
Effective Erasure Codes  for Rel iable  C o m p u t e r  

C o m m u n i c a t i o n  Protoco ls  

Luigi  R i z z o  

Dip .  di I n g e g n e r i a  d e l l ' I n f o r m a z i o n e ,  U n i v e r s i t k  di P i s a  

v i a  D i o t i s a l v i  2 - 56126 P i s a  ( I t a l y )  - em a i l :  1 . r ± z z o © ± e t  . u n ± p ± .  i t  

A b s t r a c t  

Reliable communication protocols require that  all the intended recipients of a message re- 

ceive the message intact. Automatic Repeat reQuest (ARQ) techniques are used in unicast 

protocols, but  they do not scale well to multicast protocols with large groups of receivers, 

since segment losses tend to become uncorrelated thus greatly reducing the effectiveness of 

retransmissions. In such cases, Forward Error Correction (FEC) techniques can be used, 

consisting in the transmission of redundant packets (based on error correcting codes) to 

allow the receivers to recover from independent packet losses. 

Despite the widespread use of error correcting codes in many fields of information process- 

ing, and a general consensus on the usefulness of FEC techniques within some of the Internet 

protocols, very few actual implementations exist of the latter. This probably derives from the 

different types of applications, and from concerns related to the complexity of implementing 

such codes in software. To fill this gap, in this paper we provide a very basic description 
of erasure codes, describe an implementation of a simple but very flexible erasure code to 

be used in network protocols, and discuss its performance and possible applications. Our 

code is based on Vandermonde matrices computed over GF(pr), can be implemented very 

efficiently on common microprocessors, and is suited to a number of different applications, 

which are briefly discussed in the paper. An implementation of the erasure code shown in 

this paper is available from the author, and is able to encode/decode data  at speeds up to 

several MB/s  running on a Pentium 133. 

K e y w o r d s :  Reliable multicast, FEC, erasure codes. 

1 I n t r o d u c t i o n  

C o m p u t e r  c o m m u n i c a t i o n s  general ly  require  reliable 1 d a t a  t rans fe rs  a m o n g  the  c o m m u n i c a t i n g  

part ies .  Th is  is usual ly achieved by implement ing  reliabil i ty a t  different  levels in the  p ro toco l  

s tack,  e i ther  on a l ink-by-l ink basis (e.g. a t  the  link layer) ,  or  using end- to -end  pro toco l s  a t  the  

t r a n s p o r t  layer  (such as T C P ) ,  or d i rec t ly  in the  appl ica t ion.  

°The work described in this paper has been supported in part by the Commission of European Communities, 
Esprit Project LTR 20422 - "Moby Dick, The Mobile Digital Companion (MOBYDICK)", and in part by the 
Ministero dell'Universit£ e della Ricerca Scientifica e Tecnologica of Italy. 

1Throughout this paper, with reliable we mean that data must be transferred with no errors and no losses. 
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ARQ (Automatic Repeat reQuest) techniques are generally used in unicast protocols: miss- 

ing packets are retransmitted upon timeouts or explicit requests from the receiver. When 

the bandwidth-delay product approaches the sender's window, ARQ might result in reduced 

throughput .  Also, in multicast communication protocols ARQ might be highly inefficient be- 

cause of uncorrelated losses at different (groups of) receivers. 

In these cases, Forward Error Correction (FEC) techniques, possibly combined with ARQ, 

become useful: the sender prevents losses by transmitt ing some amount  of redundant informa- 

tion, which allow the reconstruction of missing data  at the receiver without further interactions. 

Besides reducing the time needed to recover the missing packets, such an approach generally 

simplifies both the sender and the receiver since it might render a feedback channel unnecessary; 

also, the technique is attractive for multicast applications since different loss patterns can be 

recovered from using the same set of transmitted data. 

FEC techniques are generally based on the use of error detection and correction codes. These 

codes have been studied for a long time and are widely used in many fields of information process- 

ing, particularly in telecommunications systems. In the context of computer  communications, 

error detection is generally provided by the lower protocol layers which use checksums (e.g. 

Cyclic Redundancy Checksums (CRCs)) to discard corrupted packets. Error correcting codes 

are also used in special cases, e.g. in modems, wireless or otherwise noisy links, in order to make 

the residual error rate comparable to that  of dedicated, wired connections. After such link layer 

processing, the upper protocol layers have mainly to deal with erasures,  i.e. missing packets 

in a stream. Erasures originate from uncorrectable errors at the link layer (but those are not 

frequent with properly designed and working hardware), or, more frequently, from congestion in 

the network which causes otherwise valid packets to be dropped due to lack of buffers. Erasures 

are easier to deal with than errors since the exact position of missing data  is known. 

Recently, many applications have been developed which use multicast communication. Some 

of these applications, e.g. audio or videoconferencing tools, tolerate segment losses with a rel- 

atively graceful degradation of performance, since data  blocks are often independent of each 

other and have a limited lifetime. Others, such as electronic whiteboards or diffusion of circular 

information over the network ("electronic newspapers", distribution of software, etc), have in- 

stead more strict requirements and require reliable delivery of all data. Thus, they would greatly 

benefit from an increased reliability in the communication. 

Despite an increased need, and a general consensus on their usefulness [4, 10, 14, 19] there 

are very few Internet protocols which use FEC techniques. This is possibly due to the existence 

of a gap between the telecommunications world, where FEC techniques have been first studied 

and developed, and the computer communications world. In the former, the interest is focused 

on error correcting codes, operating on relatively short strings of bits and implemented on 

dedicated hardware; in the latter, erasure codes are needed, which must be able to operate 

on packet-sized data  objects, and need to be implemented efficiently in software using general- 

purpose processors. 

In this paper we try to fill this gap by providing a basic description of the principles of 

operation of erasure codes, presenting an erasure code which is easy to understand, flexible and 

efficient to implement even on inexpensive architectures, and discussing various issues related 
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to its performance and possible applications. The paper is s t ructured as follows: Section 2 

gives a brief introduction to the principles of operation of erasure codes. Section 3 describes 

our code and discusses some issues related to its implementation on general purpose processors. 

Finally, Section 4 briefly shows a number of possible applications in computer  communicat ion 

protocols, both in unicast and multicast protocols. A portable C implementat ion of the erasure 

code described in this paper is available from the author  [16]. 

2 A n  i n t r o d u c t i o n  t o  e r a s u r e  c o d e s  

In this section we give a brief introduction to the principle of operation of erasure codes. For a 

more in-depth discussion of the problem the interested reader is referred to the copious l i terature 

on the subject  [1, 11, 15, 20]. In this paper we only deal with the so-called linear block codes as 

they are simple and appropriate for the applications of our interest. 

The key idea behind erasure codes is tha t  k blocks of source da ta  are encoded at the sender 

to produce n blocks of encoded data,  in such a way tha t  any subset of k encoded blocks suffices 

to reconstruct  the source data.  Such a code is called an (n, k) code and allows the  receiver 

to recover from up to n - k losses in a group of n encoded blocks. Figure 1 gives a graphical 

representation of the encoding and decoding process. 
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Figure 1: A graphical representation of the encoding/decoding process. 

Within the telecommunications world, a block is usually made of a small number of bits. In 

computer  communications,  the "quantum" of information is generally much larger - one packet 

of data,  often amounting to hundreds or thousands of bits. This changes somewhat  the way an 

erasure code can be implemented. However, in the following discussion we will assume tha t  a 
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block is a single da ta  item which can be operated on with simple ari thmetic operations. Large 

packets can be split into multiple da ta  items, and the encoding/decoding process is applied by 

taking one da ta  item per packet. 

An interesting class of erasure codes is tha t  of linear codes, so called because they can be 

analyzed using the properties of linear algebra. Let x. = Xo . . .Xk_ l  be the source data,  G an 

n x k matrix,  then an (n, k) linear code can be represented by 

y= Gx_ 

for a proper definition of the matr ix G. Assuming tha t  k components of y are available at the 

receiver, source da ta  can be reconstructed by using the k equations corresponding to the known 

components  of y. We call G t the k × k matr ix representing these equations (Figure 2). This of 

course is only possible if these equations are linearly independent, and, in the general case, this 

holds if any k × k matr ix  extracted from G is invertible. 

If the encoded blocks include a verbatim copy of the source blocks, the code is called a 

systematic code. This corresponds to including the identity matr ix Ik in G. The advantage of 

a systematic code is tha t  it simplifies the reconstruction of the source da ta  in case one expects 

very few losses. 

n 

Encoder Decoder 

y G G 

l 0  0 l 0  0 
0 1  0 

0 0  1 0 0  1 

X Y 

n! 
X 

Figure 2: The encoding/decoding process in matr ix form, for a systematic code (the top k rows 

of G consti tute the identity matr ix Ik). y' and G ' correspond to the grey areas of the vector 

and matr ix  on the right. 

2.1 T h e  g e n e r a t o r  m a t r i x  

G is called the generator matrix of the code, because any valid y is a linear combination of 

columns of G. Since G is an n x k matr ix with rank k, any subset of k encoded blocks should 

convey information on all the k source blocks. As a consequence, each column of G can have 
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at most k - 1 zero elements. In the case of a systematic code G contains the identity matr ix  

Ik, which consumes all zero elements. Thus the remaining rows of the matr ix  must  all contain 

non-zero elements. 

Strictly speaking, the reconstruction process needs some additional information - namely, 

the identity of the various blocks - to reconstruct  the source data.  However, this information is 

generally derived by other means and thus might not need to be t ransmit ted  explicitly. Also, 

in the case of computer  communications, this additional information has a negligible size when 

compared to the size of a packet. 

There  is however another  source of overhead which cannot  be neglected, and this is the 

precision used for computat ions.  If each xi is represented using b bits, representing the yi's 

requires more bits if ordinary ari thmetic is used. In fact, if each coefficient gij of G is represented 

on b t bits, the yi's need b+b~+ [log 2 k] bits to be represented without  loss of precision. Tha t  is a 

significant overhead, since those excess bits must be t ransmit ted  to reconstruct  the source data.  

Rounding or t runcat ing the representation of the yi's would prevent a correct reconstruction of 

the source data.  

2 .2  A v o i d i n g  r o u n d i n g s :  c o m p u t a t i o n s  in  f i n i t e  f i e l d s  

Luckily the expansion of da ta  can be overcome by working in a finite field. Roughly speaking, 

a field is a set in which we can add, subtract ,  multiply and divide, in much the same way we 

are used to work on integers (the interested reader is referred to some textbook on algebra [6] 

or coding theory (e.g. [1, Ch.2 and Ch.4]), where a more formal presentation of finite fields is 

provided; a relatively simple-to-follow presentation is also given in [2, Chap.2]). A field is closed 
under addition and multiplication, which means tha t  the result of sums and products of field 

elements are still field elements. A finite field is characterized by having a finite number of 

elements. Most of the properties of linear algebra apply to finite fields as well. 

The main advantage of  using a finite field, for our purposes, lies in the closure property  

which allows us to make exact computat ions on field elements without  requiring more bits to 

represent the results. In order to work on a finite field, we need to map our da ta  elements into 

field elements, operate upon them according to the rules of the field, and then apply the inverse 

mapping to reconstruct  the desired results. 

2.2.1 P r i m e  f ie lds  

Finite fields have been shown to exist with q --= pr elements, where p is a prime number.  Fields 

with p elements, with p prime, are called prime fields or GF(p), where G_b" stands for Galois 

Field. Operat ing in a prime field is relatively simple, since GF(p) is the set of integers from 0 to 

p - 1 under the operations of addition and multiplication modulo p. From the point of view of 

a software implementation,  there are two minor difficulties in using a prime field: first, with the 

exception of p = 2, field elements require [log 2 p] > log 2 p bits to be represented. This causes a 

slight inefficiency in the encoding of data,  and possibly an even larger inefficiency in operat ing 

on these numbers since the operand sizes might not match the word size of the processor. The 

second problem lies in the need of a modulo operation on sums and, especiMly, multiplications. 
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The modulo is an expensive operation since it requires a division. Both problems, though, can 

be minimized if p = 2 m + 1. 

2.2.2 Extens ion  fields 

Fields with q = pr elements, with p prime and r > 1, are called extension fields or GF(pr). 
The sum and product  in extension fields are not done by taking results modulo q. Rather,  field 

elements can be considered as polynomials of degree r - 1 with coefficients in GF(p). The sum 

operation is jus t  the sum between coefficients, modulo p; the product  is the product  between 

polynomials, computed modulo an irreducible polynomial (i.e. one without  divisors in GF(pr)) 
of degree r, and with coefficients reduced modulo p. 

Despite the apparent  complexity, operations on extension fields can become extremely simple 

in the case of p = 2. In this case, elements of GF(2 ~) require exactly r bits to be represented, a 

property which simplifies the handling of data.  Sum and subtract ion become the same operation 

(a bit-by-bit  sum modulo 2), which is simply implemented with an exclusive OR. 

2.2.3 Mult ipl icat ions  and divisions 

An interesting property of prime or extension fields is tha t  there exist at  least one special 

element, usually denoted by a,  whose powers generate all non-zero elements of the field. As an 

example, a generator for GF(5 )  is 2, whose powers (starting from 2 °) are 1, 2, 4, 3, 1, . . . .  Powers 

of a repeat  with a period of length q - 1, hence c~ q-] = a0 = 1. 

This property has a direct consequence on the implementation of multiplication and division. 

In fact, we can express any non-zero field element x as x = ak=. kx can be considered as 

"logarithm" of x, and multiplication and division can be computed using logarithms, as follows: 

xy = o~lkx_bkylq_l ' _1 = ozq_l_kx 
x 

where lalb stands for "a modulo b". If the number of field elements not too large, tables can be 

built off line to provide the "logarithm", the "exponential" and the multiplicative inverse of each 

non-zero field element. In some cases, it can be convenient to provide a table for multiplications 

as well. Using the above techniques, operations in extension fields with p = 2 can be extremely 

fast and simple to implement. 

2.3 D a t a  r e c o v e r y  

Recovery of original da ta  is possible by solving the linear system 

y~ = GIx_ ~ x = C - l y  ~ 

where x_ is the source da ta  and y~ is a subset of k components  of y available at  the receiver. 

Matrix G ~ is the subset  of rows from G corresponding to the components  of y~. 

It is useful to solve the problem in two steps: first G I is inverted, then x_ = G~-ly ~ is computed.  

This is because the cost of matrix inversion can be amortized over all the elements which are 

contained in a packet, becoming negligible in many cases. 
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The inversion of G I can be done with the usual techniques, by replacing division with mul- 

tiplication by the inverse field element. The cost of inversion is O(kl2), where I < rain(k, n - k) 

is the number of da ta  blocks which must be recovered (very small constants  are involved in our 

use of the O 0 notation).  

Reconstruct ing the l missing da ta  blocks has a total  cost of O(Ik) operations. Provided 

sufficient resources, it is not impossible to reconstruct the missing da ta  in constant  time, Mthough 

this would be pointless since just  receiving the da ta  requires O(k) time. Many implementat ions 

of error correcting codes use dedicated hardware (either hardwired, or in the form of a dedicated 

processor) to perform da ta  reconstruction with the required speed. 

3 A n  e r a s u r e  c o d e  b a s e d  o n  V a n d e r m o n d e  m a t r i c e s  

A simple yet effective way to build the generator matrix, G, consists in using coefficients of the 

form 

j -1  gij = xi 

where the xi's are elements of GF(p~). Such matrices are commonly known as Vandermonde 

matrices, and their determinant  is 

1-I 
i,j= l...k,i <j 

If all xi's are different, the matrix has a non-null determinant  and it is invertible. Provided 

q > k and all xi ~ 0, up to q - 1 rows can be constructed,  which satisfy the properties required 

for G. Such matrices can be extended with the identity matrix Ik to obtain a suitable generator  

for a systemat ic  code. 

Note tha t  there are some special cases of the above code which are of trivial implementation.  

As an example, an (n, 1) code simply requires the same da ta  to be re t ransmit ted multiple times, 

hence there is no overhead involved in the encoding. Another simple case is tha t  of a sys temat ic  

(k + 1, k) code, where the only redundant  block is simply the sum (as defined in G F ( p ' ) )  of 

the k source da t a  blocks, i.e. a simple XOR  in case p = 2. Unfortunately,  an (n, 1) code has a 

low rate and is relatively inefficient compared to codes with higher values of k. Conversely, a 

(k + 1, k) code is only useful for small amount  of losses. So, in many cases there is a real need 

for codes with k > 1 and n -  k > 1. 

We have wri t ten a portable  C implementation of the above code [16] to determine its per- 

formance when used within network protocols. Our code supports  p = 2, any r in the range 

2 . . .  16, and arbi t rary packet sizes. The maximum efficiency can be achieved using r - 8, since 

this allows most  operat ions to be executed using table lookups. The generator matr ix has the 

form indicated above, with x~ = a i-1. We can build up to 2 ~ - 1 rows in this way, which makes 

it possible to construct  codes up to n = 2(2 ~ - 1), k = 2 ~ - 1. In our experiments we have used 

a packet size of 1024 bytes. 
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3 .1  P e r f o r m a n c e  

Using a systemat ic  code, the encoder takes groups of k source da ta  blocks to produce n - k 

redundant  blocks. This means that  every source da ta  block is used n - k times, and we can 

expect  the encoding time to be a linear function of n - k. It is probably more practical to 

measure the t ime to produce a single da ta  block, which depends on the single parameter  k. It 

is easy to derive tha t  this time is (for sufficiently large packets) linearly dependent  on k, hence 

we can approximate  it as 

k 
encoding time = - -  

Ce 

where the constant  c~ depends on the speed of the system. The above relation only tells us how 

fast we can build redundant  packets. If we use a systematic code, sending k blocks of source 

da ta  requires the actual computat ion of n - k redundant  blocks. Thus, the actual encoding 

speed becomes 
Ce 

encoding speed - n - k 

Note that  the maximum loss rate tha t  we can sustain is - ~ ,  which means that ,  for a given 

maximum loss rate, the encoding speed also decreases with n. 

Decoding costs depend on l < min(k, n - k), the actual number of missing source blocks. 

Although matrix inversion has a cost O(kl2), this cost is amortized over the size s of a packet; 

we have found that ,  for reasonably sized packets (say above 256 bytes), and k up to 32, the cost 

of matrix inversion becomes negligible compared to the cost of packet reconstruction, which is 

O(lk). Also for the reconstruction process it is more pr~=tical to measure the overall cost per 

reconstructed block, which is similar to the encoding cost. Then, the decoding speed can be 

writ ten as 
Cd 

decoding speed = T 

with the constant  Cd slightly smaller than c~ because of some additional overheads (including 

the already mentioned matrix inversion). 

The accuracy of the above approximations has been tested on our implementation using 

a packet size of 1024 bytes, and different values of k and l = n - k, as shown in Table 1 

(more detailed performance da ta  can be found in [17]). Running times have been determined 

using a Pent ium 133 running FreeBSD, using our code compiled with gcc  -02  and no special 

optimizations. 

These experimental results show that  the approximation is sufficiently accurate. Also, the 

values of ce and Cd are sufficiently high to allow these codes to be used in a wide range of 

applications, depending on the actual values of k and l = n - k. The reader will notice that ,  for 

a given k, larger values of I (which we have set equal to n - k) yield slightly bet ter  performance 

both in encoding and decoding. On the encoder side this is exclusively due to the effect of 

caching: since the same source da ta  are used several times to compute  multiple redundant  blocks, 

successive computat ions  find the operands already in cache hence running slightly faster. For 

the decoder, this derives from the amortization of matrix inversion costs over a larger number 
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Encoding 

k t ime/pkt  ce 

~s MB/s  

8 840 9.53 

8 773 10.34 

16 1553 10.30 

16 1500 10.69 

32 3012 10.62 

32 2967 10.78 

Decoding 

1 t ime/pk t  

#s 

1 1230 

7 871 

2 1996 

14 1754 

4 3623 

28 3533 

Cd 

MB/s  

6.50 

9.19 

8.02 

9.12 

8.83 

9.06 

Table 1: Encoding/decoding times for different values of k and n - k on a Pentium 133 running 

FreeBSD 

of reconstructed blocks 2. 

Note that  in many cases data  exchanged over a network connection are already subject 

to a small number of copies (e.g. from kernel to user space) and accesses to compute check- 

sums. Thus, part  of the overhead for reconstructing missing data  might be amortized by using 

integrated layer processing techniques [3]. 

3 .2  D i s c u s s i o n  

The above results show that  a software implementation of erasure codes is computationally 

expensive, but on today's  machines they can be safely afforded with little overhead for low-to- 

medium speed applications, up to the 100 KB/s  range. This covers a wide range of real-time 

applications including network whiteboards and audio/video conferencing tools, and can even 

be used to support  browsing-type applications. More bandwidth-intensive applications can still 

make good use of software FEC techniques, with a careful tuning of operating parameters 

(specifically, n - k in our discussion) or provided sufficient processing power is available. The 

current trend of increasing processing speeds, and the availability of Symmetric MultiProcessor 

(SMP) desktop computers suggest that ,  as time goes by, there will likely be plenty of processing 

power to support  these computat ions (we have measured values for Cd and ce in the 30MB/s 

range on faster machines based on PentiumPP~O 200 and UltraSparc processors). Finally, note 

that  in many cases both encoding and decoding can be done of[line, so many non-reM-time 

application can use this feature and apply FEC techniques while communicating at much higher 

speeds than their encoding/decoding ability. 

2and a small  overhead existing in our implementa t ion  for non reconst ructed  blocks which are still copied in 

the reconst ruct ion process 
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4 Applications 

Depending on the application, ARQ and FEC can be used separately or together, and in the 

latter case either on different layers or in a combined fashion. In general, there is a tradeoff 

between the improved reliability of FEC-based protocols and their higher computational  costs, 

and this tradeoff often dictates the choice. 

It is beyond the scope of this paper to make an in-depth analysis of the relative advantages 

of FEC, ARQ or combinations thereof. Such studies are present in some papers in the literature 

(see, for example, [7, 12, 21]). In this section we limit our interest to computer networks, and 

present a partial list of applications which could benefit from the use of an encoding technique 

such as the one described in this paper. The bandwidth, reliability and congestion control 

requirements of these applications vary widely. 

Losses in computer  networks mainly depend on congestion, and congestion is the network 

analogue of noise (or interference) in telecommunications systems. Hence, FEC techniques based 

on a redundant  encoding give us similar types of advantages, namely increased resilience to noise 

and interference. Depending on the amount  of redundancy, the residual packet loss rate can be 

made arbitrarily small, to the point that  reliable transfers can be achieved without the need for 

a feedback channel. Or, one might just be interested in a reduction of the residual loss rate, so 

that  performance is generally improved but feedback from the receiver is still needed. 

4 .1  U n i c a s t  a p p l i c a t i o n s  

In unicast applications, reducing the amount of feedback necessary for reliable delivery is gen- 

erally useful to overcome the high delays incurred with ARQ techniques in the presence of long 

delay paths. Also, these techniques can be used in the presence of asymmetrical communication 

links. Two examples are the following: 

• f o r w a r d  e r r o r  r e c o v e r y  on  long de lay  pa th s .  TCP communications over long fat pipes 

suffer badly from random packet losses because of the time needed to get feedback from 

the receiver. Selective acknowledgements [13] can help improve the situation but only 

after the transmit  window has opened wide enough, which is generally not true during 

connection s tar tup and/or  after an even short sequence of lost packets. To overcome this 

problem it might be useful to allocate (possibly adaptively, depending on the actual loss 

rate) a small fraction of the bandwidth to send redundant packets. The sender could 

compute a small number (1-2) of redundant packets on every group of k packets, and 

send these packets at the end of the group. In case of a single or double packet loss the 

receiver could defer the transmission of the dup ack until the expiration of a (possibly 

fast) t imeout 3. If, by that  time, the group is complete and some of the redundant  packets 

are available, then the missing one(s) can be recovered without the need for an explicit 

retransmission (this this would be equivalent to a fast retransmit).  Otherwise, the usual 

congestion avoidance techniques can be adopted. A variant of RFC1323 timestamps[5] 

3alternatively, the sender could delay retransmissions in the hope that the lost packet can be recovered using 
the redundant packets. 
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can be used to assign sequence numbers to packets thus allowing the receiver to determine 

the identity of received packets and perform the reconstruction process (TCP sequence 

numbers are not adequate for the purpose). 

p o w e r  saving in communication with mobile equipment Mobile devices usually 

adopt wireless communication and have a limited power budget. This results in the need 

to reduce the number of transmissions. A redundant encoding of data can practically 

remove the need for acknowledgements while still allowing for reliable communications. As 

an example, a mobile browser can limit its transmissions to requests only, while incoming 

responses need not to be explicitly ACKed (such as it is done currently with HTTP over 

TCP) unless severe losses occur. 

4.2 Mult icas t  applications 

The main field of application of redundant encoding is probably in multicast applications. Here, 

multiple receivers can experience losses on different packets, and insuring reliability via individual 

repairs might become extremely expensive. A second advantage derives from the aforementioned 

reduced need for handling a feedback channel from receivers. Reducing the amount of feedback 

is an extremely useful feature since it allows protocols to scale well to large numbers of receivers. 

Applications not depending on a reliable delivery can still benefit from a redundant en- 

coding, because an improved reliability in the transmission allows for more aggressive coding 

techniques (e.g. compression) which in turn might result in a more effective usage of the available 

bandwidth. 

A list of multicast applications which would benefit from the use of a redundant encoding 

follows. 

• videoconferencing tools. A redundant encoding with small values of k and n - k 

can provide an effective protection against losses in videoconferencing applications. By 

reducing the effective loss rate one can even use a more efficient encoding technique (e.g. 

fewer 'T' frames in MPEG video) which provide a further reduction in the bandwidth. 

The PET [9] group at Berkeley has done something similar for MPEG video. 

• re l iable  mu l t i ca s t  for  g r oupw are .  A redundant encoding can be used to greatly reduce 

the need for retransmissions ("repairs") in applications needing a reliable multicast. One 

such example is given by the "network whiteboard" type of applications, where reliable 

transfer is needed for objects such as Postscript files or compound drawings. 

• one-to-many file t r a n s f e r  on LANs.  Classrooms using workstations often use this 

pattern of access to files, either in the booting process (all nodes download the kernel or 

startup files from a server) or during classes (where students download almost simultane- 

ously the same documents or applications from a centralized server). While these problems 

can be partly overcome by preloading the software, centralized management is much more 

convenient and the use of a multicast-FTP type of application can make the system much 

more scalable. 
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o n e - t o - m a n y  f i le  t r a n s f e r  o n  W i d e  A r e a  Networks .  There are several examples 

of such an application. Some popular Web servers are likely to have many simultaneous 
transfers of the same, large, piece of information (e.g. popular software packages). The 
same applies to, say, a newspaper which is distributed electronically over the network, or 
video-on-demand type of applications. Unlike local area multicast-FTP, receivers connect 

to the server at different times, and have different bandwidths and loss rates, and significant 
congestion control issues exist [8]. By using the encoding presented here, source data can be 

encoded and transmitted with a very large redundancy (n > > k). Using such a technique, 
a receiver basically needs only to collect a sufficient number (k) of packets per block to 

reconstruct the original file. The RMDP protocol [18] has been designed and implemented 

by the author using the above technique. 
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