
Effective Erasure Codes for Rel iable C o m p u t e r

C o m m u n i c a t i o n Protoco ls

Luigi R i z z o

Dip . di I n g e g n e r i a d e l l ' I n f o r m a z i o n e , U n i v e r s i t k di P i s a

v i a D i o t i s a l v i 2 - 56126 P i s a (I t a l y) - em a i l : 1 . r ± z z o © ± e t . u n ± p ± . i t

A b s t r a c t

Reliable communication protocols require that all the intended recipients of a message re-

ceive the message intact. Automatic Repeat reQuest (ARQ) techniques are used in unicast

protocols, but they do not scale well to multicast protocols with large groups of receivers,

since segment losses tend to become uncorrelated thus greatly reducing the effectiveness of

retransmissions. In such cases, Forward Error Correction (FEC) techniques can be used,

consisting in the transmission of redundant packets (based on error correcting codes) to

allow the receivers to recover from independent packet losses.

Despite the widespread use of error correcting codes in many fields of information process-

ing, and a general consensus on the usefulness of FEC techniques within some of the Internet

protocols, very few actual implementations exist of the latter. This probably derives from the

different types of applications, and from concerns related to the complexity of implementing

such codes in software. To fill this gap, in this paper we provide a very basic description
of erasure codes, describe an implementation of a simple but very flexible erasure code to

be used in network protocols, and discuss its performance and possible applications. Our

code is based on Vandermonde matrices computed over GF(pr), can be implemented very

efficiently on common microprocessors, and is suited to a number of different applications,

which are briefly discussed in the paper. An implementation of the erasure code shown in

this paper is available from the author, and is able to encode/decode data at speeds up to

several MB/s running on a Pentium 133.

K e y w o r d s : Reliable multicast, FEC, erasure codes.

1 I n t r o d u c t i o n

C o m p u t e r c o m m u n i c a t i o n s general ly require reliable 1 d a t a t rans fe rs a m o n g the c o m m u n i c a t i n g

part ies . Th is is usual ly achieved by implement ing reliabil i ty a t different levels in the p ro toco l

s tack, e i ther on a l ink-by-l ink basis (e.g. a t the link layer) , or using end- to -end pro toco l s a t the

t r a n s p o r t layer (such as T C P) , or d i rec t ly in the appl ica t ion.

°The work described in this paper has been supported in part by the Commission of European Communities,
Esprit Project LTR 20422 - "Moby Dick, The Mobile Digital Companion (MOBYDICK)", and in part by the
Ministero dell'Universit£ e della Ricerca Scientifica e Tecnologica of Italy.

1Throughout this paper, with reliable we mean that data must be transferred with no errors and no losses.

ACM SIGCOMM 24 Computer Communication Review

ARQ (Automatic Repeat reQuest) techniques are generally used in unicast protocols: miss-

ing packets are retransmitted upon timeouts or explicit requests from the receiver. When

the bandwidth-delay product approaches the sender's window, ARQ might result in reduced

throughput . Also, in multicast communication protocols ARQ might be highly inefficient be-

cause of uncorrelated losses at different (groups of) receivers.

In these cases, Forward Error Correction (FEC) techniques, possibly combined with ARQ,

become useful: the sender prevents losses by transmitt ing some amount of redundant informa-

tion, which allow the reconstruction of missing data at the receiver without further interactions.

Besides reducing the time needed to recover the missing packets, such an approach generally

simplifies both the sender and the receiver since it might render a feedback channel unnecessary;

also, the technique is attractive for multicast applications since different loss patterns can be

recovered from using the same set of transmitted data.

FEC techniques are generally based on the use of error detection and correction codes. These

codes have been studied for a long time and are widely used in many fields of information process-

ing, particularly in telecommunications systems. In the context of computer communications,

error detection is generally provided by the lower protocol layers which use checksums (e.g.

Cyclic Redundancy Checksums (CRCs)) to discard corrupted packets. Error correcting codes

are also used in special cases, e.g. in modems, wireless or otherwise noisy links, in order to make

the residual error rate comparable to that of dedicated, wired connections. After such link layer

processing, the upper protocol layers have mainly to deal with erasures, i.e. missing packets

in a stream. Erasures originate from uncorrectable errors at the link layer (but those are not

frequent with properly designed and working hardware), or, more frequently, from congestion in

the network which causes otherwise valid packets to be dropped due to lack of buffers. Erasures

are easier to deal with than errors since the exact position of missing data is known.

Recently, many applications have been developed which use multicast communication. Some

of these applications, e.g. audio or videoconferencing tools, tolerate segment losses with a rel-

atively graceful degradation of performance, since data blocks are often independent of each

other and have a limited lifetime. Others, such as electronic whiteboards or diffusion of circular

information over the network ("electronic newspapers", distribution of software, etc), have in-

stead more strict requirements and require reliable delivery of all data. Thus, they would greatly

benefit from an increased reliability in the communication.

Despite an increased need, and a general consensus on their usefulness [4, 10, 14, 19] there

are very few Internet protocols which use FEC techniques. This is possibly due to the existence

of a gap between the telecommunications world, where FEC techniques have been first studied

and developed, and the computer communications world. In the former, the interest is focused

on error correcting codes, operating on relatively short strings of bits and implemented on

dedicated hardware; in the latter, erasure codes are needed, which must be able to operate

on packet-sized data objects, and need to be implemented efficiently in software using general-

purpose processors.

In this paper we try to fill this gap by providing a basic description of the principles of

operation of erasure codes, presenting an erasure code which is easy to understand, flexible and

efficient to implement even on inexpensive architectures, and discussing various issues related

ACM SIGCOMM 25 Computer Communication Review

to its performance and possible applications. The paper is s t ructured as follows: Section 2

gives a brief introduction to the principles of operation of erasure codes. Section 3 describes

our code and discusses some issues related to its implementation on general purpose processors.

Finally, Section 4 briefly shows a number of possible applications in computer communicat ion

protocols, both in unicast and multicast protocols. A portable C implementat ion of the erasure

code described in this paper is available from the author [16].

2 A n i n t r o d u c t i o n t o e r a s u r e c o d e s

In this section we give a brief introduction to the principle of operation of erasure codes. For a

more in-depth discussion of the problem the interested reader is referred to the copious l i terature

on the subject [1, 11, 15, 20]. In this paper we only deal with the so-called linear block codes as

they are simple and appropriate for the applications of our interest.

The key idea behind erasure codes is tha t k blocks of source da ta are encoded at the sender

to produce n blocks of encoded data, in such a way tha t any subset of k encoded blocks suffices

to reconstruct the source data. Such a code is called an (n, k) code and allows the receiver

to recover from up to n - k losses in a group of n encoded blocks. Figure 1 gives a graphical

representation of the encoding and decoding process.

e n c o d e d da ta

Encoder

source da ta

received da ta

r e c o n s t r u c t e d
x ~ ~$][b r ~ da ta
x
x

×
x
×

x
v

x
v

x

n k ' >= k

D e c o d e r

J k

Figure 1: A graphical representation of the encoding/decoding process.

Within the telecommunications world, a block is usually made of a small number of bits. In

computer communications, the "quantum" of information is generally much larger - one packet

of data, often amounting to hundreds or thousands of bits. This changes somewhat the way an

erasure code can be implemented. However, in the following discussion we will assume tha t a

ACM SIGCOMM 26 Computer Communication Review

block is a single da ta item which can be operated on with simple ari thmetic operations. Large

packets can be split into multiple da ta items, and the encoding/decoding process is applied by

taking one da ta item per packet.

An interesting class of erasure codes is tha t of linear codes, so called because they can be

analyzed using the properties of linear algebra. Let x. = Xo . . .Xk_ l be the source data, G an

n x k matrix, then an (n, k) linear code can be represented by

y= Gx_

for a proper definition of the matr ix G. Assuming tha t k components of y are available at the

receiver, source da ta can be reconstructed by using the k equations corresponding to the known

components of y. We call G t the k × k matr ix representing these equations (Figure 2). This of

course is only possible if these equations are linearly independent, and, in the general case, this

holds if any k × k matr ix extracted from G is invertible.

If the encoded blocks include a verbatim copy of the source blocks, the code is called a

systematic code. This corresponds to including the identity matr ix Ik in G. The advantage of

a systematic code is tha t it simplifies the reconstruction of the source da ta in case one expects

very few losses.

n

Encoder Decoder

y G G

l 0 0 l 0 0
0 1 0

0 0 1 0 0 1

X Y

n!
X

Figure 2: The encoding/decoding process in matr ix form, for a systematic code (the top k rows

of G consti tute the identity matr ix Ik). y' and G ' correspond to the grey areas of the vector

and matr ix on the right.

2.1 T h e g e n e r a t o r m a t r i x

G is called the generator matrix of the code, because any valid y is a linear combination of

columns of G. Since G is an n x k matr ix with rank k, any subset of k encoded blocks should

convey information on all the k source blocks. As a consequence, each column of G can have

ACM SIGCOMM 27 Computer Communication Review

at most k - 1 zero elements. In the case of a systematic code G contains the identity matr ix

Ik, which consumes all zero elements. Thus the remaining rows of the matr ix must all contain

non-zero elements.

Strictly speaking, the reconstruction process needs some additional information - namely,

the identity of the various blocks - to reconstruct the source data. However, this information is

generally derived by other means and thus might not need to be t ransmit ted explicitly. Also,

in the case of computer communications, this additional information has a negligible size when

compared to the size of a packet.

There is however another source of overhead which cannot be neglected, and this is the

precision used for computat ions. If each xi is represented using b bits, representing the yi's

requires more bits if ordinary ari thmetic is used. In fact, if each coefficient gij of G is represented

on b t bits, the yi's need b+b~+ [log 2 k] bits to be represented without loss of precision. Tha t is a

significant overhead, since those excess bits must be t ransmit ted to reconstruct the source data.

Rounding or t runcat ing the representation of the yi's would prevent a correct reconstruction of

the source data.

2 .2 A v o i d i n g r o u n d i n g s : c o m p u t a t i o n s in f i n i t e f i e l d s

Luckily the expansion of da ta can be overcome by working in a finite field. Roughly speaking,

a field is a set in which we can add, subtract , multiply and divide, in much the same way we

are used to work on integers (the interested reader is referred to some textbook on algebra [6]

or coding theory (e.g. [1, Ch.2 and Ch.4]), where a more formal presentation of finite fields is

provided; a relatively simple-to-follow presentation is also given in [2, Chap.2]). A field is closed
under addition and multiplication, which means tha t the result of sums and products of field

elements are still field elements. A finite field is characterized by having a finite number of

elements. Most of the properties of linear algebra apply to finite fields as well.

The main advantage of using a finite field, for our purposes, lies in the closure property

which allows us to make exact computat ions on field elements without requiring more bits to

represent the results. In order to work on a finite field, we need to map our da ta elements into

field elements, operate upon them according to the rules of the field, and then apply the inverse

mapping to reconstruct the desired results.

2.2.1 P r i m e f ie lds

Finite fields have been shown to exist with q --= pr elements, where p is a prime number. Fields

with p elements, with p prime, are called prime fields or GF(p), where G_b" stands for Galois

Field. Operat ing in a prime field is relatively simple, since GF(p) is the set of integers from 0 to

p - 1 under the operations of addition and multiplication modulo p. From the point of view of

a software implementation, there are two minor difficulties in using a prime field: first, with the

exception of p = 2, field elements require [log 2 p] > log 2 p bits to be represented. This causes a

slight inefficiency in the encoding of data, and possibly an even larger inefficiency in operat ing

on these numbers since the operand sizes might not match the word size of the processor. The

second problem lies in the need of a modulo operation on sums and, especiMly, multiplications.

ACM SIGCOMM 28 Computer Communication Review

The modulo is an expensive operation since it requires a division. Both problems, though, can

be minimized if p = 2 m + 1.

2.2.2 Extens ion fields

Fields with q = pr elements, with p prime and r > 1, are called extension fields or GF(pr).
The sum and product in extension fields are not done by taking results modulo q. Rather, field

elements can be considered as polynomials of degree r - 1 with coefficients in GF(p). The sum

operation is jus t the sum between coefficients, modulo p; the product is the product between

polynomials, computed modulo an irreducible polynomial (i.e. one without divisors in GF(pr))
of degree r, and with coefficients reduced modulo p.

Despite the apparent complexity, operations on extension fields can become extremely simple

in the case of p = 2. In this case, elements of GF(2 ~) require exactly r bits to be represented, a

property which simplifies the handling of data. Sum and subtract ion become the same operation

(a bit-by-bit sum modulo 2), which is simply implemented with an exclusive OR.

2.2.3 Mult ipl icat ions and divisions

An interesting property of prime or extension fields is tha t there exist at least one special

element, usually denoted by a, whose powers generate all non-zero elements of the field. As an

example, a generator for GF(5) is 2, whose powers (starting from 2 °) are 1, 2, 4, 3, 1, Powers

of a repeat with a period of length q - 1, hence c~ q-] = a0 = 1.

This property has a direct consequence on the implementation of multiplication and division.

In fact, we can express any non-zero field element x as x = ak=. kx can be considered as

"logarithm" of x, and multiplication and division can be computed using logarithms, as follows:

xy = o~lkx_bkylq_l ' _1 = ozq_l_kx
x

where lalb stands for "a modulo b". If the number of field elements not too large, tables can be

built off line to provide the "logarithm", the "exponential" and the multiplicative inverse of each

non-zero field element. In some cases, it can be convenient to provide a table for multiplications

as well. Using the above techniques, operations in extension fields with p = 2 can be extremely

fast and simple to implement.

2.3 D a t a r e c o v e r y

Recovery of original da ta is possible by solving the linear system

y~ = GIx_ ~ x = C - l y ~

where x_ is the source da ta and y~ is a subset of k components of y available at the receiver.

Matrix G ~ is the subset of rows from G corresponding to the components of y~.

It is useful to solve the problem in two steps: first G I is inverted, then x_ = G~-ly ~ is computed.

This is because the cost of matrix inversion can be amortized over all the elements which are

contained in a packet, becoming negligible in many cases.

ACM SIGCOMM 29 Computer Communication Review

The inversion of G I can be done with the usual techniques, by replacing division with mul-

tiplication by the inverse field element. The cost of inversion is O(kl2), where I < rain(k, n - k)

is the number of da ta blocks which must be recovered (very small constants are involved in our

use of the O 0 notation).

Reconstruct ing the l missing da ta blocks has a total cost of O(Ik) operations. Provided

sufficient resources, it is not impossible to reconstruct the missing da ta in constant time, Mthough

this would be pointless since just receiving the da ta requires O(k) time. Many implementat ions

of error correcting codes use dedicated hardware (either hardwired, or in the form of a dedicated

processor) to perform da ta reconstruction with the required speed.

3 A n e r a s u r e c o d e b a s e d o n V a n d e r m o n d e m a t r i c e s

A simple yet effective way to build the generator matrix, G, consists in using coefficients of the

form

j -1 gij = xi

where the xi's are elements of GF(p~). Such matrices are commonly known as Vandermonde

matrices, and their determinant is

1-I
i,j= l...k,i <j

If all xi's are different, the matrix has a non-null determinant and it is invertible. Provided

q > k and all xi ~ 0, up to q - 1 rows can be constructed, which satisfy the properties required

for G. Such matrices can be extended with the identity matrix Ik to obtain a suitable generator

for a systemat ic code.

Note tha t there are some special cases of the above code which are of trivial implementation.

As an example, an (n, 1) code simply requires the same da ta to be re t ransmit ted multiple times,

hence there is no overhead involved in the encoding. Another simple case is tha t of a sys temat ic

(k + 1, k) code, where the only redundant block is simply the sum (as defined in G F (p ')) of

the k source da t a blocks, i.e. a simple XOR in case p = 2. Unfortunately, an (n, 1) code has a

low rate and is relatively inefficient compared to codes with higher values of k. Conversely, a

(k + 1, k) code is only useful for small amount of losses. So, in many cases there is a real need

for codes with k > 1 and n - k > 1.

We have wri t ten a portable C implementation of the above code [16] to determine its per-

formance when used within network protocols. Our code supports p = 2, any r in the range

2 . . . 16, and arbi t rary packet sizes. The maximum efficiency can be achieved using r - 8, since

this allows most operat ions to be executed using table lookups. The generator matr ix has the

form indicated above, with x~ = a i-1. We can build up to 2 ~ - 1 rows in this way, which makes

it possible to construct codes up to n = 2(2 ~ - 1), k = 2 ~ - 1. In our experiments we have used

a packet size of 1024 bytes.

ACM SIGCOMM 30 Computer Communication Review

3 .1 P e r f o r m a n c e

Using a systemat ic code, the encoder takes groups of k source da ta blocks to produce n - k

redundant blocks. This means that every source da ta block is used n - k times, and we can

expect the encoding time to be a linear function of n - k. It is probably more practical to

measure the t ime to produce a single da ta block, which depends on the single parameter k. It

is easy to derive tha t this time is (for sufficiently large packets) linearly dependent on k, hence

we can approximate it as

k
encoding time = - -

Ce

where the constant c~ depends on the speed of the system. The above relation only tells us how

fast we can build redundant packets. If we use a systematic code, sending k blocks of source

da ta requires the actual computat ion of n - k redundant blocks. Thus, the actual encoding

speed becomes
Ce

encoding speed - n - k

Note that the maximum loss rate tha t we can sustain is - ~ , which means that , for a given

maximum loss rate, the encoding speed also decreases with n.

Decoding costs depend on l < min(k, n - k), the actual number of missing source blocks.

Although matrix inversion has a cost O(kl2), this cost is amortized over the size s of a packet;

we have found that , for reasonably sized packets (say above 256 bytes), and k up to 32, the cost

of matrix inversion becomes negligible compared to the cost of packet reconstruction, which is

O(lk). Also for the reconstruction process it is more pr~=tical to measure the overall cost per

reconstructed block, which is similar to the encoding cost. Then, the decoding speed can be

writ ten as
Cd

decoding speed = T

with the constant Cd slightly smaller than c~ because of some additional overheads (including

the already mentioned matrix inversion).

The accuracy of the above approximations has been tested on our implementation using

a packet size of 1024 bytes, and different values of k and l = n - k, as shown in Table 1

(more detailed performance da ta can be found in [17]). Running times have been determined

using a Pent ium 133 running FreeBSD, using our code compiled with gcc -02 and no special

optimizations.

These experimental results show that the approximation is sufficiently accurate. Also, the

values of ce and Cd are sufficiently high to allow these codes to be used in a wide range of

applications, depending on the actual values of k and l = n - k. The reader will notice that , for

a given k, larger values of I (which we have set equal to n - k) yield slightly bet ter performance

both in encoding and decoding. On the encoder side this is exclusively due to the effect of

caching: since the same source da ta are used several times to compute multiple redundant blocks,

successive computat ions find the operands already in cache hence running slightly faster. For

the decoder, this derives from the amortization of matrix inversion costs over a larger number

ACM SIGCOMM 31 Computer Communication Review

Encoding

k t ime/pkt ce

~s MB/s

8 840 9.53

8 773 10.34

16 1553 10.30

16 1500 10.69

32 3012 10.62

32 2967 10.78

Decoding

1 t ime/pk t

#s

1 1230

7 871

2 1996

14 1754

4 3623

28 3533

Cd

MB/s

6.50

9.19

8.02

9.12

8.83

9.06

Table 1: Encoding/decoding times for different values of k and n - k on a Pentium 133 running

FreeBSD

of reconstructed blocks 2.

Note that in many cases data exchanged over a network connection are already subject

to a small number of copies (e.g. from kernel to user space) and accesses to compute check-

sums. Thus, part of the overhead for reconstructing missing data might be amortized by using

integrated layer processing techniques [3].

3 .2 D i s c u s s i o n

The above results show that a software implementation of erasure codes is computationally

expensive, but on today's machines they can be safely afforded with little overhead for low-to-

medium speed applications, up to the 100 KB/s range. This covers a wide range of real-time

applications including network whiteboards and audio/video conferencing tools, and can even

be used to support browsing-type applications. More bandwidth-intensive applications can still

make good use of software FEC techniques, with a careful tuning of operating parameters

(specifically, n - k in our discussion) or provided sufficient processing power is available. The

current trend of increasing processing speeds, and the availability of Symmetric MultiProcessor

(SMP) desktop computers suggest that , as time goes by, there will likely be plenty of processing

power to support these computat ions (we have measured values for Cd and ce in the 30MB/s

range on faster machines based on PentiumPP~O 200 and UltraSparc processors). Finally, note

that in many cases both encoding and decoding can be done of[line, so many non-reM-time

application can use this feature and apply FEC techniques while communicating at much higher

speeds than their encoding/decoding ability.

2and a small overhead existing in our implementa t ion for non reconst ructed blocks which are still copied in

the reconst ruct ion process

ACM SIGCOMM 32 Computer Communication Review

4 Applications

Depending on the application, ARQ and FEC can be used separately or together, and in the

latter case either on different layers or in a combined fashion. In general, there is a tradeoff

between the improved reliability of FEC-based protocols and their higher computational costs,

and this tradeoff often dictates the choice.

It is beyond the scope of this paper to make an in-depth analysis of the relative advantages

of FEC, ARQ or combinations thereof. Such studies are present in some papers in the literature

(see, for example, [7, 12, 21]). In this section we limit our interest to computer networks, and

present a partial list of applications which could benefit from the use of an encoding technique

such as the one described in this paper. The bandwidth, reliability and congestion control

requirements of these applications vary widely.

Losses in computer networks mainly depend on congestion, and congestion is the network

analogue of noise (or interference) in telecommunications systems. Hence, FEC techniques based

on a redundant encoding give us similar types of advantages, namely increased resilience to noise

and interference. Depending on the amount of redundancy, the residual packet loss rate can be

made arbitrarily small, to the point that reliable transfers can be achieved without the need for

a feedback channel. Or, one might just be interested in a reduction of the residual loss rate, so

that performance is generally improved but feedback from the receiver is still needed.

4 .1 U n i c a s t a p p l i c a t i o n s

In unicast applications, reducing the amount of feedback necessary for reliable delivery is gen-

erally useful to overcome the high delays incurred with ARQ techniques in the presence of long

delay paths. Also, these techniques can be used in the presence of asymmetrical communication

links. Two examples are the following:

• f o r w a r d e r r o r r e c o v e r y on long de lay pa th s . TCP communications over long fat pipes

suffer badly from random packet losses because of the time needed to get feedback from

the receiver. Selective acknowledgements [13] can help improve the situation but only

after the transmit window has opened wide enough, which is generally not true during

connection s tar tup and/or after an even short sequence of lost packets. To overcome this

problem it might be useful to allocate (possibly adaptively, depending on the actual loss

rate) a small fraction of the bandwidth to send redundant packets. The sender could

compute a small number (1-2) of redundant packets on every group of k packets, and

send these packets at the end of the group. In case of a single or double packet loss the

receiver could defer the transmission of the dup ack until the expiration of a (possibly

fast) t imeout 3. If, by that time, the group is complete and some of the redundant packets

are available, then the missing one(s) can be recovered without the need for an explicit

retransmission (this this would be equivalent to a fast retransmit). Otherwise, the usual

congestion avoidance techniques can be adopted. A variant of RFC1323 timestamps[5]

3alternatively, the sender could delay retransmissions in the hope that the lost packet can be recovered using
the redundant packets.

ACM SIGCOMM 33 Computer Communication Review

can be used to assign sequence numbers to packets thus allowing the receiver to determine

the identity of received packets and perform the reconstruction process (TCP sequence

numbers are not adequate for the purpose).

p o w e r saving in communication with mobile equipment Mobile devices usually

adopt wireless communication and have a limited power budget. This results in the need

to reduce the number of transmissions. A redundant encoding of data can practically

remove the need for acknowledgements while still allowing for reliable communications. As

an example, a mobile browser can limit its transmissions to requests only, while incoming

responses need not to be explicitly ACKed (such as it is done currently with HTTP over

TCP) unless severe losses occur.

4.2 Mult icas t applications

The main field of application of redundant encoding is probably in multicast applications. Here,

multiple receivers can experience losses on different packets, and insuring reliability via individual

repairs might become extremely expensive. A second advantage derives from the aforementioned

reduced need for handling a feedback channel from receivers. Reducing the amount of feedback

is an extremely useful feature since it allows protocols to scale well to large numbers of receivers.

Applications not depending on a reliable delivery can still benefit from a redundant en-

coding, because an improved reliability in the transmission allows for more aggressive coding

techniques (e.g. compression) which in turn might result in a more effective usage of the available

bandwidth.

A list of multicast applications which would benefit from the use of a redundant encoding

follows.

• videoconferencing tools. A redundant encoding with small values of k and n - k

can provide an effective protection against losses in videoconferencing applications. By

reducing the effective loss rate one can even use a more efficient encoding technique (e.g.

fewer 'T' frames in MPEG video) which provide a further reduction in the bandwidth.

The PET [9] group at Berkeley has done something similar for MPEG video.

• re l iable mu l t i ca s t for g r oupw are . A redundant encoding can be used to greatly reduce

the need for retransmissions ("repairs") in applications needing a reliable multicast. One

such example is given by the "network whiteboard" type of applications, where reliable

transfer is needed for objects such as Postscript files or compound drawings.

• one-to-many file t r a n s f e r on LANs. Classrooms using workstations often use this

pattern of access to files, either in the booting process (all nodes download the kernel or

startup files from a server) or during classes (where students download almost simultane-

ously the same documents or applications from a centralized server). While these problems

can be partly overcome by preloading the software, centralized management is much more

convenient and the use of a multicast-FTP type of application can make the system much

more scalable.

ACM SIGCOMM 34 Computer Communication Review

o n e - t o - m a n y f i le t r a n s f e r o n W i d e A r e a Networks . There are several examples

of such an application. Some popular Web servers are likely to have many simultaneous
transfers of the same, large, piece of information (e.g. popular software packages). The
same applies to, say, a newspaper which is distributed electronically over the network, or
video-on-demand type of applications. Unlike local area multicast-FTP, receivers connect

to the server at different times, and have different bandwidths and loss rates, and significant
congestion control issues exist [8]. By using the encoding presented here, source data can be

encoded and transmitted with a very large redundancy (n > > k). Using such a technique,
a receiver basically needs only to collect a sufficient number (k) of packets per block to

reconstruct the original file. The RMDP protocol [18] has been designed and implemented

by the author using the above technique.

5 Acknowledgements

The author wishes to thank Phil Karn for discussions which led to the development of the code
described in this paper, and an anonymous referee for comments on an early version of this

paper.

References

Ill R.E.Blahut, "Theory and Practice of Error Control Codes" Addison Wesley, MA, 1984

[2] R.E. Blahut, "Fast Algorithms for Digital Signal Processing", Addison Wesley, 1987

[3] D.Clark, D.Tennenhouse, "Architectural Considerations for a New Generation of Proto-

cols", ACM SIGCOMM'90, Sept. 1990, Philadelphia, pp.200-208.

[4] C.Huitema, "The Case for packet level FEC", Proc. 5th Workshop on Protocols for High

Speed Networks, pp.109-120, Sophia Antipolis, France, Oct.1996.

[5] V. Jacobson, R. Braden, D. Borman, "RFC1323: TCP Extensions for High Performance",

May 1992

[6] S.Lang, "Algebra", Addison-Wesley, 1984

[7] H.Liu, M. E1 Zarki, "Delay Bounded Type-II Hybrid ARQ for Video Transmission over

Wireless Networks", Proc. Conference on Information Sciences and Systems, Princeton,
NJ, March 1996

[8] S. McCanne, V. Jacobson, and M. Vetterli, "Receiver-driven Layered Multicast", ACM

SIGCOMM'96, August 1996, Stanford, CA, pp.l-14.
Available as f t p : / / f t p . e e . l b l . gov/papers/mccanne-sigcomm96 .ps. gz

[9] A.Albanese, J.Bloemer, J.Edmonds, M.Luby, M.Sudan, "Priority Encoding Transmission",
35th Annual Symposium on Foundations of Computer Science, IEEE Computer Science

Press, 1994.

ACM SIGCOMM 35 Computer Communication Review

[10] A. McAuley, "Reliable Broadband Communication Using A Burst Erasure Correcting
Code", Proc. SIGCOMM '90.

[11] S.Lin, D.J.Costello, "Error Control Coding: Fundamentals and Applications", Prentice
Hall, 1983.

[12] S.Lin, D.J.Costello, M.Miller, "Automatic-repeat-request error-control schemes", IEEE
Comm. Magazine, v.22,n.12, pp.5-17, Dec.1984

[13] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, "RFC2018: TCP Selective Acknowledge-
ment Option", Oct.1996.

[14] Jorg Nonnenmacher, E.W.Biersack, "Reliable Multicast: Where to use Forward Error Cor-
rection", Proc. 5th Workshop on Protocols for High Speed Networks, pp.134-148, Sophia
Antipolis, France, Oct.1996.
Available as http ://www. eurecom, fr/'nonnen/mypages/FECgain .ps. gz

[15] V. Pless, "Introduction to Error-Correcting Codes", 2nd ed., Wiley, 1989.

[16] L.Rizzo, Sources for an erasure code based on Vandermonde matrices.
Available at h~tp ://www. let. unipi, it/'luigi/vdm, tgz

[17] L.Rizzo, "On the feasibility of software FEC", DEIT Technical Report LR-970131. Available

as http ://www. let .unipi. it/'luigi/softfec .ps

[18] L.Rizzo, L.Vicisano, "A Reliable Multicast data Distribution Protocol based

on software FEC techniques", DEIT Technical Report LR-970116. Available as

http ://www. let. unipi, it/-luigi/rmdp, ps

[19] N.Shacham, P.McKenney, "Packet recovery in high-speed networks using coding and buffer
management", Proc. IEEE Infocom'90, San Francisco, CA, pp.124-131, May 1990.

[20] J.H. van Lint, "Introduction to Coding Theory", 2nd ed., Springer-Verlag, 1992.

[21] Y. Wang, S.Lin, "A modified selective-repeat type-II hybrid ARQ system and its perfor-
mance analysis", IEEE Trans. Comm. v.COM-31, n.5, pp.593-608, May 1983

ACM SIGCOMM 36 Computer Communication Review

