4 4 4 4

time →

TCP Congestion Control (Simon S. Lam)
Fast Retransmit

- A timeout is quite long (> RTT)
- Upon receiving 3 dupACKs, sender immediately retransmits without waiting for timeout

- Adjusts ssthresh

\[\text{ssthresh} \leftarrow \max(\text{flightsize}/2, 2) \]

where flightsize is number of outstanding packets, which may be less than \(W = \min(\text{rwnd}, \text{cwnd}) \)

- Enter Slow Start (cwnd = 1) [TCP Tahoe]

TCP Congestion Control (Simon S. Lam)
TCP Tahoe (Jacobson 1988)

SS: Slow Start
CA: Congestion Avoidance

- Decrease to 1 for either timeout or 3 dupACKs
- Fast retransmit on 3 dupACKs
Successive Timeouts

- When there is another timeout, double the timeout value
- Keep doing so for each additional loss-retransmission
 - Exponential backoff up to max timeout value equal to 64 times initial timeout value

Note: red line in figure denotes first timeout
Summary: Tahoe

- Probe network for spare capacity during SS and CA and increase send rate
 - Drastically reduce rate on loss indication

```plaintext
for every ACK {
  if (W < ssthresh) then W ← W + 1 (SS)
  else W ← W + 1/W (CA)
}
for every loss indication {
  ssthresh ← W/2
  W ← 1
}
```

- Self-clocking
- Error recovery by retransmission
 - fast retransmit upon 3 duplicate acks
- Need to estimate round trip time (to get T_O value)

TCP Congestion Control (Simon S. Lam)
TCP Reno (Jacobson 1990)

- **SS**: Slow Start
- **CA**: Congestion Avoidance

Fast retransmit + fast recovery on 3 dupACKs

TCP Congestion Control (Simon S. Lam)
TCP Reno (another scenario)

- **3 dupACKs**
- **Initial slow start**
- **halved**
- **Slow start until cwnd reaches ssthresh**

3 dupACKs during initial slow start

TCP Congestion Control (Simon S. Lam)
Fast recovery (in more detail)

- Idea: each dupACK represents a packet successfully received. Therefore, no need for very drastic action
- Enter FR/FR after 3 dupACKs
 - Set ssthresh ← max(flightsize/2, 2)
 - Retransmit lost packet
 - Set cwnd ← ssthresh + #dupACKs (window inflation)
 - Wait till W=min(rwnd, cwnd) is large enough; transmit new packet(s)
 - On non-dup ACK (1 RTT later), set cwnd ← ssthresh (window deflation)
- Enter CA
Example: FR/FR entry and exit

- **Above scenario:** Packet 1 is lost, packets 2, 3, and 4 are received; **3 dupACKs** with seq. no. 1 returned
- **Fast retransmit**
 - Retransmit packet 1 upon 3 dupACKs
- **Fast recovery**
 - Inflate window with #dupACKs such that new packets 9, 10, and 11 can be sent while repairing loss

TCP Congestion Control (Simon S. Lam)
AIMD in steady state

additive increase:
- increase \(\text{cwnd} \) by 1 MSS every RTT in the absence of any loss event

multiplicative decrease:
- cut \(\text{cwnd} \) in half after 3 dupACKs

![Graph showing the congestion window over time for a long-lived TCP connection.](image-url)
TCP throughput (send rate)

- Approximate formula from Little’s Law (assuming no loss)

\[
\text{max. send rate} \approx \frac{W}{RTT} \text{ packets/sec}
\]

- \(W \) changes with the arrival of each congestion indication
- To calculate (average) send rate, we need the average value of \(W \)

Q: \(W \) is a function of what parameter?
First approximation

- No slow-start, no timeout, long-lived TCP connection
- Independent identically distributed “periods”
- Three dupACKs are received in a round with probability \(p \)

Ave. congestion window (packets)

\[
\begin{array}{c|c|c|c|c}
\text{Time (RTT)} & 0 & W/2 & W & 3W/2 & 2W \\
\hline
\text{# of RTTs} & 0 & W/4 & W/2 & 3W/4 & W
\end{array}
\]
Geometric Distribution
Ave. no. of transmissions to get first “triple dupACKs”

\[n = \sum_{i=1}^{\infty} i b_i = \sum_{i=1}^{\infty} i (1 - p)^{i-1} p \]

\[= p \sum_{i=1}^{\infty} i (1 - p)^{i-1} \]

\[= -p \frac{d}{dp} \sum_{i=1}^{\infty} (1 - p)^i = -p \frac{d}{dp} \sum_{i=0}^{\infty} (1 - p)^i \]

\[= -p \frac{d}{dp} \frac{1}{1 - 1 + p} = p \frac{1}{p^2} \]

\[= 1 / p \]

Aside: ave. no. of transmissions to get first success is \(1/(1-p) \)
First approximation (cont.)

- Average number of packets delivered in one period (area under one saw-tooth):
 \[
 \left(\frac{W}{2}\right)^2 + \frac{1}{2}\left(\frac{W}{2}\right)^2 = \frac{3}{8}W^2
 \]

- Average number of packets sent per period is \(1/p\)

- Equate the two and solve for \(W\), we get:
 \[
 W = \sqrt{\frac{8}{3p}}
 \]

Send rate (in packets/sec):

\[
\text{send rate} = \frac{\text{no. of packets/period}}{\text{time per period}}
\]

\[
= \frac{\frac{3}{8}W^2}{\text{RTT}\left(\frac{W}{2}\right)}
\]

\[
= \frac{1/p}{\text{RTT}\left(\sqrt{\frac{2}{3p}}\right)} = \frac{1}{\text{RTT} \sqrt{\frac{3}{2p}}}
\]

TCP Congestion Control (Simon S. Lam)
TCP ACK generation [RFC 1122, RFC 2581]

<table>
<thead>
<tr>
<th>Event at Receiver</th>
<th>TCP Receiver action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed</td>
<td>Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK</td>
</tr>
<tr>
<td>Arrival of in-order segment with expected seq #. One other segment has ACK pending</td>
<td>Immediately send single cumulative ACK, ACKing both in-order segments</td>
</tr>
<tr>
<td>Arrival of out-of-order segment higher-than-expect seq. #. Gap detected</td>
<td>Immediately send duplicate ACK, indicating seq. # of next expected byte</td>
</tr>
<tr>
<td>Arrival of segment that partially or completely fills gap</td>
<td>Immediate send ACK, provided that segment starts at lower end of gap</td>
</tr>
</tbody>
</table>

TCP Congestion Control (Simon S. Lam)
Receiver implements Delayed ACKs

- Receiver sends one ACK for every two packets received -> each saw-tooth is \(W \times \text{RTT} \) wide
 - area under a saw-tooth is \(\frac{3W^2}{4} = \frac{1}{p} \)

- Send rate is
 \[
 \frac{1/p}{RTT \cdot W} = \frac{1/p}{RTT \cdot \sqrt{4/(3p)}} = \frac{1}{RTT \sqrt{4p}}
 \]

- One ACK for every \(b \) packets received -> send rate is
 \[
 \frac{1}{RTT \sqrt{2bp}}
 \]
A more detailed model

Reference:
Motivation

- Previous formulas not so accurate when loss rates are high
- TCP traces show that there are more loss indications due to timeouts (TO) than due to triple dupACKs (TD)
Objectives

- More accurate steady-state throughput formula as a function of loss (indication) rate and RTT by also accounting for TO behavior of a TCP connection
- Formula applicable over a wider range of loss rates
- Explicit statements of assumptions and approximations used in derivation of throughput formula
- Formula to include the impact of a small rwnd
Many assumptions and approximations

- **A1.** TCP sender is saturated, i.e., source application process always has a packet to send when send window has space available
 - bulk transfer application

- **A2.** Slow Start not modeled

- **A3.** Time to send all packets in a window is smaller than RTT (as shown in slide 9)
 - transmission rate is not too low
AIMD evolution of Window Size over time

- **A4.** Each TD period is ended by a TD loss indication.
 - TDP$_i$ period has duration A_i RTTs

- **A5.** Duration of a round (RTT) is independent of window size
 - poor assumption for a slow line

- **A6.** Fast Recovery not modeled

TCP Congestion Control (Simon S. Lam)
Loss assumptions

- **A7.** Losses in different rounds are independent

- **A8.** Losses within the same round are correlated as follows: If a packet is lost, all remaining packets transmitted until the end of that round are also lost
 - all lost packets in the same round are counted as a single loss indication when estimating p

- **A9.** Assume that $\{A_{ij}\}$ and $\{W_{ij}\}$ are mutually independent i.i.d. sequences of random variables
AIMD throughput (send rate)

A10. Assume \{W_i\} to be a Markov regenerative process with rewards \{Y_i\}, where \(Y_i\) is the number of packets sent in TDP_i.

\[
\text{send rate } B(p) = \frac{E[Y]}{E[A]} = \frac{1 - p + E[W]}{\frac{p}{E[A]}} = \frac{1}{p} \frac{1}{RTT} \left(\frac{2b}{\sqrt[3]{3p}} \right) + o(1/\sqrt{p})
\]

\[
\approx \frac{1}{RTT} \sqrt{\frac{3}{2bp}} + o(1/\sqrt{p})
\]
AIMD with Timeouts

Let Y_{ij} denote number of packets sent in jth period of Z_{i}^{TD}
AIMD with Timeouts (cont.)

- Let n_i denote the number of TD periods within a cycle which ends in i-th TO period, R_i denote no. of retransmissions in i-th TO period.
- A11. $\{n_i\}$ form an i.i.d. sequence, independent of $\{Y_{ij}\}$ and $\{A_{ij}\}$.

\[
M_i = \sum_{j=1}^{n_i} Y_{ij} + R_i, \quad S_i = \sum_{j=1}^{n_i} A_{ij} + Z_i^{TO}
\]
Throughput of AIMD with TO

\[E[S] = E[n]E[A] + E[Z^{TO}] \]

Send rate \(B = \frac{E[M]}{E[S]} = \frac{E[n]E[Y] + E[R]}{E[n]E[A] + E[Z^{TO}]} \)

\[B = \frac{E[Y] + Q \times E[R]}{E[A] + Q \times E[Z^{TO}]} \]

where \(Q \equiv \frac{1}{E[n]} \)

\[E[R] = \frac{1}{1 - p} \]

with \(Q \) and \(E[Z^{TO}] \) to be determined

Assumption of Markov regenerative process again.

<- Probability that a given loss indication is a TO

TCP Congestion Control (Simon S. Lam)
Throughput of AIMD with TO (cont.)

Prob[a loss indication is a TO]

\[B(p) \approx \frac{1-p}{p} + E[W] + \frac{1}{1-p} \frac{E[A] + \hat{Q}(E[W])T_o f(p)}{1-p} \]

\[\approx \frac{1}{p} \left(\frac{2b}{3p} \right) + \min \left(1, 3 \sqrt{\frac{3bp}{8}} \right) (1 + 32p^2)T_o \]

\[= \frac{1}{RTT \left(\sqrt{\frac{2bp}{3}} \right) + \min \left(1, 3 \sqrt{\frac{3bp}{8}} \right) p(1 + 32p^2)T_o} \]

<- Eq. (27) more accurate version of throughput formula

Extra term added to account for Timeout

<- Eq. (29) most well-known version of throughput formula

TCP Congestion Control (Simon S. Lam)
Impact of receiver’s flow control limitation—approximate model

Using the well-known Eq. (29) from before,

\[B(p) = \min\left(\frac{W_{\text{max}}}{RTT}, \frac{1}{RTT \left(\sqrt{\frac{2bp}{3}} \right) + \min \left(1, 3\sqrt{\frac{3bp}{8}} \right) p(1 + 32p^2)T_0} \right) \]

where \(W_{\text{max}} \) is the maximum window size allowed by receiver.

The above is Eq. (32) referred to as the approximate model. The full model is Eq. (31) in the paper.
Summary data from traces (1 hour)

- **Saturated TCP sender**
- \(p \) computed from dividing total no. of loss indications by total number of packets sent
- \(RTT \) and \(T_0 \) values are averaged over entire 1-hour trace

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
<th>Packets Sent</th>
<th>Loss Indic.</th>
<th>TD</th>
<th>(T_0)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4) or more</th>
<th>RTT</th>
<th>Time Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>manic</td>
<td>alps</td>
<td>54402</td>
<td>722</td>
<td>19</td>
<td>611</td>
<td>67</td>
<td>15</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>0.207</td>
</tr>
<tr>
<td>manic</td>
<td>baskerville</td>
<td>58120</td>
<td>735</td>
<td>306</td>
<td>411</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.243</td>
</tr>
<tr>
<td>manic</td>
<td>ganef</td>
<td>58924</td>
<td>743</td>
<td>272</td>
<td>444</td>
<td>22</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.226</td>
</tr>
<tr>
<td>manic</td>
<td>mafalda</td>
<td>56283</td>
<td>494</td>
<td>2</td>
<td>474</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.233</td>
</tr>
<tr>
<td>manic</td>
<td>maria</td>
<td>68752</td>
<td>649</td>
<td>1</td>
<td>604</td>
<td>35</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.180</td>
</tr>
<tr>
<td>manic</td>
<td>spiff</td>
<td>117992</td>
<td>784</td>
<td>47</td>
<td>702</td>
<td>34</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.211</td>
</tr>
<tr>
<td>manic</td>
<td>sutton</td>
<td>81123</td>
<td>1638</td>
<td>988</td>
<td>597</td>
<td>41</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0.204</td>
</tr>
<tr>
<td>manic</td>
<td>tove</td>
<td>7938</td>
<td>264</td>
<td>1</td>
<td>190</td>
<td>37</td>
<td>18</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>0.275</td>
</tr>
<tr>
<td>void</td>
<td>alps</td>
<td>37137</td>
<td>838</td>
<td>7</td>
<td>588</td>
<td>164</td>
<td>56</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>0.162</td>
</tr>
<tr>
<td>void</td>
<td>baskerville</td>
<td>32042</td>
<td>853</td>
<td>339</td>
<td>430</td>
<td>67</td>
<td>12</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.482</td>
</tr>
<tr>
<td>void</td>
<td>ganef</td>
<td>60770</td>
<td>1112</td>
<td>414</td>
<td>582</td>
<td>79</td>
<td>20</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>0.254</td>
</tr>
<tr>
<td>void</td>
<td>maria</td>
<td>93005</td>
<td>1651</td>
<td>33</td>
<td>1344</td>
<td>197</td>
<td>54</td>
<td>15</td>
<td>5</td>
<td>3</td>
<td>0.152</td>
</tr>
<tr>
<td>void</td>
<td>spiff</td>
<td>65536</td>
<td>671</td>
<td>72</td>
<td>539</td>
<td>56</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.415</td>
</tr>
<tr>
<td>void</td>
<td>sutton</td>
<td>78246</td>
<td>1928</td>
<td>840</td>
<td>863</td>
<td>152</td>
<td>45</td>
<td>18</td>
<td>9</td>
<td>1</td>
<td>0.211</td>
</tr>
<tr>
<td>void</td>
<td>tove</td>
<td>8265</td>
<td>856</td>
<td>5</td>
<td>444</td>
<td>209</td>
<td>100</td>
<td>51</td>
<td>27</td>
<td>12</td>
<td>0.272</td>
</tr>
<tr>
<td>babel</td>
<td>alps</td>
<td>13460</td>
<td>1466</td>
<td>0</td>
<td>1068</td>
<td>247</td>
<td>87</td>
<td>33</td>
<td>18</td>
<td>8</td>
<td>0.194</td>
</tr>
<tr>
<td>babel</td>
<td>baskerville</td>
<td>62237</td>
<td>1753</td>
<td>197</td>
<td>1467</td>
<td>76</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0.253</td>
</tr>
<tr>
<td>babel</td>
<td>ganef</td>
<td>86675</td>
<td>2125</td>
<td>398</td>
<td>1686</td>
<td>38</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.201</td>
</tr>
<tr>
<td>babel</td>
<td>spiff</td>
<td>57687</td>
<td>1120</td>
<td>0</td>
<td>939</td>
<td>137</td>
<td>36</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0.331</td>
</tr>
<tr>
<td>babel</td>
<td>sutton</td>
<td>83486</td>
<td>2320</td>
<td>685</td>
<td>1448</td>
<td>142</td>
<td>31</td>
<td>9</td>
<td>4</td>
<td>1</td>
<td>0.210</td>
</tr>
<tr>
<td>babel</td>
<td>tove</td>
<td>83944</td>
<td>1516</td>
<td>1</td>
<td>1364</td>
<td>118</td>
<td>17</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>0.194</td>
</tr>
<tr>
<td>pif</td>
<td>alps</td>
<td>83971</td>
<td>762</td>
<td>0</td>
<td>577</td>
<td>111</td>
<td>46</td>
<td>16</td>
<td>8</td>
<td>2</td>
<td>0.168</td>
</tr>
<tr>
<td>pif</td>
<td>imagine</td>
<td>44891</td>
<td>1346</td>
<td>15</td>
<td>1044</td>
<td>186</td>
<td>63</td>
<td>21</td>
<td>10</td>
<td>5</td>
<td>0.229</td>
</tr>
<tr>
<td>pif</td>
<td>manic</td>
<td>34251</td>
<td>1422</td>
<td>43</td>
<td>944</td>
<td>272</td>
<td>105</td>
<td>36</td>
<td>14</td>
<td>6</td>
<td>0.257</td>
</tr>
</tbody>
</table>

Table 2: Summary data from 1hr traces

TCP Congestion Control (Simon S. Lam) 48
Summary data from 100s traces

Each row represents results from 100 traces each 100 seconds long for same S-D pair

Totals are cumulative over 100 traces

\(RTT \) and \(T_0 \) are average values over 100 traces for same S-D pair

<table>
<thead>
<tr>
<th>Sender</th>
<th>Receiver</th>
<th>Packets Sent</th>
<th>Loss Indic.</th>
<th>TD</th>
<th>(T_0)</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_3)</th>
<th>(T_4) or larger</th>
<th>RTT</th>
<th>Time Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>manic</td>
<td>ada</td>
<td>531533</td>
<td>6432</td>
<td>4320</td>
<td>2010</td>
<td>93</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0.1419</td>
<td>2.2231</td>
</tr>
<tr>
<td>manic</td>
<td>after</td>
<td>2526/4</td>
<td>4577</td>
<td>2584</td>
<td>1898</td>
<td>83</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0.1804</td>
<td>2.3009</td>
</tr>
<tr>
<td>manic</td>
<td>al</td>
<td>264002</td>
<td>4720</td>
<td>2841</td>
<td>1804</td>
<td>70</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.1885</td>
<td>2.3542</td>
</tr>
<tr>
<td>manic</td>
<td>alps</td>
<td>667296</td>
<td>3797</td>
<td>841</td>
<td>2866</td>
<td>85</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.1125</td>
<td>1.9151</td>
</tr>
<tr>
<td>manic</td>
<td>baskerville</td>
<td>89244</td>
<td>1638</td>
<td>627</td>
<td>955</td>
<td>42</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>0.4735</td>
<td>3.2269</td>
</tr>
<tr>
<td>manic</td>
<td>ganesf</td>
<td>160152</td>
<td>2470</td>
<td>1040</td>
<td>1308</td>
<td>89</td>
<td>18</td>
<td>6</td>
<td>1</td>
<td>0.2150</td>
<td>2.6078</td>
</tr>
<tr>
<td>manic</td>
<td>maria</td>
<td>171308</td>
<td>1332</td>
<td>9</td>
<td>1269</td>
<td>48</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0.2501</td>
<td>2.5127</td>
</tr>
<tr>
<td>manic</td>
<td>maria</td>
<td>316498</td>
<td>2476</td>
<td>5</td>
<td>2362</td>
<td>99</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0.1166</td>
<td>1.8798</td>
</tr>
<tr>
<td>manic</td>
<td>modi4</td>
<td>282547</td>
<td>6072</td>
<td>3976</td>
<td>1988</td>
<td>99</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0.1749</td>
<td>2.2604</td>
</tr>
<tr>
<td>manic</td>
<td>pong</td>
<td>358535</td>
<td>4239</td>
<td>2328</td>
<td>1830</td>
<td>74</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0.1769</td>
<td>2.1371</td>
</tr>
<tr>
<td>manic</td>
<td>spiff</td>
<td>298465</td>
<td>2035</td>
<td>159</td>
<td>1781</td>
<td>75</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0.2539</td>
<td>2.4545</td>
</tr>
<tr>
<td>manic</td>
<td>sutton</td>
<td>348926</td>
<td>6024</td>
<td>3694</td>
<td>2238</td>
<td>87</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0.1683</td>
<td>2.1852</td>
</tr>
<tr>
<td>manic</td>
<td>tove</td>
<td>262365</td>
<td>2603</td>
<td>6</td>
<td>2422</td>
<td>135</td>
<td>30</td>
<td>8</td>
<td>2</td>
<td>0.1153</td>
<td>1.9551</td>
</tr>
</tbody>
</table>

TCP Congestion Control (Simon S. Lam)
Experimental comparison (1)

- Each point represents number of packets in 100s interval of trace
- T0 ~ single TO, T1 ~ at least 1 double TO in trace, etc.
- “TD Only” is analytic model by Mathis et al.
- Note: W_{max} is only 6 in Figure 7

Figure 7: manic to baskerville

Figure 8: pit to imagine

TCP Congestion Control (Simon S. Lam)
Experimental comparison (2)

Figure 9: pif to manic

\[W_{\text{max}} = 33 \]

Figure 10: void to alps

\[W_{\text{max}} = 44 \]

TCP Congestion Control (Simon S. Lam)
Experimental comparison (3)

Figure 11: void to tove

\[W_{\text{max}} = 8 \]

Figure 12: babel to alps

\[W_{\text{max}} = 48 \]
Accuracy of approximate model

Figure 18: manic to spiff, with predictions by both full and approximate models \((W_{\text{max}}=32)\)
Average errors

Figure 19: Comparison of the models for 1hr traces

\[
\text{ave. error} = \frac{\sum_{\text{observations}} \left| N_{\text{predicted}} - N_{\text{observed}} \right|}{\text{no. of observations}}
\]

Figure 20: Comparison of the models for 100s traces

TCP Congestion Control (Simon S. Lam)
Conclusions

- A more detailed analysis than the one by Mathis et al.
- Numerous assumptions and approximations used but (almost) all of them are explicitly stated
- Large amount of experimental measurements on the Internet to validate accuracy of the full model (less for the approximate model)
- Throughput formula accounts for loss indications due to TO as well as rwnd restriction
 - Using the formula requires accurate measurements of loss rate and RTT values (*which could be tricky*)
 - For TCP Reno and drop-tail router
- Accuracy (like beauty) is in the eye of the beholder. What do you think?

TCP Congestion Control (Simon S. Lam)
Challenge in the future

- TCP average throughput (approximate) in terms of loss (indication) rate, p

\[
\frac{1.22 \cdot MSS}{RTT \sqrt{p}}
\]

- Example: 1500-byte segments, 100ms RTT, to get 10 Gbps throughput, loss rate needs to be very low

\[p = 2 \times 10^{-10}\]

- New version of TCP needed for connections with large delay-bandwidth product
 - One proposal: Katabi et al. (*Sigcomm* 2002)

- Revised congestion control algorithms for data center networks
 - Very low delay, high bandwidth
The end