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Abstract—Networks based on Ethernet bridging scale poorly as
bridges flood the entire network repeatedly, and several schemes
have been proposed to mitigate this flooding problem; however,
none have managed to eliminate flooding completely. We present
Automatic Integrated Routing (AIR) as the first routing protocol
that eliminates flooding by assigning prefix labels to switches
and building a Distributed Hash Table (DHT). The DHT maps
host identifiers to the prefix labels of the switches through which
they connect to the network. Each switch is assigned a prefix
label using neighbor-to-neighbor messages. Prefix labels denote
the locations of the switches in the network, and the prefix labels
of any two switches automatically determine one or multiple
routes between them. The DHT stores the mapping between
the name of a host and its network location (prefix label) in
a scalable fashion, with any one switch storing only a fraction
of all the mappings. In contrast, prior approaches using DHTs
to resolve host names incur the communication and storage
overhead introduced by an underlying link-state routing protocol.
Results using packet-level traces of Internet traffic demonstrate
that AIR attains performance gains of orders of magnitude over
Ethernet bridging and prior DHT-based schemes.

I. INTRODUCTION

The rapid growth of enterprises in the last decade created a
large demand for networks that are easy to setup, economical
and fast. This has resulted in the emergence of Ethernet as
a viable option that worked out-of-the-box. However, with
several enterprises further expanding in scale and with a steep
increase in the volume of devices connected to the network,
limitations of Ethernet-like approaches have become apparent.

The simplicity of Ethernet, as it turns out, is its Achilles
heel. Hosts connected via Ethernet use broadcast services for
point-to-point communication. Bridges connecting different
Ethernet segments of the network, flood an entire segment to
locate destinations. Moreover, each host maintains paths to all
hosts within its segment, while a bridge stores host information
for all segments that it connects. This does not bode well for
very large networks, because the message complexity and the
local state increase exponentially with the size of the network.
Broadcast-storms and routing loops arising out of transient
hosts further worsen this situation.

Our work finds its motivation in that the traditional model
of hosts has undergone a significant amount of change in the
last decade. With advances in embedded technology, several
different class of network-enabled devices have emerged and

are deployed to save cost, effort and time. Each of these
devices connect to the network similar to a personal laptop
or a content server for the enterprise. Increasing number of
hosts have so far been met with increased deployment of
scale-limited networking devices and hence degrading peak
performances. Our approach attempts to scale by reducing the
state stored at each node, minimizing network wide broadcasts
and hence improving on end-to-end latencies.

As Section II discusses, several approaches to mitigate
these problems have been proposed in the literature. A careful
review of them reveals that, while these approaches aim at
limiting network-wide flooding, they do not get rid of it
completely. Protocols based on construction of spanning trees
help reduce broadcast storms and provide routes that are
eventually loop-free. However, bottlenecks caused by the tree-
like structure superimposed on the physical topology results in
poor network performance. IP routing emerged as a scalable
alternative, and is still a popular choice in combination with
switched Ethernet. However, bootstrapping and maintaining an
IP network has high management overhead, especially when
the network includes transient hosts. Another popular approach
involves leveraging link-state routing to set up point-to-point
virtual links between hosts.

Until recently, improvements in routing for wired networks
largely focussed on more efficient spanning-tree protocols. In
contrast, SEATTLE [4] took a radical approach in moving
away from the traditional ‘broadcast-everything’ approach and
introduced Distributed Hash Tables (DHT) into the mix. In
SEATTLE, hosts are abstracted from the rest of the network
by the layer-two switches and each of these switches store the
mapping between an end-host, and the switch that the end-host
is connected to. However, each of these switches run link-state
routing protocols on their interfaces that connect them to other
switches.

In this paper, we embrace the design decision of using
DHTs to resolve the mapping between host identifiers and their
locations, and introduce a new approach that moves away from
the need to use link-state information. Our framework pushes
the responsibility of searching for destinations to nodes in the
network in such a way that neither the network nor any single
node is burdened with the task of discovering routes. As a
result, we reduce the state stored at each node and improve
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the latency compared to Ethernet, without flooding messages
network-wide. We call this framework Automatic Incremental
Routing (AIR), which is described in detail in Section III-A.

AIR utilizes the concept of DHTs to organize each of
its node as part of a routing substrate that allows for easy
discovery of destinations and/or services. The way our DHT
is realized in the network is different from previous approaches
in that the labeling scheme supplies each node (host or a
switch) with a prefix label. The labeled routing substrate makes
it trivial to route between any two nodes with prefix labels and
the discovery of a prefix label becomes analogous to the path
discovery problem. To discover a path to some destination, a
host resolves a well known name of the destination host to a
prefix label and then routes to it. The prefix label of each host
in the network is stored across the DHT and a single lookup
in the DHT reveals the most recent mapping of a host’s name
(a well known identifier MAC or IP) to its prefix label in the
network. With this information, each node proceeds to route
to the discovered destination.

Section IV discusses the performance of AIR using packet-
level trace files on real world topologies, as well as high-
fidelity network simulations [14]. AIR achieves order mag-
nitude gains in the reducing the control overhead and local
state incurred in bridged Ethernet and SEATTLE. The dramatic
performance improvements attained with AIR are due to
the publish/subscribe paradigm over prefix labels enforced in
AIR, which removes the responsibility of discovering paths to
destinations from both the hosts and switches.

II. RELATED WORK

Ethernet bridging, though a very flexible and rapid-to-
deploy solution for local area networks (LANs), does not
typically scale beyond a few thousand hosts. Every switch
in an ethernet bridged network maintains routing state for all
hosts in the network. Thus, the forwarding tables at switches
grow very large for enterprise-level networks. Dissemination
of this host information further worsens the problem. These
approaches can largely be classified into three categories; (a)
Schemes that augment spanning tree protocols, (b) Schemes
that leverage link state based dissemination, (c) Hybrid ap-
proaches. Our approach finds its motivation from all of these
works but offers a unique point in the design space in that
it combines the advantages of these models while working
around their drawbacks.

Spanning Tree protocols were adopted to eliminate routing
loops and hence prevent repeated flooding of packets to
end hosts. Rapid Spanning Tree Protocol (RTSP) [7], an
augmented STP protocol, was designed to converge faster after
link failures. However, STPs fail to offer path diversity and
hence fail to maximize the utilization of available resources.
SmartBridges [12] build multiple spanning trees and maintain
complete network topology at each switch to ensure shortest
path routing between segments, which does not scale well.

RBridges [9] use a link-state protocol at each bridge to
learn about every other bridge in the topology. RBridges limit
flooding of packets using hop counts while CMU-Ethernet [6]

employs a similar link-state advertisement approach, but also
includes host information in the link-state updates to avoid
disseminating host location information.

Link-state routing protocols such as OSPF [5], belong to the
proactive class of routing protocols where neighbors exchange
link vectors between each node and build a snapshot of the
entire topology locally at each node. Link updates are sent by
each node to the rest of the nodes in its segment periodically,
as spanning trees are computed using the local copy of the
topology. Large segments running on link-state suffer from
processing a high volume of updates even when no node has
active traffic to the remote segments.

Subnets interconnected to each other using IP routing is used
to split large topologies into smaller logical ones. The switches
act as gateways for hosts in each subnet to communicate with
other hosts. Subnets are assigned an IP prefix and hosts in the
subnet are assigned an IP address from that prefix. However,
the assignment of IP prefixes to subnets is typically a manual
process. Although the assignment of correct IP address to hosts
can be automated using DHCP services, configuring DHCP
servers to allocate addresses that are consistent with subnet
addresses is non-trivial.

VLANs emerged as a solution to split the network into
logical groups of hosts since a single VLAN can be made to
span multiple bridges. While VLANs allowed seamless host
mobility as hosts retained their IP addresses, they suffered
from the same problems as subnetting as manual configuration
was required.

More recently, SEATTLE [4], introduced a different ap-
proach by building DHTs for discovery of end hosts. In
SEATTLE, each switch did not maintain state for every host in
the network and avoided network-wide flooding of announce-
ments. Further, by piggybacking location information on ARP
[10] packets and by combining caching of replies to location
queries, they ensure low latency for look ups. However, the
DHT is constructed on top of a link-state routing protocol and
they incur all the overheads associated with that. Our work
relates closest to this body in that we apply a DHT to resolve
location-identity queries but is different in that we build our
DHT using prefix labels and yet do not incur overheads of a
link state approach. There are other works [11] that use a DHT
on Ethernet to support addressing, but they assume complete
knowledge of the switch-level topology, which would require
either flooding or a link-state protocol on switches.

The use of a link-state protocol in SEATTLE for main-
taining the switch-level topology incurs a large amount of
overhead as the number of switches grow combined with
increasing host and switch mobility. Thus, even though SEAT-
TLE reduces the total control overhead it does not get rid
of flooding completely. We believe there is still more room
in the design space for large local area networks, where
switches should not have to resort to any form of flooding
of information, while still maintaining efficient and reasonably
fast routing. AIR strives to fill this gap by providing automatic
routing wherein switches do not need to maintain a switch-
level topology in order to route between switches. The routing
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between switches is done automatically using the prefix labels
assigned to the switches as explained in the next section.

III. AIR

Automatic Incremental Routing (AIR) is designed such that
it takes the broadcasting service of the Ethernet and converts
it into a virtual point to point unicast service. One of the main
goals of this paper is to explore how a DHT substrate built
over the switch topology can be leveraged to route to hosts.
We also show that the amount of state at each AIR-switch1is
a fraction of the total number of mappings and the messaging
complexity is bounded to a polylog of the number of switches
in the network. To the best of our knowledge this is one of
the first schemes that offers succinct routing state and limited
control plane signaling.

In our effort to design AIR we ensure that it can run
on top of an existing Ethernet infrastructure and encapsulate
bootstrapping and host-learning protocols such as DHCP [2]
and ARP [10] into a single messaging primitive. Hosts attach
themselves to AIR-switches, as they do in Ethernet using
a hello-message protocol. Using the hello-messaging, AIR-
switches abstract away the hosts to the rest of the network
and route packets on behalf of attached hosts.

A. Routing on AIR - Overview

The AIR routing protocol routes packets across switches in
three separate phases. First, in the substrate building phase,
the protocol constructs a routing substrate in the form of a
Directed Acyclic Graph (DAG) that is rooted at a distributively
elected node in the network. Each node is then assigned a
prefix label with respect to the root of the DAG. These nodes
also have a position-independent identifier (IP or a MAC
address) which we call Globally Unique Identifier (GID). Note
that while AIR builds a DAG, it is different from the Spanning-
Tree protocols in that it does not use the DAG to flood link-
vectors to the entire network. The DAG merely is used to
establish an ordering among the nodes with respect to the
distributively elected root.

In the second phase, each switch labels every other switch
to which it is physically connected. The labeling process
instantiates the hello message protocol that sends update
messages on all the interfaces of the switch and the prefix
labels are piggy backed on these messages. Additionally, these
messages carry a monotonically increasing sequence number
that helps determine how recent an update message is and
hence prevents the occurrence of routing loops. The election
algorithm determines a dominant node in the connected com-
ponent by choosing the node with the largest node degree and
breaks any ties using GID.

Once the prefix labels are established, the anchor setup
phase begins. In this phase, each switch in the DAG identifies
an anchor which is responsible for storing the mapping
between the GID of the host and associated prefix label of
the switch. The ‘anchor switch’ is determined by using a

1Henceforth, switches and AIR-switches are used interchangeably

consistent hashing function [3] that takes as input, the GID of
a host and returns a switch-prefix-label. As hosts fail, reboot
or even move around, their labels change and anchors keep
track of these changes.

Note that the prefix labels are not switches but locations
in the network. As the topology of the network changes
over time, while the switches associated with locations in the
network changes, the location themselves remain invariant,
provided the labels are consistent and the network is not
partitioned. The labeled DAG offers a resilient structure, that
defaults to a switch with the closest switch-prefix-label, when
a request for an exact match fails.

Lastly, in the destination discovery phase, switches request-
ing a route to a particular destination host, compute the anchor
switch for that destination. The switch then sends a request for
the most recent mapping between the GID of the destination
and a switch-prefix-label. These messages take advantage
of the routing substrate and route implicitly to the anchor
switches. Upon reception of the mapping, data is routed either
directly, using knowledge of better paths to the destination or
is routed via the anchor node. In this paper, we chose the
latter design to bound path lengths and quantify the worst
case behavior of the protocol.

The routing algorithm that routes over the labeled DAG,
follows a greedy strategy. When it encounters a local minima,
it chooses the next hop with the lowest GID. Since the labels
are combinations of prefixes, the choice of GID does not
affect the path to the destination. A switch uses the maximum
matching prefix logic to choose its next hop. To route to a
destination d, switch s ∈ E chooses the link that offers the
maximum length of prefix label that matches with the prefix
label of the destination.

B. Building the DAG

Switches in AIR are labeled such that the labels preserve
an ordering among them with respect to a single elected
switch. Each switch periodically evaluates its neighborhood
information and determines if a neighboring switch can offer
a better ordering with respect to the elected root node. If a
switch detects no ordering in its neighborhood, it elects itself
as a root and labels its neighbors. The ordering is determined
by the lexicographic length of a switch’s label and the GIDs
of the switches are used to break ties, should a tie occur.

To understand the prefix labeling better, consider the exam-
ple in Figure II. The prefix labels for switches are assigned
over the alphabet Σ = 1, 2, 3. Switch a elects itself as the
root node and labels switches b, c, d with labels 01, 02, 03
respectively. The labels are assigned such that it is prefixed
with the label of the parent switch combined with a suffix
that is unique at the parent node. Here we see that switches
b, c, d were given suffixes 1, 2, 3 at switch a.

Note that as the network begins to organize itself, the
labeling process can produce multiple such DAGs. When a
switch is at the interface of two such DAGs, the label of
the border switches are compared and the DAG with the
lexicographically larger label dominates the ordering of the
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Fig. 1. Building the DAG

(a) Switch s inserting mapping into the DHT for 21 (b) Source host 13 locating host 21 via anchor j

Fig. 2. Overview of the AIR switch

switches. For example, if a switch with label 0 were to join
the DAG in the Figure 1(b) at switch a then the label of node
a would dominate the ordering of the new DAG joining at
node a.

All nodes in the network (host or switch) auto-configure
themselves with their labels using neighbor-to-neighbor signal-
ing. Messages from hosts are handled differently from that of
switches in that the messages from hosts are abstracted away
by the switch. Each host sends a periodic hello-message to the
switch that it is connected to and the soft state maintained at
the switch determines the existence of the hosts.

Switches maintain a list of the hosts that are connected to
it. In addition to this each host also sends a monotonically
increasing sequence number, which is used to ensure loop-
freedom when hosts travel between switches.

C. Building the DHT

‘Anchor switches’ store the (key,value) pairs that maps the
switch-prefix-label with the GID of an end host. We choose
consistent hashing to avoid remapping of hosts to switches
when parts of the network fail. These hash functions take the
GID as input and return a switch-prefix-label. Each host in
the network announces its presence to a switch in its segment
and provides the switch with its GID. Switches, then hash the
value of the GID and insert the (hostGID, switchhost

GID) at the
switch-prefix-label returned by hash function.

A source host with traffic for some destination learns of
the destination’s location from the anchor switch storing the

(key,value) pair. The source then sends a look-up query towards
the switch closest to the switch-prefix-label. Consider the
example in Figure 2(a). Host 21 is connected to switch s and
s hashes the identifier of 21 and acquires a switch-prefix-label
of 0221. This mapping is then stored at switch j which is the
closest match to the acquired switch-prefix-label. Note that the
node with the exact label matching the switch-prefix-label does
not have be present in the network. Failures or node transience
are handled similarly as the DHT inserts add entries into a
switch that matches closest to the absent switch.

D. Routing between Hosts and Switches

Once the DAG is setup by hello-messaging between the
switches, packets are routed using prefix labels. The construc-
tion of the DAG forces an ordering among the switches in the
network. At each hop, a switch determines the next ‘best’ hop
towards the destination prefix label. The switch that offers the
largest common matching prefix is then selected as the next
best hop. DHT inserts and look-ups are propagated in this
fashion to build the DHT.

Sources that have active traffic to send to destination hosts,
determine the anchor switch’s prefix label and send a look-
up. Successful look-ups propagate back to the source node
following which a source sends data packets directly to the
destination without having to route via the anchor switch.

In Figure 2(b), we see that host 13 attempts to route to host
21 by first hashing host 21’s identifier to get the switch-prefix-
label of host j and then sends a request to host j for host 21’s
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Algorithm 1 Root Election
if 1-hop neighborhood does not have a valid parent then

if Label Timer expires then
Elect self as root node
if number of neighbors is not 0 then

assign each neighbor a unique suffix
send Hello message with the assigned prefix labels

end if
end if

else
if 1-hop neighborhood has a valid parent then

if lexicographic length of parent label < current label
then

if node-id of self is less than the node-id of parent
then

Elect self as root and send Hello message
else

Wait for Hello message from parent
Change label to prefix label provided in the Hello
message

end if
else

Wait for Hello message from parent
Change label to prefix label provided in the Hello
message

end if
end if

end if

prefix label. Host j in turn provides switch o (connected to
host 13) with the prefix label of switch s.

Several optimizations can be envisioned to improve different
metrics. To improve latency, data packets are be piggy backed
with the requests, or to ensure reliable packet delivery, packets
are routed through the anchor switch at all times. This is so
that if a host were to relocate to another switch, the anchor
would be updated with the switch to which the host is currently
connected. In our implementation, we do both of the above
and further to evaluate the worst case behavior of the protocol
under high traffic loads and also to demonstrate the possibility
of enforcing routing policies, we decided to route packets
through the anchor.

Therefore, in the example, we observe that the piggybacked
data packet with the request is routed from switch j to switch
a (which is the least common ancestor for switches j and s)
and the packet is then routed towards switch s.

1) Routing Optimizations: Optimizing routing paths comes
at the cost of increased local state. To optimize the routing
through the anchor switches, each node maintains additional
state upto 2-hops of the neighborhood. This enable each switch
to discover shorter paths to disjoint labels. Note that unlike
spanning-tree protocols, shortcut paths to destination hosts are
allowed. It is intuitive at this point at increasing local state
and ensuring that the local state stays updated creates the
trade-off between path-stretch and routing table size. While

optimizations are clearly possible, in this paper we focus
on demonstrating a simple design that can scale well in the
number of nodes and upto a certain amount of traffic.

E. Unicast and Multicast Traffic

AIR supports both unicast and multicast traffic. In the case
of multicasting, establishing receiver-initiated multicast trees
is very similar to the manner in which unicast routes are
established. A group-prefix-label is derived from a multicast
group identifier and this serves as the anchor of the multicast
group, which serves the traditional role of the core of a
multicast group. To join a multicast group, a multicast receiver
simply hashes the group identifier and obtains the group-
prefix-label. A join-request is sent towards the node serving
as the anchor of the group. A reverse path is activated as the
join request is forwarded and relaying nodes become a part of
the shared multicast tree for the group.

A multicast source simply sends its multicast data packets
towards the anchor of the target multicast group. These packets
are multicast over the shared multicast tree after they reach the
first node that is already a member of the group. The overhead
of constructing multicast trees is eliminated as the underlying
prefix labeled DAG organizes switches as trees already and
allows automatic routing using prefixes.

F. Aggregation of source traffic

To reduce repeated retransmission of different messages, we
implemented a system of adaptive timers that sent a message
after holding down transmissions for a certain interval. Note
that this is not done for all class of traffic. Once the trans-
mission timeout is triggered, packets are created by draining
different local queues and determining the best next hops for
the transmission of each message.

Messages from different hosts are aggregated and sent out
as a single message. Additionally, messages traveling towards
similar prefixes are grouped together and require fewer mes-
sages.

Fig. 3. Adaptive update timer and Aggregation of host traffic

G. Adaptive update timers

The firing of local update timers triggers a DHT insert. The
timers for this event were typically set to twice the hold down
time of a node. Upon expiry of this timer, the locality of the
node is compared with the snapshot from the start of the hold
down time and if no event that changes the node label occurs
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during this period, then the update message is clamped and
delayed till the end of the next cycle of timeouts.

The DHT entries across the network are evicted based on a
hard state. Freshness of updates is determined with the help of
a sequence numbering scheme and time stamp of packets. This
ensures that the hard state does not suffer from wrap-around
effect of the sequence number.

H. Handling Host Dynamics and Switch Failures

To minimize disruptions to the DAG due to topological
changes we first describe how the substrate offers intrinsic
tolerance to changes. We then show how stronger disruptions
are handled in a systematic fashion with the goal of preventing
a network-wide reset of labels. We resort to a network-wide
reset only when both these schemes fail. From observing the
traffic and topology of real world traces such scenarios are
atypical and account for less than 1% of the changes.

A key point in understanding the fault-tolerant nature of the
design is that, in selecting the underlying structure as a DAG,
we allow existence of multiple paths between nodes within a
single component. This increases the number of back up paths
between any two nodes in the network.

1) Anchor resilience: Assume that some switch with label
kαx is the designated anchor for host y in the network. Host y
pro-actively updates its anchor with the label of the switch that
its currently connected to. If switch kαx fails or is relocated
to different part of the network, or if no switch with such a
label exists, then a switch in some subtree with the maximum
matching prefix is designated as the anchor. Note that this
anchor is logically in the path towards the original anchor.
Should the topology change, and newer switches acquire labels
that match the anchoring label better, then these new switches
become the anchor of some hosts in the network.

To exemplify, if a switch with label kαx were to go down
and the prefix of this label were kα, then the last switch
actively engaged in providing directory service is in the subtree
α. In the worst case scenario this scheme backs up to the
root switch, since no other switch has a closer prefix to the
destination currently being sought.

2) Substrate resilience: If an internal switch were to fail
or relocate, the subtree rooted at that switch does not reset
its labels immediately. Each child of the root of a subtree
determines if other peers can be reached through other paths.
In this event, the peers masquerade a position in the work. This
is akin to the auto-configuration of default gateways, with no
need for manually specifying multiple default gateways should
one fail.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our framework in two different
ways. First, we use our packet-level simulator to replay traces
from the Lawrence Berkeley National Lab [8] campus network
on a real-world topology. Second, we used a hi-fidelity event-
driven packet level network simulator, QualNet-v.4.0 [14]. We
use these two environments to showcase two aspects of our
framework. The packet-level simulator of the traces allows

Algorithm 2 Node Dynamics
if 1-hop neighborhood has changed then

if next hop to root node does not exist then
compute changes in the 2-hop neighbors
if valid paths exist to peer of the next hop to root node
then

assign self as parent of the subtree
else

if timer for relabeling expires then
if next hop to root node has changed then

initiate Relabeling logic
end if

else
wait for Timeout and Check for changes in 1-hop
neighborhood

end if
end if

else
decrement child counter
check if self is a core or an anchor for child

end if
else

wait for topology changes
end if

us to scale up 60,000 nodes and helps us analyze protocol
interactions in a larger-scale. QualNet simulations on the other
hand gives us a more fine grained detail of routing state at each
node and the interactions between data and control.

A. Trace based Evaluation : Setup

We closely followed the simulation setup described in [4]
and obtained fourteen sets of traces, each lasting almost an
hour. A total of 10000 hosts (sources, destinations) were
described in these traffic traces. We further extrapolated the
traffic sources to fit larger topologies by maintaining degree
distributions of flows across the network. We calculate the
control overhead for both AIR and SEATTLE over roughly
70 million end-to-end sessions. To instrument a large scale
topology we chose AS 1239 topology [13] with roughly 700
routers.

In our simulations for the large topology we assume that
hosts are connected to switches and are distributed uniformly
across these switches. We chose this instead, since our interest
was in the behavior of the switches once the hosts are
abstracted away.

We benchmark AIR with SEATTLE in these sets of experi-
ments. We run AIR on the switches, even though hosts can also
run the same protocol with trivial modifications. SEATTLE is
run on the switches as well and while we take into account
the register messages sent by the host, we do not count the
ARP or DHCP requests send out by these hosts.

In addition to simulating the application level traffic and
correspondingly the overhead incurred from those sessions, we
also simulate the underlying link state routing protocol in the
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Fig. 4. Packet level simulation of Real traffic traces (Link State+DHT)

case of SEATTLE. We modeled the link state routing protocol
similar to OLSR [1] in which the link state updates are sent
at regular periodic intervals. Each of these simulations were
run over 10 random seeds to avoid bias arising as an artifact
out of particular topologies.

Both AIR and SEATTLE have an initial setup overhead.
While AIR sets up labels using hello-messages, the link state
routing algorithm underneath SEATTLE converges once every
switch has been added to the topology. Even though the DHT
inserts, for both protocols contribute towards the overhead
we plot them separately. Notice in figure 4(a) the overhead
incurred by the DHT messages is a tiny fraction of the
entire routing overhead. As the network size grows, the DHT
overhead increases very little.

A more interesting observation is that the overhead incurred
from link state routing is higher by at least 1.5 orders of
magnitude. With increasing number of hosts, we can also see
that the link state overhead clearly grows much faster than the
signaling incurred by routing using AIR. As one might guess,
this is primarily owing to repeated link state advertisements
across entire network. We also re-ran the simulations for larger
time out values of the link state (30 minutes), considering
the topologies are fairly static. We see in figure 4(b) that
there is still an order magnitude difference between these two
protocols.

AIR leverages the DHT to route packets as well as perform
location look-ups and this reduces the signaling between
switches. For a 10 times increase in the number of hosts in the
network, we notice that while SEATTLE overhead increases 2
orders in magnitude, AIR increase hardly by a factor of one.
Note that we don’t simulate SEATTLE with cache enabled.
Caching is done typically at the DHT level and therefore
contributes to a reduced overhead in the number of DHT look-
ups. However, we notice from the graphs that the fraction of
DHT message contribution to the overhead is still very small
compared to the contribution of the link state routing.

B. Simulation based Evaluation : Setup

To understand the contribution of the routing protocols to
the local state, we implemented both SEATTLE and AIR in a
discrete event simulator, QualNet-4.0 [14]. We ran two classes
of experiments, one with increasing hosts and the other with
increasing number of active flows. The first scenario character-
izes the scaling properties of the protocol and demonstrates the
growth rate of state and overhead with increasing number of
hosts/switches in the network. The second scenario showcases
the robustness of the protocol to increasing traffic demands
independent of the scale of the topology, providing an insight
into traffic dependent overheads.

In our simulations we built a topology in which the we var-
ied the number of switches from 10 to 100 for the increasing
hosts scenario. For increasing flows, we kept the number of
switches constant at 50 and varied the number of flows from 20
to 100 at intervals of 20 flows per tick. For both scenarios each
switch was connected to 5 hosts on an average. Simulations
were run for a duration of 2 minutes and each flow that was
set up ran on an average for 1 minute. Both switches and hosts
were connected over standard switched Ethernet network. The
flows were setup using constant bit rate generators (CBRs). For
statistical significance of our results, each simulation was run
10 times and the results are presented with a 99% confidence
interval.

Switches were placed in a random graph topology with an
average node degree of 5 and each interface was configured
with an IP address. We used this setup to demonstrate that
AIR could be run on currently existing Ethernet infrastructure.
Also, in addition to SEATTLE, we benchmark our framework
with Switched-Ethernet as well.

1) Routing State: AIR sets up routes between switches
and each switch stores a part of the DHT. In addition to
the DHT, the AIR-switches also maintain a neighbor table to
keep track of the hosts/switches and the interfaces on which
they are connected. In the first scenario, as the number of
hosts increase, we see from Figure 5(b) that the number of
table entries maintained by SEATTLE is almost 1.5 orders
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of magnitude more than AIR. While we know that the DHT
entries at each protocol are roughly the same, the only other
contributor to the overhead is the forwarding table at each
node. We notice that the routing state incurred by Ethernet is
of the order of the number of nodes and SEATTLE incurs a
little more owing to the DHT entries.

The largest contributor to the overhead, hence, is the link-
state routing protocol. Each switch maintains an entry for
every other switch in the entire network. However, since AIR
leverages its own DHT messages and the prefix labels to route,
it does not keep much state locally. The local state is of the
order of the number of neighbors that each node has and an
additional DHT overhead which is a fraction of the number
of hosts (number of hosts/number of switches).

In the varying traffic scenario from figure 6(b), we notice
that while a significant difference exists between the two
protocols, neither of the two grows too rapidly. Reducing
link state overhead however, frees up a significant amount
of bandwidth in the control plane. The freed up bandwidth
is in turn reallocated to the data plane for higher traffic
carrying capacity. Also, in very large networks, the switches
become terribly unresponsive when the number of entires in
the table become large. This has adverse effects on latency and
slows down look ups considerably resulting in poor network
performance.

2) Signaling Overhead: The signaling overhead of AIR
and SEATTLE comprises of two distinct components. The
overhead from the routing protocol and the overhead from
the DHT messages (inserts and lookups). Even though AIR
combines the signaling messages by aggregating different
types of these messages into a single packet, for the sake of
presentation, we count each DHT request/look up as a separate
message.

In figure 5(a), we clearly see the differences in the orders
of magnitude of Ethernet, SEATTLE and AIR . The graph
also shows the corresponding contribution of DHT overhead
of each protocol (excluding Ethernet). The contribution of the
DHT overhead to the total control overhead is remarkably
small. Moreover the DHT based overhead for AIR and SEAT-
TLE are comparable. Clearly the number of messages sent
by the link-state protocol, while being an order of magnitude
less than Ethernet is still worse than what can be achieved by
leveraging the DHT messages for routing. While SEATTLE
can be made at least an order more efficient than Ethernet
by optimizing the link-state flooding in the network, AIR still
manages to do better by 1.5- 2 orders.

In the scenario with increasing flows (Figure 6(a)), we don’t
see much of a difference between increasing flows as most
control overhead is independent of the traffic. Although, one
can imagine that if the network was run at capacity, gains from
clearing the control-plane and consequently providing a larger
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data-plane can be significant. Aggregation of messages also
contributes to the reduction of the number of messages in the
network. We don’t present the additional results owing to a
lack of space.

C. Latency

End-to-End latency was measured as the amount of time it
took for a source to send a packet to the destination, averaged
over all flows during the course of the simulation. We observe
from Figure 5(c) that while AIR performs better than Ethernet,
it is slower than SEATTLE by at least 1.5 orders of magnitude.
A primary reason for this is that while the link-state routing
protocol converges to shortest path routes, routes computed by
AIR have a routing stretch greater than 1.

Additionally, as mentioned before, we selected a simple
routing strategy that involved routing all data packets via the
switch-anchor. Since we continue forwarding traffic through
the switch-anchors post-resolution of the destination’s host
address, data packets continue to travel over longer paths.
Additional state at each node (to include 2-hop) neighbor
information can alleviate this problem by exploiting shortcuts
in the DAG to route to destinations. We look into this as a
part of our ongoing investigation into the development of the
protocol.
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Fig. 7. Routing state at each AIR-switch; 100 switches, 500 hosts, 200 flows

V. FUTURE WORK

AIR incurs an expense of a path stretch greater than one. As
enterprises require guarantees on paths that the packets take it
would be interesting to see if we can achieve bounded stretch.
In this paper, we do the worst case analysis by routing packets
through anchors, but still see a drop in latency as compared
to Ethernet. Solutions to overcome non-optimal stretch has
typically involved increasing the routing state.

In Figure 7, we observe that the distribution of the key space
is not uniform. However, notice that most of the nodes have
total state that lies within the standard deviation and all of
them lie within 2*standard deviation. This means that a few
nodes store more information than the others but the number of
entries that they store is not a lot and decreases with increasing
number of nodes.

VI. CONCLUSIONS

In this paper, we presented a routing framework, that builds
and leverages DHTs in the Ethernet over prefix labels. While
a complete solution that optimizes space, message complexity
and time still escapes us, we strongly believe that DHTs help
reduce overhead in large-scale wired networks. AIR mitigates
the problems of scaling and efficiency in traditional Ethernet,
while getting rid of the complexities of managing an IP net-
work. This is the first approach, to our knowledge, for routing
in local area networks that completely eliminates flooding of
information for host-location resolution. We also show that by
doing away with link state we can still route packets between
end hosts. Our experiments show that AIR routes with 3
orders of magnitude of control overhead lesser than Ethernet
or SEATTLE and scales better than most previous approaches.
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