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ABSTRACT
To achieve security in wireless sensor networks, it is important to
be able to encrypt and authenticate messages sent among sensor
nodes. Keys for encryption and authentication purposes must be
agreed upon by communicating nodes. Due to resource constraints,
achieving such key agreement in wireless sensor networks is non-
trivial. Many key agreement schemes used in general networks,
such as Diffie-Hellman and public-key based schemes, are not suit-
able for wireless sensor networks. Pre-distribution of secret keys
for all pairs of nodes is not viable due to the large amount of mem-
ory used when the network size is large. To solve the key pre-
distribution problem, two elegant key pre-distribution approaches
have been proposed recently [11, 7].

In this paper, we propose a new key pre-distribution scheme,
which substantially improves the resilience of the network com-
pared to the existing schemes. Our scheme exhibits a nice thresh-
old property: when the number of compromised nodes is less than
the threshold, the probability that any nodes other than these com-
promised nodes is affected is close to zero. This desirable property
lowers the initial payoff of smaller scale network breaches to an
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adversary, and makes it necessary for the adversary to attack a sig-
nificant proportion of the network. We also present an in depth
analysis of our scheme in terms of network resilience and associ-
ated overhead.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication

General Terms
Security, Design, Algorithms

Keywords
Wireless sensor networks, key pre-distribution, security

1. INTRODUCTION
Recent advances in electronic and computer technologies have

paved the way for the proliferation of wireless sensor networks
(WSN). Sensor networks usually consist of a large number of ultra-
small autonomous devices. Each device, called a sensor node, is
battery powered and equipped with integrated sensors, data pro-
cessing capabilities, and short-range radio communications. In typ-
ical application scenarios, sensor nodes are spread randomly over
the terrain under scrutiny and collect sensor data. Examples of sen-
sor network projects include SmartDust [12] and WINS [1].

Sensor networks are being deployed for a wide variety of appli-
cations [2], including military sensing and tracking, environment
monitoring, patient monitoring and tracking, smart environments,
etc. When sensor networks are deployed in a hostile environment,
security becomes extremely important, as they are prone to dif-
ferent types of malicious attacks. For example, an adversary can
easily listen to the traffic, impersonate one of the network nodes,
or intentionally provide misleading information to other nodes. To
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provide security, communication should be encrypted and authen-
ticated. The open problem is how to bootstrap secure communica-
tions between sensor nodes, i.e. how to set up secret keys between
communicating nodes?

This problem is known as thekey agreement problem, which
has been widely studied in general network environments. There
are three types of general key agreement schemes: trusted-server
scheme, self-enforcing scheme, and key pre-distribution scheme.
Thetrusted-server scheme depends on a trusted server for key agree-
ment between nodes, e.g., Kerberos [15]. This type of scheme is
not suitable for sensor networks because there is no trusted infras-
tructure in sensor networks. Theself-enforcing scheme depends on
asymmetric cryptography, such as key agreement using public key
certificates. However, limited computation and energy resources
of sensor nodes often make it undesirable to use public key algo-
rithms, such as Diffie-Hellman key agreement [8] or RSA [18], as
pointed out in [16]. The third type of key agreement scheme is
key pre-distribution, where key information is distributed among
all sensor nodes prior to deployment. If we know which nodes
will be in the same neighborhood before deployment, keys can be
decideda priori. However, most sensor network deployments are
random; thus, sucha priori knowledge does not exist.

There exist a number of key pre-distribution schemes which do
not rely ona priori deployment knowledge. A naive solution is
to let all the nodes carry amaster secret key. Any pair of nodes
can use this global master secret key to achieve key agreement and
obtain a new pairwise key. This scheme does not exhibit desirable
network resilience: if one node is compromised, the security of the
entire sensor network will be compromised. Some existing studies
suggest storing the master key in tamper-resistant hardware to re-
duce the risk, but this increases the cost and energy consumption of
each sensor. Furthermore, tamper-resistant hardware might not al-
ways be safe [3]. Another key pre-distribution scheme is to let each
sensor carryN − 1 secret pairwise keys, each of which is known
only to this sensor and one of the otherN − 1 sensors (assuming
N is the total number of sensors). The resilience of this scheme
is perfect because a compromised node does not affect the secu-
rity of other nodes; however, this scheme is impractical for sensors
with an extremely limited amount of memory becauseN could be
large. Moreover, adding new nodes to a pre-existing sensor net-
work is difficult because the existing nodes do not have the new
nodes’ keys.

Very recently Eschenauer and Gligor proposed a random key
pre-distribution scheme: before deployment, each sensor node re-
ceives a random subset of keys from a large key pool; to agree on
a key for communication, two nodes find one common key within
their subsets and use that key as their shared secret key [11]. Based
on this scheme, Chan, Perrig, and Song proposed aq-composite
random key pre-distribution scheme, which increases the security
of key setup such that an attacker has to compromise many more
nodes to achieve a high probability of compromising communica-
tion [7]. The difference between theq-composite scheme and the
scheme in [11] is thatq common keys (q ≥ 1), instead of just a sin-
gle one, are needed to establish secure communication between a
pair of nodes. It is shown that by increasing the value ofq network
resilience against node capture is improved [7].

1.1 Main Contributions of Our Scheme
In this paper, we propose a new key pre-distribution scheme. The

main contributions of this paper are as follows:

1. Substantially improved network resilience against node cap-
ture over existing schemes.

2. Pairwise keys that enable authentication.

3. Thorough theoretical analysis of security, and communica-
tion and computation overhead analysis.

Our scheme builds on Blom’s key pre-distribution scheme [4]
and combines the random key pre-distribution method with it. Our
results show that the resilience of our scheme is substantially better
than Blom’s scheme as well as other random key pre-distribution
schemes. In [4], Blom proposed a key pre-distribution scheme that
allowsany pair of nodes to find a secret pairwise key between them.
Compared to the(N − 1)-pairwise-key pre-distribution scheme,
Blom’s scheme only usesλ+1 memory spaces withλ much smaller
than N . The tradeoff is that, unlike the(N − 1)-pairwise-key
scheme, Blom’s scheme is not perfectly resilient against node cap-
ture. Instead it has the followingλ-secure property:as long as an
adversary compromises less than or equal to λ nodes, uncompro-
mised nodes are perfectly secure; when an adversary compromises
more than λ nodes, all pairwise keys of the entire network are com-
promised.

The thresholdλ can be treated as a security parameter in that se-
lection of a largerλ leads to a more secure network. This threshold
property of Blom’s scheme is a desirable feature because an adver-
sary needs to attack a significant fraction of the network in order
to achieve high payoff. However,λ also determines the amount of
memory to store key information, as increasingλ leads to higher
memory usage.The goal of our scheme is to increase network’s
resilience against node capture without using more memory.

Blom’s scheme usesone key space for all nodes to make sure that
any pair can compute its pairwise key in this key space. Motivated
by the random key pre-distribution schemes presented in [11, 7], we
propose a new scheme usingmultiple key spaces: we first construct
ω spaces using Blom’s scheme, and each sensor node carries key
information fromτ (2 ≤ τ < ω) randomly selected key spaces.
According to Blom’s scheme, if two nodes carry key information
from a common space, they can compute their pairwise key from
the information; when two nodes do not carry key information from
a common space, they can conduct key agreement via other nodes
which share pairwise keys with them. Our analysis has shown that
using the same amount of memory, our new scheme is substantially
more resilient than Blom’s scheme and other key pre-distribution
schemes.

To further improve the resilience, we also develop a two-hop-
neighbor key pre-distribution scheme. The idea is to let the direct
neighbor forward the message from a sender, such that nodes that
are two hops away from the sender can also receive the message.
The nodes that are two hops away are known as two-hop neighbors.
Treating two-hop neighbors as “direct” neighbors, the number of
neighbors of each sender increases fourfold. The consequence is
that the resilience threshold can be improved as well. Our results
show that under certain conditions, the threshold can be improved
to four times as much as that of our first scheme.

The rest of the paper is organized as follows. Section 2 describes
how our building block, the original Blom’s method, works. Then
we describe our key pre-distribution scheme in Section 3. Section
4 shows the resilience of our scheme against node capture. It also
compares our scheme with existing key pre-distribution schemes.
Section 5 presents the communication and computation overheads
of our scheme. Section 6 describes our two-hop-neighbor key pre-
distribution scheme. Finally, we provide some concluding remarks
in Section 7.

1.2 Other Related Work
The Eschenauer-Gligor scheme [11] and the Chan-Perrig-Song
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scheme [7] have been reviewed earlier in this section. Detailed
comparisons with these two schemes will be given in Section 4.
Some other related work is discussed next.

Du et al. proposed a method to improve the Eschenauer-Gligor
scheme usinga priori deployment knowledge [9]. This method can
also be used to further improve other random key pre-distribution
schemes, such as the Chan-Perrig-Song scheme and the scheme
presented in this paper.

Blundo et al. proposed several schemes which allow any group
of t parties to compute a common key while being secure against
collusion between some of them [5]. These schemes focus on sav-
ing communication costs while memory constraints are not placed
on group members. Whent = 2, one of these schemes is actu-
ally a special case of Blom’s scheme [4]. A modified version of
Blom’s scheme will be reviewed in Section 2. Compared to Blom’s
scheme, our scheme is more resilient and more memory-efficient.

Perrig et al. proposed SPINS, a security architecture specifically
designed for sensor networks [16]. In SPINS, each sensor node
shares a secret key with the base station. Two sensor nodes can-
not directly establish a secret key. However, they can use the base
station as a trusted third party to set up the secret key.

2. BACKGROUND: BLOM’S KEY
PRE-DISTRIBUTION SCHEME

Blom proposed a key pre-distribution method that allows any
pair of nodes in a network to be able to find a pairwise secret
key [4]. As long as no more thanλ nodes are compromised, the net-
work is perfectly secure (this is called theλ-secure property). We
briefly describe how Blom’sλ-secure key pre-distribution system
works. Blom’s scheme is not developed for sensor networks, so in
the following description, we have made some slight modifications
to the original scheme to make it suitable for sensor networks.

During the pre-deployment phase, the base station first constructs
a (λ + 1) × N matrixG over a finite fieldGF (q), whereN is the
size of the network.G is considered as public information; any sen-
sor can know the contents ofG, and even adversaries are allowed to
knowG. Then the base station creates a random(λ +1)× (λ +1)
symmetric matrixD overGF (q), and computes anN × (λ + 1)
matrix A = (D · G)T , where(D · G)T is the transpose ofD · G.
Matrix D needs to be kept secret, and should not be disclosed to ad-
versaries or any sensor node (although, as will be discussed later,
one row of(D · G)T will be disclosed to each sensor node). Be-
causeD is symmetric, it is easy to see:

A · G = (D · G)T · G = GT · DT · G = GT · D · G
= (A · G)T .

This means thatA·G is a symmetric matrix. If we letK = A·G,
we know thatKij = Kji, whereKij is the element inK located
in theith row andjth column. We useKij (or Kji) as the pairwise
key between nodei and nodej. Fig. 1 illustrates how the pairwise
key Kij = Kji is generated. To carry out the above computation,
nodesi andj should be able to computeKij andKji, respectively.
This can be easily achieved using the following key pre-distribution
scheme, fork = 1, . . . , N :

1. store thekth row of matrixA at nodek, and

2. store thekth column of matrixG at nodek.1

Therefore, when nodesi andj need to find the pairwise key be-
tween them, they first exchange their columns ofG, and then they
1We will show later that each sensor does not need to store the
whole column, because each column can be generated from a seed.

can computeKij andKji, respectively, using their private rows of
A. BecauseG is public information, its columns can be transmit-
ted in plaintext. It has been proved in [4] that the above scheme is
λ-secure if anyλ + 1 columns ofG are linearly independent. This
λ-secure property guarantees that no nodes other thani andj can
computeKij or Kji if no more thanλ nodes are compromised.

An Example of Matrix G

We show an example of matrixG. Note that anyλ + 1 columns
of G must be linearly independent in order to achieve theλ-secure
property. Since each pairwise key is represented by an element in
the finite fieldGF (q), if the length of pairwise keys is 64 bits, then
we should chooseq as the smallest prime number2 that is larger
than264. Let s be a primitive element ofGF (q) andN < q. That
is, each nonzero element inGF (q) can be represented by some
power ofs, namelysi for some0 < i ≤ q − 1. A feasibleG can
be designed as follows [13]:

G =















1 1 1 · · · 1
s s2 s3 · · · sN

s2 (s2)2 (s3)2 · · · (sN )2

...
sλ (s2)λ (s3)λ · · · (sN )λ















It is well-known thatsi 6= sj if i 6= j (this is a property of
primitive elements). SinceG is a Vandermonde matrix, it can be
shown that anyλ + 1 columns ofG are linearly independent when
s, s2, s3, . . . , sN are all distinct [13]. In practice,G can be gen-
erated by the primitive elements of GF (q). Therefore, when we
store thekth column ofG at nodek, we only need to store the seed
sk at this node, and any node can regenerate the column given the
seed. The issue of memory usage and computational complexity
will be discussed later in the paper.

3. MULTIPLE-SPACE KEY
PRE-DISTRIBUTION SCHEME

To achieve better resilience against node capture, we propose
a new key pre-distribution scheme that uses Blom’s method as a
building block. Our idea is based on the following observations:
Blom’s method guarantees that any pair of nodes can find a secret
key between themselves. To represent this we use concepts from
graph theory and draw an edge between two nodes if and only if
they can find a secret key between themselves. We will get acom-
plete graph (i.e., an edge exists between all node pairs). Although
full connectivity is desirable, it is not necessary. To achieve our
goal of key agreement, all we need is aconnected graph, rather than
a complete graph. Our hypothesis is thatby requiring the graph to
be only connected, each sensor node needs to carry less key infor-
mation.

Before we describe our proposed scheme, we define akey space (or
space in short) as a tuple (D, G), where matricesD andG are as
defined in Blom’s scheme. We say a node picks a key space (D, G)
if the node carries the secret information generated from (D, G)
using Blom’s scheme. Two nodes can calculate their pairwise key
if they have picked a common key space.

2Whenq is a prime, all elements inGF (q) can be represented by
the nonnegative integers less thanq. The addition and multipli-
cation inGF (q) are ordinary integer additions and multiplication
moduloq. For example, if we want to multiply two elements in
GF (q), first we multiply them as ordinary integers and then carry
out the moduloq operation.
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Figure 1: Generating Keys in Blom’s Scheme

3.1 Key Pre-distribution Phase
During the key pre-distribution phase, we need to assign key in-

formation to each node, such that after deployment, neighboring
sensor nodes can find a secret key between them. Assume that
each sensor node has a unique identification, whose range is from
1 to N . We also select the security parametersτ, ω, andλ, where
2 ≤ τ < ω. These parameters decide the security and performance
of our scheme, and will be discussed later in the paper. Our key
pre-distribution phase contains the following steps:

Step 1 (GeneratingG matrix): We first select a primitive element
from a finite fieldGF (q), whereq is the smallest prime larger than
the key size, to create a generator matrixG of size(λ+1)×N . Let
G(j) represent thejth column ofG. We provideG(j) to nodej.
As we have already shown in Section 2, althoughG(j) consists of
(λ+1) elements, each sensor only needs to remember one seed (the
second element of the column), which can be used to regenerate
all the elements inG(j). Therefore the memory usage for storing
G(j) at a node is just a single element. Since the seed is unique for
each sensor node, it can also be used for node id.

Step 2 (GeneratingD matrix): We generateω symmetric matri-
cesD1,. . ., Dω of size (λ + 1) × (λ + 1). We call each tuple
Si = (Di, G), i = 1, . . . , ω, a key space. We then compute the
matrixAi = (Di · G)T . Let Ai(j) represent thejth row ofAi.

Step 3 (Selectingτ spaces): We randomly selectτ distinct key
spaces from theω key spaces for each node. For each spaceSi

selected by nodej, we store thejth row of Ai (i.e. Ai(j)) at this
node. This information is secret and should stay within the node;
under no circumstance should a node send this secret information
to any other node. According to Blom’s scheme, two nodes can
find a common secret key if they have both picked a common key
space.

SinceAi is anN × (λ + 1) matrix, Ai(j) consists of(λ + 1)
elements. Therefore, each node needs to store(λ+1)τ elements in
its memory. Because the length of each element is the same as the
length of secret keys, the memory usage of each node is(λ + 1)τ
times the length of the key.

3.2 Key Agreement Phase
After deployment, each node needs to discover whether it shares

any space with its neighbors. To do this, each node broadcasts a
message containing the following information: (1) the node’s id,
(2) the indices of the spaces it carries,3 and (3) the seed of the
column of G it carries.4

Assume that nodesi andj are neighbors, and they have received

3If we are concerned about disclosing the indices of the spaces each
node carries, we can use the challenge-response technique to avoid
sending the indices [7].
4We could also let node id be the same as the seed.

the above broadcast messages. If they find out that they have a
common space, e.g.Sc, they can compute their pairwise secret
key using Blom’s scheme: Initially nodei hasAc(i) and seed for
G(i), and nodej hasAc(j) and seed forG(j). After exchanging
the seeds, nodei can regenerateG(j) and nodej can regenerate
G(i); then the pairwise secret key between nodesi andj, Kij =
Kji, can be computed in the following manner by these two nodes
independently:

Kij = Kji = Ac(i) · G(j) = Ac(j) · G(i).

After secret keys with neighbors are set up, the entire sensor net-
work forms the followingKey-Sharing Graph:

DEFINITION 3.1. (Key-Sharing Graph) Let V represent all the
nodes in the sensor network. A Key-Sharing graph Gks(V, E) is
constructed in the following manner: For any two nodes i and j in
V , there exists an edge between them if and only if (1) nodes i and
j have at least one common key space, and (2) nodes i and j can
reach each other within the wireless transmission range.

We now show how two neighboring nodes,i andj, who do not
share a common key space could still come up with a pairwise se-
cret key between them. The idea is to use the secure channels that
have already been established in the key-sharing graphGks: as
long asGks is connected, two neighboring nodesi andj can al-
ways find a path inGks from i to j. Assume that the path isi, v1,
. . ., vt, j. To find a common secret key betweeni and j, i first
generates a random keyK. Theni sends the key tov1 using the se-
cure link betweeni andv1; v1 sends the key tov2 using the secure
link betweenv1 andv2, and so on untilj receives the key fromvt.
Nodesi andj use this secret keyK as their pairwise key. Because
the key is always forwarded over a secure link, no nodes beyond
this path can find out the key.

3.3 Computingω, τ , and Memory Usage
As we have just shown, to make it possible for any pair of nodes

to be able to find a secret key between them, the key sharing graph
Gks(V, E) needs to beconnected. Given the size and the density
of a network, how can we select the values forω andτ , s.t., the
graphGks is connected with high probability? We use the follow-
ing three-step approach, which is adapted from [11].

Step 1: Computing Required Local Connectivity. Let Pc be
the probability that the key-sharing graph is connected. We call it
global connectivity. We uselocal connectivity to refer to the proba-
bility of two neighboring nodes sharing at least one space (i.e. they
can find a common key between them). The global connectivity
and the local connectivity are related: to achieve a desired global
connectivityPc, the local connectivity must be higher than a certain
value; we call this value therequired local connectivity, denoted by
prequired.
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Using connectivity theory in a random-graph by Erdős and Ŕenyi
[10], we can obtain the necessary expected node degreed (i.e., the
average number of edges connected to each node) for a network of
sizeN whenN is large in order to achieve a given global connec-
tivity, Pc:

d =
(N − 1)

N
[ln(N) − ln(− ln(Pc))] . (1)

For a given density of sensor network deployment, letn be the
expected number of neighbors within wireless communication range
of a node. Since the expected node degree must be at leastd as
calculated above, the required local connectivityprequired can be
estimated as:

prequired =
d

n
. (2)

Step 2: Computing Actual Local Connectivity. After we have
selected values forω andτ , the actual local connectivity is deter-
mined by these values. We usepactual to represent the actual local
connectivity, namelypactual is the actual probability of any two
neighboring nodes sharing at least one space (i.e. they can find a
common key between them). Sincepactual = 1−Pr(two nodes do
not share any space),

pactual = 1 −
(

ω

τ

)(

ω−τ

τ

)

(

ω

τ

)2 = 1 − ((ω − τ)!)2

(ω − 2τ)!ω!
. (3)

The values ofpactual have been plotted in Fig. 2 whenω varies
from τ to 100 andτ = 2, 4, 6, 8. For example, one can see that,
whenτ = 4, the largestω that we can choose while achieving the
local connectivitypactual ≥ 0.5 is 25.
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Figure 2: Probability of sharing at least one key when two
nodes each randomly choosesτ spaces fromω spaces.

The collection of sets of spaces assigned to each sensor form a
probabilistic quorum system [14]: the desire is that every two sen-
sors have a space in common with high probability. Furthermore, it

can be shown that ifτ ≥
√

ln 1
1−pactual

√
ω, then the probability

of intersection is at leastpactual; this has the similar property to the
birthday paradox. For example, whenτ ≥

√
ln 2

√
ω, the probabil-

ity of intersection is at least1/2. This can explain the behavior of
Fig. 2.

Step 3: Computing ω and τ . Knowing the required local con-
nectivityprequired and the actual local connectivitypactual, in or-

der to achieve the desired global connectivityPc, we should have
pactual ≥ prequired,

1 − ((ω − τ)!)2

(ω − 2τ)!ω!
≥ (N − 1)

nN
[ln(N) − ln(− ln(Pc))] . (4)

Therefore, in order to achieve a certainPc for a network of size
N and the expected number of neighbors for each node beingn,
we just need to find values ofω andτ , such that Inequality (4) is
satisfied.

Step 4: Computing memory usage.According to Blom’s scheme,
a node needs to store a row from anN × (λ + 1) matrix (D ·G)T ;
therefore, for each selected space, a node needs to carryλ + 1
elements; Hence the total memory usagem for each node is:

m = (λ + 1)τ. (5)

4. SECURITY ANALYSIS
We evaluate the multiple-space key pre-distribution scheme in

terms of its resilience against node capture. Our evaluation is based
on two metrics: (1) Whenx nodes are captured, what is the proba-
bility that at least one key space is broken? As we know, because of
theλ-secure property of our scheme, to break a key space, an adver-
sary needs to captureλ+1 nodes that contain this key space’s infor-
mation; otherwise, the key space is still perfectly secure. This anal-
ysis shows when the network starts to become insecure. (2) When
x nodes are captured, what fraction of the additional communica-
tion (i.e. communication among uncaptured nodes) also becomes
compromised? This analysis shows how much payoff an adversary
can gain after capturing a certain number of nodes.

4.1 Probability of At Least One Space Being
Broken

We define the unit of memory size as the size of a secret key (e.g.
64 bits). According to Blom’s scheme, if a space isλ-secure, each
node needs to use memory of sizeλ + 1 to store the space infor-
mation. Therefore, if the memory usage ism and each node needs
to carryτ spaces, then the value ofλ should be⌊m

τ
⌋ − 1. In the

following analysis, we chooseλ = ⌊m
τ
⌋ − 1.

Let Si be the event that spaceSi is broken, wherei = 1, . . . , ω,
andCx be the event thatx nodes are compromised in the network.
Furthermore, letSi ∪ Sj be the joint event that either spaceSi or
spaceSj , or both, is broken andθ = τ

ω
. Hence, we have

Pr(at least one space is broken| Cx) = Pr(S1∪S2∪· · ·∪Sω | Cx).

According to the Union Bound,

Pr(S1 ∪ · · · ∪ Sω | Cx) ≤
ω
∑

i=1

Pr(Si | Cx).

Due to the fact that each key space is broken with equal probability,
ω
∑

i=1

Pr(Si | Cx) = ω Pr(S1 | Cx).

Therefore,

Pr(at least one space is broken| Cx)

≤
ω
∑

i=1

Pr(Si | Cx) = ω Pr(S1 | Cx). (6)

We now need to calculatePr(S1 | Cx), the probability of space
S1 being compromised whenx nodes are compromised. Because

5



each node carries information fromτ spaces, the probability that
each compromised node carries information aboutS1 is θ = τ

ω
.

Therefore, afterx nodes are compromised, the probability that ex-
actlyj of thesex nodes contain information aboutS1 is

(

x

j

)

θj(1−
θ)x−j . Since spaceS1 can only be broken after at leastλ+1 nodes
are compromised, we have the following result:

Pr(S1 | Cx) =

x
∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j . (7)

Combining Inequality (6) and Equation (7), we have the follow-
ing upper bound:

Pr(at least one space is broken| Cx)

≤ ω
x
∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j

= ω
x
∑

j=λ+1

(

x

j

)

( τ

ω

)j (

1 − τ

ω

)x−j

. (8)
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Figure 3: The probability of at least one key space being com-
promised by the adversary when the adversary has capturedx
nodes (m = 200, ω = 50). p in the figure representspactual.

We plot both simulation and analytical results in Fig. 3. From the
figure, the two results match each other closely, meaning that the
union bound works quite well in the scenarios we discuss. Fig. 3
shows, for example, when the memory usage is set to 200,ω is
set to 50, andτ is set to 4, the value ofλ for each space is49 =
⌊ 200

4
⌋ − 1, but an adversary needs to capture about 380 nodes in

order to be able to break at least one key space with non-negligible
probability.

Authentication Property
Due to the property of Blom’s scheme, all keys generated in a space
are pairwise keys. Therefore, when the space is not yet compro-
mised, keys in this space can be used for authentication purposes.
After the space is broken, adversaries can generate all the pairwise
keys in that space, and keys in that space can no longer be used
for authentication purposes. According to our analysis, adversaries
need to compromise a significant number of nodes in order to com-
promise a space.

4.2 The Fraction of Network Communications
that is Compromised

To understand the resilience of our key pre-distribution scheme,
we need to find out how the capture ofx sensor nodes by an ad-
versary affects the rest of the network. In particular, we want to
find out the fraction of additional communications (i.e., commu-
nications among uncaptured nodes) that an adversary can compro-
mise based on the information retrieved from thex captured nodes.
To compute this fraction, we first compute the probability that any
one of the additional communication links is compromised afterx
nodes are captured. Note that we only consider the links in the
key-sharing graph, and each of these links is secured using a pair-
wise key computed from the common key space shared by the two
nodes of this link. We should also notice that after the key setup
stage, two neighboring nodes can use the established secure links
to agree upon another random key to secure their communication.
Because this key is not generated from any key space, the security
of this new random key does not directly depend on whether the
key spaces are broken. However, if an adversary can record all the
communications during the key setup stage, he/she can still com-
promise this new key after compromising the corresponding links
in the key-sharing graph.

Let c be a link in the key-sharing graph between two nodes that
are not compromised, andK be the communication key used for
this link. LetBi represent the joint event thatK belongs to space
Si and spaceSi is compromised. We useK ∈ Si to represent that
“K belongs to spaceSi”. The probability ofc being broken given
x nodes are compromised is:

Pr(c is broken| Cx) = Pr(B1 ∪ B2 ∪ · · · ∪ Bω | Cx).

Sincec can only use one key, eventsB1, . . . ,Bω are mutually ex-
clusive. Therefore,

Pr(c is broken| Cx) =
ω
∑

i=1

Pr(Bi | Cx) = ω Pr(B1 | Cx),

because all eventsBi are equally likely. Note that

Pr(B1 | Cx) =
Pr((K ∈ S1) ∩ (S1 is compromised)∩ Cx)

Pr(Cx)
.

Since the event(K ∈ S1) is independent of the eventCx or the
event (S1 is compromised),

Pr(B1 | Cx) =
Pr(K ∈ S1) · Pr(S1 is compromised∩ Cx)

Pr(Cx)

= Pr(K ∈ S1) · Pr(S1 is compromised| Cx).

Pr(S1 is compromised| Cx) can be calculated by Equation (7).
The probability thatK belongs to spaceS1 is the probability that
link c uses a key from spaceS1. Since the choice of a space from
ω key spaces is equally probable, we have:

Pr(K ∈ S1) = Pr(the link c uses a key from spaceS1) =
1

ω
.

Therefore,

Pr(c is broken| Cx)

= ω Pr(B1 | Cx) = ω · 1

ω
· Pr(S1 is compromised| Cx)

= Pr(S1 is compromised| Cx)

=
x
∑

j=λ+1

(

x

j

)

( τ

ω

)j (

1 − τ

ω

)x−j

. (9)
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Assume that there areγ secure communication links that do not
involve any of thex compromised nodes. Given the probability
Pr(c is broken| Cx), we know that the expected fraction of broken
communication links among thoseγ links is

γ · Pr(c is broken| Cx)

γ

= Pr(c is broken| Cx)

= Pr(S1 is compromised| Cx). (10)

The above equation indicates that, given thatx nodes are com-
promised, the fraction of the compromised secure communication
links outside of thosex compromised nodes is the same as the prob-
ability of one space being compromised. This can be explained
quite intuitively. Since spaces are selected in an equally likely fash-
ion during the key pre-distribution process, afterx nodes are com-
promised, the expected number of spaces that are compromised
is aboutω Pr(S1 is compromised| Cx). Therefore, the fraction
of the spaces that are compromised isPr(S1 is compromised|
Cx). Because keys from different spaces are evenly selected by
the communication links, the fraction of communication links com-
promised should be the same as the fraction of the spaces compro-
mised. Therefore, the fraction of the spaces compromised is also
Pr(S1 is compromised| Cx).

4.2.1 Comparison
Fig. 4 shows the comparison of our scheme (the one with solid

lines) with the Chan-Perrig-Song scheme (q = 2, q = 3) and
the Eschenauer-Gligor scheme (q = 1). The figure clearly shows
the advantage of our scheme. For example, when the memory us-
agem is the same (m = 200), andpactual = 0.33, with both
Chan-Perrig-Song and Eschenauer-Gligor schemes, an adversary
only needs to compromise less than 100 nodes in order to compro-
mise10% of the rest of the secure links, whereas in our scheme,
the adversary needs to compromise500 nodes. Therefore, our
scheme quite substantially lowers the initial payoff to the adver-
sary of smaller scale network breaches. Chan, Perrig, and Song
also proposed a modification of their scheme using multipath key
reinforcement to improve the security [7]. The same technique can
also be applied to our scheme to improve the security of our scheme
as well; we leave further comparison to our future work.

Regarding the original Blom’s scheme, becausem = 200, the
network is perfectly secure if less than200 nodes are compromised;
the network is completely compromised when200 nodes are com-
promised (pactual is always equal to1 in Blom’s scheme).

4.2.2 Further Analysis
Even though Equation (9) can be used for numerical computa-

tion, it is too complicated to figure out the relationship betweenx,
m, ω, andτ . According to the results shown in Fig. 4, there is
a small range ofx where the fraction of the compromised secure
communication links increases exponentially with respect tox. We
develop an analytical form to estimate this range. It should be noted
that Equation (9) is the tail of the binomial distribution. Therefore,
using the bound on the tail of the binomial distribution [17], we can
derive the following fact regarding that range. The proof of this fact
can be found in the extended version of this paper.

Assume thatλ = m
τ

≫ 1, s.t. λ + 1 ≈ λ. Define the entropy
function ofy, 0 ≤ y ≤ 1, asH(y) = −y ln y − (1− y) ln(1− y)
andH ′(y) = dH(y)/dy. For allx ≥ λ + 1,

1

2
√

xα(1 − α)
e−xE(α,θ) ≤

x
∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j ,

whereα = λ+1
x

, θ = τ
ω

, andE(α, θ) = H(θ) + (α− θ)H ′(θ)−
H(α). Furthermore, if

x <
mω

τ2
, (11)

then
x
∑

j=λ+1

(

x

j

)

θj(1 − θ)x−j ≤ e−xE(α,θ).

According to [17],E(α, θ) < 0 when x > mω

τ2 . So, when
x > mω

τ2 , the lower bound indicates that the tail of the binomial
distribution increases exponentially with respect tox. It is also true
that E(α, θ) > 0 when Inequality (11) is satisfied [17]. The up-
per bound indicates that the tail of the binomial distribution can
be exponentially bounded away from1 when x is not close to
mω

τ2 . For example, assume thatx is 25% away from mω

τ2 , i.e.,
x = 0.75 ∗ mω

τ2 = 413, wherem = 200, τ = 2, andω = 11,
the upper bound ise−5.089 = 0.006 which is two orders of magni-
tude smaller than1. Hence,mω

τ2 can be used as an estimation (upper
bound) of the value ofx where the fraction of the compromised se-
cure communication links increases exponentially with respect to
x. So the adversary can obtain higher payoff when the number of
nodes it compromises reaches within the neighborhood ofmω

τ2 . The
results shown in Fig. 4 verify that this estimation is quite accurate.

Based on the above discussions, the number of nodes an adver-
sary needs to compromise to gain a significant payoff is linearly
related to the amount of the memory used whenω andτ are fixed.
That is, if the probability of any two nodes sharing at least one
space,pactual, is fixed, increasing the memory space at each node
linearly increases the degree of security. For fixed memory usage,
the security is linearly related toω

τ2 . Sinceω and τ are related
to pactual, one should choose those values ofω andτ that satisfy
the requirement on global connectivity and at the same time yield
largest value ofω

τ2 . For example, by using Inequality (4), one may
find all the pairs of(ω, τ) that satisfy the requirement of the global
connectivity. Among all the pairs, the one with the largest value of
ω

τ2 gives the best security strength.

5. OVERHEAD ANALYSIS

5.1 Communication Overhead
According to our previous discussions onpactual, the probabil-

ity that two neighbor nodes share a key space is less than 1. When
two neighboring nodes are not connected directly, they need to find
a route, in the key sharing sense, to connect to each other. We in-
vestigate the number of hops required on this route under various
conditions for our scheme in this section. When the two neighbors
are connected directly, the number of hops needed to connect them
is obviously 1. When more hops are needed to connect two neigh-
bor nodes, the communication overhead of setting up the security
association between them is higher.

Let ph(ℓ) be the probability that the smallest number of hops
needed to connect two neighboring nodes isℓ. Obviously,ph(1)
is pactual. We present the results ofph(2) andph(3) as follows,
while leaving the details of the calculation to the extended version
of this paper:

ph(2) = (1 − pactual)

·







1 − 2

∫ 1

0

yp
n
π

[

2cos−1( y
2
)−y·

√

1−( y
2
)2
]

2,2 dy






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Figure 4: The figures show the probability that a specific random communication link between two random nodesi, j can be
decrypted by the adversary when the adversary has captured some set ofx nodes that does not includei or j. m is the memory
usage (m multiplied by the key length is the total amount of memory used for storing keys or key information), pactual is the
probability of any two neighbors being able to set up a secure link.

ph(3) ≈ [1 − ph(1) − ph(2)]

[

1 − 2

∫ 1

0

z

· (p̃3,2)

∫

2π
0

∫

1

0

n2

π2

[

2cos−1( x
2
)−x

√

1−( x
2
)2
]

dydθ
dz

]

where

p2,2 = 1 −
(

ω−τ

τ

) [(

ω

τ

)

− 2
(

ω−τ

τ

)

+
(

ω−2τ

τ

)]

(

ω

τ

)2

p̃3,2 ≈ 1 −
(

ω−τ

τ

)

(

ω

τ

)3 ·
τ−1
∑

a=1

τ−1
∑

b=1

τ−max(a,b)
∑

c=1

(

τ

a

)(

τ

b

)(

ω − 2τ

c

)

·
(

ω − 2τ − c

τ − a − c

)(

ω − 2τ − (τ − a)

τ − b − c

)

x =
√

y2 + z2 + 2yz cos(θ).

We present the values ofph(1), ph(2), andph(3) in Fig. 5. From
these figures, we can observe thatph(1) and ph(2) add up to 1
whenτ is large. So the communication overhead is limited to 2
hops whenτ is large; whenn = 40 andpactual > 0.3, the over-
head is bounded by 3 hops (recall thatn is the expected number of
neighbors within wireless communication range of a node).

5.2 Computational Overhead
As indicated in Section 2, it is necessary for nodes to calculate

the common keys by using the corresponding columns of matrix
G. If the Vandermonde matrix is chosen to be theG matrix, the
dominating computation cost in our scheme is due to2λ modular
multiplications:λ − 1 come from the need to regenerate the corre-
sponding column ofG from a seed, the otherλ + 1 come from the
inner product of the corresponding row of(DG)T with this col-
umn ofG. For example, to regenerate the first column ofG, which
consists of1, s, s2, . . ., sλ, a node needs to computes2, . . ., sλ;
the total number of modular multiplications isλ − 1.

To analyze the computational overhead of these2λ modular mul-

tiplications, we compare our computation with theRSA public key
encryption algorithm, whose cost corresponding to modular multi-
plications makes it unsuitable for sensor networks. We want to
show that the energy consumption of the modular multiplications
in our scheme is far less than that of RSA. This is due to two fac-
tors:λ is small and the block size is small.

According to Equation (5), whenm = 200 and τ = 4, λ is
about50; the total number of multiplications is100. If we choose
64 bits as the size of a secret key, then our modular multiplica-
tions are 64-bit computations. Therefore we need100 64-bit mod-
ular multiplications. Compared to RSA, this is a very small num-
ber. In RSA signature signing scheme, the length for the expo-
nent usually needs to be more than 1024 bits long, so the expo-
nentiation requires at least 1024 multiplications. Moreover, using a
1024-bit exponent, RSA needs to be conducted in blocks that are at
least 1024 bits long; a single modular multiplication on a 1024-bit
block is ( 1024

64
)2 = 256 times more expensive than a multiplica-

tion on a 64-bit block. Therefore, in total RSA scheme is about
256 ∗ 1024

100
= 2621 times more expensive than the multiplications

in our scheme. Assuming that the energy cost is proportional to
the cost of multiplications, the cost of our scheme is about1

2621
of the cost of RSA. According to the data presented by Carman,
Kruus, and Matt [6], in a mid-range processor, such as the Mo-
torola MC68328 “DragonBall”, the cost of multiplications in our
scheme is about 25 times more expensive than in an 128-bit AES
encryption (AES is considered as very energy-efficient), i.e. the
computation cost of our scheme is equivalent to encrypting a 3200-
bit long message using AES.

Since the computation overhead occurs only once for each neigh-
boring pair that has a common key space, the cost is not signifi-
cant. Moreover, we can choose a largerτ to further lower the cost.
However, our results show that increasingτ value may degrade
the resilience of the network even though the connectivity is still
the same. More analysis regarding this will be given in our future
work.

8



2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=40

τ

P
ro

ba
bi

lit
y 

of
 H

op
s

p
h
(1)

p
h
(2)

p
h
(3)

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=70

τ

P
ro

ba
bi

lit
y 

of
 H

op
s

p
h
(1)

p
h
(2)

p
h
(3)

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=100

τ

P
ro

ba
bi

lit
y 

of
 H

op
s

p
h
(1)

p
h
(2)

p
h
(3)

Figure 5: Communication Overhead Analysis (ω = 50)

6. IMPROVING SECURITY USING TWO-
HOP NEIGHBORS

In this section we describe a way to further improve the security
of our key pre-distribution scheme. Based on Inequality (4), we
have

1 − (1 − τ

ω
)(1 − τ

ω − 1
) · · · (1 − τ

ω − τ + 1
)

≥ (N − 1)

nN
(ln(N) − ln(− ln(Pc))). (12)

Notice that the left side is smaller whenω is larger, and the right
side is smaller whenn is larger when other parameters are fixed.
Therefore, when the network sizeN , the global connectivityPc,
andτ are fixed, we can select a largerω if the expected number
of neighborsn increases while still satisfying the above inequal-
ity. We know immediately from Inequality (11) that the larger the
value ofω is, the more resilient the network will be. Therefore,
increasingn can lead to security improvement.

There are two ways to increasen for an existing sensor network:
the first is to increase the communication range, but this also in-
creases energy consumption. The second way is to use two-hop
neighbors. A two-hop neighbor of nodev is a node that can be
reached via one ofv’s one-hop (or direct) neighbors. To send a
message to a two-hop neighbor,v needs to ask its direct neigh-
bor to forward the message. Since the intermediate node only for-
wards the message and does not need to read the contents of the
message, there is no need to establish a secure channel between
the sender and the intermediate node, or between the intermediate
node and the two-hop neighbor. As long as the sender and its two-
hop neighbor can establish a secure channel, the communication
between them will be secured.

If two nodes,i andj, are two-hop neighbors and both of them
carry key information from a common key space, they can find a
secret key between themselves using the following approach: First,
they find an intermediate nodeI that is a neighbor to both of them.
Nodesi andj then exchange their identities and public part of key
space information viaI. Then,i andj find a common key space,
and compute their secret key in that common key space.i andj can
then encrypt any future communication between themselves using
this secret key. Although all future communication still needs to go
through an intermediate node, e.g.,I, the intermediate node cannot
decrypt the message because it does not have the key.

After all direct neighbors and two-hop neighbors have estab-
lished secure channels among themselves, the entire network forms
an Extended Key-Sharing Graph Geks, in which two nodes are
connected by an edge if there is a secure channel between them,
i.e. these two nodes (1) have at least one common key space, and
(2) are either direct neighbors or two-hop neighbors. Once we have
formed theGeks, key agreement between any pair of two neigh-

boring nodesi andj can be performed based onGeks in the same
way as it is performed based on the original Key-Sharing Graph
Gks. The difference between this scheme and theGks-based key
agreement scheme is that in theGeks-based key agreement scheme,
some edges along a secure path might be an edge between two-hop
neighbors, thus forwarding is needed.

6.1 Security Improvement
Security can be improved significantly if key agreement is based

on Geks. When we treat a two-hop neighbor as a neighbor, the ra-
dius of the range covered by a node doubles, so the area that a node
can cover is increased by four times. Therefore, the expected num-
ber of neighborsn′ for each node inGeks is about four times as
large as that inGks. According to Equations (1) and (2), to achieve
the same connectivityPc as that ofGks, the value ofprequired for
Geks is one fourth of the value ofprequired for Gks. Thus, the
value ofpactual for Geks is one fourth of the value ofpactual for
Gks. As we have already shown, whenτ is fixed, the larger the
value ofω is, the smaller the value ofpactual is. For example, as-
suming a network sizeN = 10, 000 and the desirable connectivity
Pc = 0.99999, if we fix τ = 2, we need to selectω = 7 for
theGks-based key agreement scheme; however, usingGeks-based
scheme, we can selectω = 31. The security of the latter scheme
is improved significantly. By using Equation (11), there is about
31/7(≈ 4.5) times security improvement of the two-hop-neighbor
scheme over the basic 1-hop-neighbor scheme. Using Equation (9),
we plot the security property of the above two cases in Fig. 6.
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6.2 Overhead Analysis
Such security improvement does come with a cost. If the length

(the total number of edges) of a path between two nodes inGeks

is ℓ, the actual number of hops along this path is larger thanℓ be-
cause some edges inGeks connect two two-hop neighbors. For
each node, the number of two-hop neighbors on the average is three
times the number of one-hop neighbors if nodes are uniformly dis-
tributed. Therefore, assuming that the probability of selecting a
two-hop edge and a one-hop edge is the same, for a path of length
ℓ, the expected actual length is3

4
∗ 2ℓ + 1

4
∗ ℓ = 1.75ℓ (note: in

practice, we can achieve better than1.75ℓ because we usually pre-
fer the one-hop edge if both a one-hop edge and a two-hop edge are
candidates for a secure path). Letp′

h(ℓ) be theph(ℓ) value of the
two-hop-neighbor scheme and letp′′

h(ℓ) be theph(ℓ) value of the
basic scheme (only using direct neighbors); assume the maximum
length of the shortest path between two neighbors isL. Therefore,
the ratio between the overhead of the two-hop-neighbor scheme
and that of the basic scheme can be estimated using the following
formula:

Relative Overhead=
p′

h(1) +
∑L

ℓ=2 1.75ℓ · p′

h(ℓ)
∑L

ℓ=1 ℓ · p′′

h(ℓ)
, (13)

where we do not need to multiply first term with1.75 since if two
neighbors share a common key, then the length of path between
them is 1 and is never a two-hop edge. For example, the overhead
ratio of the two schemes used in Fig. 6 is3.18, namely with3.18
times more overhead, the resilience can be improved by4 times.
The communication cost discussed here occurs only during the key
setup phase, so it is a one-time cost. The idea of two-hop neighbors
can be extended to multi-hop neighbors, and the security can be
further improved.

7. CONCLUSIONS
We have presented a new pairwise key pre-distribution scheme

for wireless sensor networks. Our scheme has a number of ap-
pealing properties. First, our scheme is scalable and flexible. For
a network that uses 64-bit secret keys, our scheme allows up to
N = 264 sensor nodes. These nodes do not need to be deployed
at the same time; they can be added later, and still be able to estab-
lish secret keys with existing nodes. Second, compared to existing
key pre-distribution schemes, our scheme is substantially more re-
silient against node capture. Our analysis and simulation results
have shown, for example, that to compromise10% of the secure
links in the network secured using our scheme, an adversary has to
compromise 5 times as many nodes as he/she has to compromise
in a network secured by Chan-Perrig-Song scheme or Eschenauer-
Gligor scheme. Furthermore, we have also shown that network
resilience can be further improved if we use multi-hop neighbors.

We have conducted a thorough overhead analysis to show the
efficiency of our scheme. The communication overhead analysis
has shown that whenpactual ≥ 0.33, a node can almost (with very
high probability) reach its neighbor within at most 3 hops. For
the computation overhead, although our scheme involves modular
multiplications, we have shown that the energy cost is about the
same as encrypting a message of length3200 bits using AES.
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