
Projecting IPv6 Packet Forwarding Characteristics Under
Internet-wide Deployment

Craig A. Shue and Minaxi Gupta
Computer Science Department, Indiana University

{cshue, minaxi}@cs.indiana.edu

ABSTRACT
While routing table growth, its impact, and causes have
been examined extensively for IPv4, little work in this direc-
tion exists for IPv6. This paper is the first step at examining
performance aspects of IPv6 packet forwarding. We do so by
using a software implementation of various packet forward-
ing algorithms used by routers and running them against
IPv6 tables. In the lack of a wide deployment of IPv6, we
generate IPv6 routing entries based on IAB allocation rec-
ommendations. We simulate growth of routing tables due
to new prefix allocations and under partial deployment sce-
narios. Additionally, we consider factors that inflate routing
table sizes artificially. These include load balancing, multi-
homing, and failure to aggregate aggregatable prefixes. We
conclude that if modern routers were to simply replace their
IPv4 prefixes with an equivalent number of IPv6 prefixes,
without changing anything else, an average lookup in the
routing table will be 67% more expensive. Further, the IPv6
routing table will require at least 4.5 times more memory to
store the same number of prefixes.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol verification

General Terms
Measurement, Experimentation

Keywords
Internet, IPv6, packet forwarding, routing table growth

1. INTRODUCTION
The 128-bit IPv6 [1] address space provides approximately

5×1028 addresses for each of the roughly 6.5 billion people on
planet earth. It is thus no surprise that it is widely believed
to be an answer to IPv4’s address exhaustion concerns.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPv6’07, August 31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-790-2/07/0008 ...$5.00.

These virtues aside, we would be remiss if we tried to de-
ploy IPv6 throughout the Internet without carefully consid-
ering aspects of routing scalability. Two reasons necessitate
this. First, the routing table sizes would be bigger for IPv6,
simply because of the larger address space. Second, the ac-
celeration in factors such as load balancing, multi-homing,
failure to aggregate aggregatable prefixes, and sub-optimal
prefix allocations is already increasing the IPv4 routing ta-
ble sizes to the point where modern router hardware may
soon not be able to cope with it [2]. All of these factors, ex-
cept for sub-optimal prefix allocations, are likely to exist for
IPv6 and could exacerbate the issue of routing scalability.

This paper takes the first step at examining the scalability
of IPv6 packet forwarding. We do so by implementing the
various longest prefix matching algorithms used by routers
in software and running them against IPv6 routing tables.

One way to generate prefixes for IPv6 routing tables would
be to extrapolate current deployment. However, very few
IPv6 prefixes are currently being announced in the Internet.
According to the Route Views Project [3], which provides
BGP routing tables from many vantage points in the Inter-
net, the highest number of IPv6 prefix entries at any vantage
point was only 807 in January 2007. Given that the num-
ber of entries in July 2003 was 468, the increase in IPv6
deployment thus far has been far from stellar. In the lack
of a wide-spread deployment, we turn to the recommenda-
tions of the Internet Architecture Board (IAB) to generate
IPv6 prefixes. The latest IAB recommendation is that the
registries allocate IPv6 unicast addresses in /48 prefixes in
the general case1, with /64 prefixes being issued when it
is known that only one subnet is required [5]. This alloca-
tion scheme allows 216 subnets per prefix, if the final 64 bits
are used for host identification. Under this scheme, it is un-
likely that organizations will resort to address fragmentation
in order to be able to expand their networks. Guided by the
IAB’s recommendation, we generate IPv6 prefixes by ran-
domly picking the prefix bits. The prefix lengths are varied
between 48 and 64 bits according to the Pareto distribu-
tion. This distribution captures the expected behavior that
majority of the organizations will use the shortest allocated
prefix possible.

To investigate scalability aspects of IPv6 packet forward-

1The regional registries initially made allocations in 35 bit
prefixes (which were later expanded to 32 bit allocations).
However, subsequent allocations to the local registries re-
quire that end users be granted 48 bit prefixes in accordance
with the IAB recommendations [4]. Since these end users
are the likely BGP participants, we model growth assuming
prefixes of 48 bits or longer.

1

BA

C

D

1

1

1

1

0 1

0

Figure 1: A traditional
trie.

0100 11

A B

1

C D

11

Figure 2: Multibit trie
with stride length of 2.

BA

C

1

0 1

0

D

1111

Figure 3: Path com-
pressed trie.

0100

A B

1

C

D

1111

Figure 4: Path com-
pressed and multibit hy-
brid trie.

ing, we consider 1) the time required to create routing ta-
bles, 2) the time required to lookup prefixes during packet
forwarding, 3) the time required to update tables when en-
tries get added or deleted, and 4) the memory requirements
for holding the routing tables. We conduct our analysis on
a Pentium IV 3.2GHz processor machine with 2GBytes of
RAM and for three different cases. The first case projects
the growth of prefixes entirely due to new prefix allocations.
In the second case, we investigate the co-existence of IPv4
and IPv6 prefixes. Finally, we study the impact of factors
that are causing growth in the size of IPv4 routing tables.
These include load balancing, multi-homing, and failures to
aggregate aggregatable prefixes.

We conclude that if modern routers were to simply replace
the IPv4 prefixes in their routing tables with an equivalent
number of IPv6 prefixes today, without changing the algo-
rithms and data structures involved, an average lookup in
the routing table will be 67% more expensive. Further, the
corresponding IPv6 routing table will require at least 4.5
times more memory to store the same number of prefixes.
We also note that the increased prefix lookup and memory
costs from longer IPv6 prefixes can be minimized by using
techniques that reduce memory accesses and memory re-
quired to hold the routing table by exploiting sparseness in
prefix allocation. This is because the longer IPv6 prefixes
are likely to be sparsely allocated in the foreseeable future.

The rest of this paper is organized as follows. In Sec-
tion 2, we outline currently used approaches for IP routing.
In Section 3, we discuss our performance metrics and evalu-
ate IPv4. Section 4, presents an evaluation of IPv6. Finally,
Sections 5 and 6 outline related work and conclusions re-
spectively.

2. INTERNET PACKET FORWARDING
Routing in the Internet is made possible by the border

gateway protocol (BGP). BGP allows routers in each do-
main to exchange reachability information about IPv4 pre-
fixes owned by various organizations. The end result of this
exchange is a forwarding table at each BGP router which
contains outgoing interfaces corresponding to the prefixes.
This table is referred to as the forwarding information base
(FIB) for BGP routers. To forward packets toward their
destination addresses, routers employ a longest prefix match

on the prefixes contained in the FIB. This operation must be
performed quickly to accommodate gigabit routing speeds.
Accordingly, a variety of algorithms exist for storing and
consulting the FIB [6]. Below, we outline the prominent
ones.

The classical longest prefix match approach uses a trie
data structure for storing the FIB. In a traditional trie, each

node can contain next-hop and output interface informa-
tion. An address lookup starts from the root node and,
based on the input address, a link to a child representing
a “1” or a “0” bit is traversed. During each traversal, the
algorithm stores the values of the next hop and output in-
terface information of the node, if it exists. Upon reaching
a node without a required child link, the search aborts and
the last recorded hop and output interface information are
used. In Figure 1, we provide an example trie with four pre-
fixes: prefix A (00*), prefix B (01*), prefix C (001*), and
prefix D (1111*).

While straight-forward, the above lookup approach re-
quires a memory lookup for each bit in the IPv4 address,
yielding sub-optimal performance. To overcome this, work
has explored the use of multibit tries. In multibit tries, each
traversal can consume multiple bits of input. The number of
bits consumed in each traversal is called the stride. Thus, in-
stead of just having two children nodes, a trie using a stride
of 2 causes each node to contain links for 22 = 4 children.
The choice of stride length is important; a good stride choice
can increase performance but a poor stride choice may sub-
stantially increase the memory required to store the trie.
Figure 2 shows the impact of using a stride of 2 on the trie
from Figure 1. From this figure, we can see that the number
of memory references to reach the leaves decreases. A clever
implementation of multibit tries, tree bitmap [7], reduces
the number of memory references required during packet
forwarding, as well as the memory required to hold the FIB.
Many router vendors today use this implementation.

An approach to optimize the traditional trie is to per-
form path compression. Such tries simply collapse one-way
branches. This reduces the number of memory accesses re-
quired and limits the memory required to store the trie.
PATRICIA [8] first introduced path compression. Modifica-
tion were later made to the PATRICIA approach, allowing
it to be used in longest prefix matching [9]. In Figure 3,
we show the impact of path compression on the trie from
Figure 1. The branch for prefix D is compressed to a sin-
gle node, yielding faster lookups for that branch and lower
memory consumption.

Path compression can be performed on multibit tries as
well, including the tries that use the tree bitmap approach.
In Figure 4, we show the impact of using both approaches
on the trie from Figure 1.

3. BASELINE: IPv4

3.1 Methodology
We begin by implementing the trie algorithms described

in Section 2 in software. We implement three different types

of tries: 1) a traditional trie, 2) a multibit trie with stride of
2, and 3) a trie using the tree bitmap approach. We exam-
ine each trie type both with and without path compression,
making a total of six different types of tries. Each trie builds
the forwarding table using the BGP FIB we obtained from
one router in the Route Views Project [3] on April 22, 2007.
The FIB contained 233, 500 unique prefixes.

For each trie, we examine 1) the time required to create
routing tables, 2) the time required to lookup prefix entries
during packet forwarding, 3) the time required to update ta-
bles when entries get added or deleted, and 4) the memory
requirements for holding the routing tables. All the perfor-
mance trials were conducted on a machine with a Pentium
IV 3.2 GHz processor with 2GBytes RAM. To measure the
timings, we use the RDTSC instruction, which can be used to
measure the elapsed cycle count, yielding nanosecond timing
resolution.

To measure the routing table creation times, we timed
how long it took to load the prefixes from a text file into the
trie data structure in memory. To measure the lookup times,
we randomly selected 1% of the input prefixes and recorded
the amount of time required to perform each lookup. For
updates, we selected 1% of the input records to be later re-
moved and stored 1% of the input records in a list, without
adding them to the trie. We then timed how long it took
to delete an entry and to insert a new entry. We calculated
the memory requirements for each implementation by mul-
tiplying the number of nodes required to encode the prefix
entries by the size of each node.

3.2 Implementing Longest Prefix Match
Each trie must support three basic functionalities: inser-

tion, search, and update of a prefix. Below, we describe the
routines for insertion, search, and update when a single bit
from the prefix is consumed at a time.

Traditional Trie: The insertion routine recursively con-
sumes a bit of input at each node, traversing and creating
children nodes as needed. Once the input has been con-
sumed, a terminal node is created to store the outgoing in-
terface information required to forward the packet. The
lookup routine proceeds identically, except that it checks
for, and records, any outgoing interface information at each
node. Once the search routine runs out of matching nodes in
the trie, it aborts and returns the last encountered outgoing
interface information. An update is simply a deletion and
insertion paired together. A deletion proceeds identically to
a search, except that it removes the outgoing interface infor-
mation if and only if it has an exact match after traversing
the trie.

Multibit Trie: We implement a multibit trie with a
stride of two. When performing a lookup, an insertion, or a
deletion, the routine will use the greedy approach of using
the longest stride length possible with the given input pre-
fix. Our implementation does not use prefix expansion, but
instead maintains pointers to shorter stride lengths. This
allows for arbitrary prefix lengths and does not require the
additional memory needed for expansion. We use a static ar-
ray of pointers at each node, which results in faster lookups,
but yields suboptimal memory consumption.

Tree Bitmap: We implement the tree bitmap approach
described in [7]. The approach utilizes a bit vector in each
node to indicate the presence of children in the tree. Each
child node is then allocated contiguously in memory. The

approach can access each child using a single pointer by
consulting the bit vector and utilizing pointer arithmetic to
reach the destination child. By reusing the same pointer,
the tree bitmap approach can use longer multibit strides
without increasing the amount of memory required.

Path Compression: In a trie using path compression,
each node can contain multiple bits that it represents, in
addition to the bits represented from its placement in the
trie. Accordingly, the search and deletion routines compare
these additional bits with their input. If they all match,
they are removed from the input and the process continues
as before. If they do not match, processing aborts as if an
exact match could not be found, since the input cannot exist
in the trie. The insertion routine is most affected by path
compression. The insertion process stores the remainder
of the input prefix each time it must create a node. The
insertion routine may also need to split a node if part of the
bit-string encoded within does not match the input prefix.

3.3 Results
Table 1, shows the lookup, creation, and update times,

as well as the memory requirements for each of the six tries
containing IPv4 prefixes. (The path compressed versions for
each trie are denoted by PC.) We note that the tree bitmap
approach, which is used by many modern routers [10], has
the best lookup performance and the second lowest memory
requirements. The path compressed version of this trie is
the second best in lookup performance and has the lowest
memory requirements.

Lookup Creation Update Memory
Time Time Time Required

Value (in ns) (in s) (in ns) (in MBs)
Traditional mean 2,710 0.754 6,091 19.364

median 2,643 5,971
std. dev. 643 929

Traditional, PC mean 2,610 0.570 5,596 13.537
median 2,631 5,650

std. dev. 324 697
Multibit mean 1,798 0.530 4,519 27.826

median 1,779 4,416
std. dev. 339 912

Multibit, PC mean 1,714 0.390 3,797 20.615
median 1,731 3,775

std. dev. 336 783
Tree Bitmap mean 1,125 0.442 3,632 8.031

median 1,121 3,633
std. dev. 196 665

Tree Bitmap, PC mean 1,160 0.577 4,184 5.080
median 1,153 3,923

std. dev. 214 3,361

Table 1: IPv4 routing table results (233,500 pre-
fixes).

4. IPv6 PACKET FORWARDING
To determine lookup, creation, update times, and memory

requirements of IPv6, we repeat our analysis from IPv4.

4.1 Methodology and Implementation
We model IPv6 prefixes using the IAB recommendations.

While most organizations are likely to use just one 48-bit
prefix, others will want to subdivide their allocated range.
Accordingly, we model prefixes from 48 bit to 64 bit in length
using a Pareto distribution. We randomly generate the bits
for each prefix. (The first three bits of all prefixes, “001,”

are simply to indicate that the address is a global unicast
address.)

We conduct our analysis for three different cases. The
first case projects the growth of prefixes entirely due to new
prefix allocations. In the second case, we investigate the co-
existence of IPv4 and IPv6 prefixes. Finally, we study the
impact of factors that are causing growth in the size of IPv4
routing tables. These include load balancing, multi-homing,
and failures to aggregate aggregatable prefixes. For each of
these cases, we vary the number of prefixes to store in the
IPv6 table from 50, 000 entries up to 2 million entries. We
select the lower-bound for the number of entries based on
the observation that as much as 75% of the IPv4 entries
could be a result of address fragmentation [11]. Since IPv6
is unlikely to have such a degree of fragmentation, we use a
lower-bound where such entries are not present. We select
an upper-bound that allows for significant growth in the
number of entries, giving us an idea of IPv6 performance in
the near future.

In our implementation for IPv4, we used 32-bit integers,
since they were sufficient to store the prefixes. However, for
IPv6, we switched to 64 bit integers, since they were needed
to accommodate the longer prefix lengths.

4.2 Results
Table 2 shows a comparison of IPv4 and IPv6 results.

For an even comparison with the 233,500 IPv4 entries, we
pick a routing table with 250, 000 entries for IPv6. Fur-
ther, we present only the results for lookup times and mem-
ory requirements since creation and update times, though
higher for IPv6, still fall within acceptable limits for mod-
ern routers.

We notice from Table 2 that the path compressed version
of the tree bitmap approach offers the fastest lookups and
lowest memory requirements. The tree bitmap approach,
which is used by many modern routers [10] and had the
best lookup performance for IPv4, is the second fastest in
lookup time. It consumes 67% more lookup time on an
average than its IPv4 counterpart. The path compressed
versions of the other two tries, traditional and multibit, per-
form much better than the vanilla tree bitmap approach in
terms of memory requirements. Specifically, the tree bitmap
approach for IPv6 consumes 447.5% more memory than its
IPv4 counterpart. These results indicate that path compres-
sion can effectively leverage the sparse nature of the IPv6
tries to both reduce memory requirements and the required
time for lookups.

Case 1: Projecting IPv6 Prefix Growth
We now project the impact of growth in IPv6 forwarding

table sizes due to new prefix allocations. As before, we focus
on lookup times and memory requirements. For simplicity,
we omit the traditional and multibit tries without path com-
pression, since neither of these approaches are competitive
on any count.

Figures 5 and 6 depict the lookup performance and mem-
ory requirements of our trials respectively. We note that the
path compressed tree bitmap approach has the best lookup
performance, followed by the tree bitmap approach and then
the multibit trie with path compression. For memory re-
quirements, the path compressed tree bitmap approach fares
the best, followed by path compressed traditional trie and
multibit trie with path compression respectively. Of the var-
ious tries depicted, the vanilla tree bitmap is the worst in its

Lookup Time Memory Required
(in ns) (in MBytes)

Value IPv4 IPv6 IPv4 IPv6
Traditional mean 2,710 5,221 19.364 88.238

median 2,643 5,296
std. dev 643 337

Traditional, PC mean 2,610 2,966 13.537 19.073
median 2,631 2,951
std. dev 324 1,641

Multibit mean 1,798 3,343 27.826 109.857
median 1,779 3,411
std. dev 339 285

Multibit, PC mean 1,714 2,038 20.843 26.746
median 1,731 2,063
std. dev 336 305

Tree Bitmap mean 1,125 1,878 8.031 43.974
median 1,121 1,905
std. dev 196 205

Tree Bitmap, PC mean 1,160 1,258 5.080 7.368
median 1,153 1,278
std. dev 214 228

Table 2: A comparison of IPv4 and IPv6 results
(250,000 prefixes).

memory requirements. These results highlight the benefits
of path compression in both memory and lookup speeds as
the number of IPv6 grow.

Figure 5: IPv6 lookup times under varying FIB
sizes.

Case 2: Partial Deployment
Since a co-existence of IPv4 and IPv6 is likely to be the

case in times to come, we now examine the lookup times and
memory requirements for the case when IPv6 is deployed
only in part of the Internet.

Figures 7 and 8 show the lookup times and memory re-
quirements, respectively, of a router with FIBs for both IPv4
and IPv6. The results are shown for the case when the total
number of combined prefixes are 200, 000 in number. Once
again, the path compressed tree bitmap approach performs
the best in terms of lookup times and memory usage. The
vanilla tree bitmap trie fares the second best in terms of per-
formance, but the path compressed traditional trie is second
best in memory usage. Also, as expected, the lookup times
and memory requirements are greater when IPv6 accounts
for 75% of the entries than when it accounts for only 25%
of the entries. However, the behavior in the middle of the
graphs is interesting for each of the tries: the lookup times
and memory requirements level off as the proportions of the
two protocols become equal and have a local minimum at

Figure 6: IPv6 memory requirements under varying
FIB sizes.

60% IPv6 deployment. This is likely the result of IPv6 hav-
ing better properties at lower levels of deployment combined
with the decreased role of IPv4.

Figure 7: Lookup times when IPv4 and IPv6 con-
tribute various percentages of the FIB (200,000 pre-
fixes).

Case 3: Impact of Deaggregation on IPv6
We now consider the impact of other factors that cause the

number of prefix entries in the routing tables to increase. In
particular, we consider the three prominent factors, namely,
load balancing, multi-homing2, and failure to aggregate ag-
gregatable prefixes. For exposition purposes, we label this
collection as deaggregation contributors.

We first develop a set of simple algorithms to simulate
these deaggregation contributors. To model load balancing,
we split an existing prefix in half and announce a new, more
specific route for both halves. For multi-homing, we take an
existing prefix, randomly select a sub-prefix that fits inside
the original prefix, and add both prefix entries. This models
the case where a subset of an address range must be stored
separately, since it can arrive through multiple routes. For
failure to aggregate, we take a given prefix and create an
identical prefix with just the last bit toggled, which models
a case where two prefixes could easily be aggregated, but
are not.

We take two randomly generated routing tables from the
previous section, one with 100,000 prefixes and one with

2While Shim6 [12] can be used to avoid routing table growth
due to multihoming in IPv6, it is difficult to predict Shim6’s
adoption. Accordingly, we choose to model multihoming
growth.

Figure 8: Memory required when IPv4 and IPv6
contribute various percentages of the FIB (200,000
prefixes).

200,000 prefixes, and apply the set of algorithms to model
the deaggregation contributors. We model the cases where
each algorithm is applied to a random 10%, 20%, and 30%
of the entries in the table. We use a random sampling be-
cause it models the fact that prefix assignment (and thus the
prefixes included in route announcements) is determined in-
dependently from the decision to employ traffic engineering
(or failures to properly aggregate prefixes).

In Figure 9, we show the impact of adding entries due to
the deaggregation contributors to the lookup times on our
200, 000 entry table. (The results from the 100, 000 entry
table were similar and have been omitted for conciseness.)
For each trie type, we observe increases in the lookup times
as the percentage of deaggregation increases. However, the
lookup times for the vanilla tree bitmap approach appears
to be less affected by the increased deaggregation. Also,
in each case, the tries perform as well as before relative
to each other. The memory requirements follow the same
trend as lookup times. We omit those results due to space
constraints.

Due to space constraints, we do not show how these re-
sults compare with the case when randomly picked prefixes
were added to the table, rather than picking entries specific
to deaggregation contributors. For most tries, tries with
randomly picked entries fared better.

Figure 9: Impact of deaggregation on lookup times
of IPv6 tables (200,000 prefixes).

5. RELATED WORK
IPv6 specification has been the subject of a number of

IETF RFCs which specify the details of the protocol. The
latest is [13], which specifies the addresses, and address al-
location. Additionally, in [5], the IAB gave advice to the
registries on allocating globally aggregatable prefixes.

In [11], the authors explore the impact of multi-homing,
load balancing, address fragmentation, and simple aggre-
gation failures on the size of BGP routing tables in IPv4.
In [14], the authors characterize IPv4 allocations and com-
pare them with BGP routing table changes. This work ob-
serves that 45% of the originally allocated blocks were split
into smaller fragments. We have leveraged both of these
works to make projections into IPv6 behavior. In [15], the
authors develop a detailed model of routing table growth
and validate it using backbone IPv4 routing tables. Unfor-
tunately, we cannot perform a similar validation due to a
lack of widespread IPv6 deployment.

IPv6 is one next-generation Internet approach to expand
the address space available for hosts. Other approaches
include IPNL [16], in which the authors propose to solve
address exhaustion by making network address translation
(NAT) a first class citizen, and ROFL [17], in which the
authors demonstrate that routing on flat labels cannot be
casually dismissed.

Performing fast longest prefix match lookups has been an
active topic in research for decades [8, 9, 7, 18]. Some work
has specifically focused on hardware implementations [19],
with some particularly addressing IPv6 [20]. While relevant,
these works focus on increasing lookup performance while
our goal is to compare the performance of IPv4 and IPv6
on some representative algorithms and determine whether
IPv6 can scale under larger routing tables.

6. CONCLUSION
It is generally accepted that routers will take longer to for-

ward IPv6 packets, and that the routing tables under IPv6
will get bigger. However, the extent of this degradation had
not been explored. In this work, we attempted to quan-
tify the performance hit the routers may experience under
IPv6. Our results also show that using path compression
techniques can reduce this performance overhead by mak-
ing the lookups less dependant on the prefix length. We
note that the tree bitmap approach used by many modern
routers [10], which yields the best performance and mem-
ory usage in IPv4 does not fair so well with memory usage
in IPv6. However, when we modified the algorithm to use
path compression, both its memory usage and lookup perfor-
mance improved. This combined approach has the potential
to make the performance of IPv6 competitive with IPv4.

Finally, while we tried our best to project IPv6 deploy-
ment using the latest recommendations, actual prefix allo-
cations may be different. There is also a possibility that the
number of entries in IPv6 routing table may be far fewer
than what today’s IPv4 routing tables contain. This could
happen if some or all of the factors that inflate routing table
entries today cease to exist. Short of knowing what might
happen, we used similar number of IPv4 and IPv6 entries
for comparison purposes. However, one cannot rule out the
possibility that the performance overheads of longer IPv6
prefixes may be offset by fewer entries.

7. REFERENCES
[1] “IPv6 information page,” http://www.ipv6.org.

[2] D. Meyer, L. Zhang, and K. Fall, “Report from the
IAB Workshop on Routing and Addressing,” IETF
Internet Draft, December 2006.

[3] U. of Oregon Advanced Network Technology Center,
“Route views project,” http://www.routeviews.org/.

[4] A. APNIC and R. Registries, “Ipv6 address allocation
and assignment policy,” June 2002,
http://www.arin.net/policy/archive/ipv6 policy.html.

[5] IAB and IESG, “IAB/IESG Recommendations on
IPv6 Address Allocations to Sites,” RFC 3177, Sept.
2001.

[6] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous,
“Survey and taxonomy of IP address lookup
algorithms,” IEEE Network, 2001.

[7] W. Etherton, Z. Dittia, and G. Varghese, “Tree
Bitmap: Hardware/Software IP Lookups with
Incremental Updates,” ACM SIGCOMM Computer

Communication Review, 2004.

[8] D. Morrison, “Patricia - practical algorithm to retrieve
information coded in alphanumeric,” Journal of the

ACM, 1968.

[9] K. Sklower, “A tree-based packet routing table for
Berkley Unix,” USENIX, 1991.

[10] G. Varghese, “Recent research directions,” 2004, http:
//www-cse.ucsd.edu/users/varghese/research.html.

[11] T. Bu, L. Gao, and D. Towsley, “On characterizing
BGP routing table growth,” Computer Networks,
vol. 45, no. 1, pp. 45 – 54, May 2004.

[12] E. Nordmark and M. Bagnulo, “Shim6: Level 3
Multihoming Shim Protocol for IPv6,” May 2007.

[13] R. Hinden and S. Deering, “IP Version 6 Addressing
Architecture,” RFC 4291, Feb. 2006.

[14] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and
L. Zhang, “IPv4 Address Allocation and the BGP
Routing Table Evolution,” ACM SIGCOMM

Computer Communications Review, 2005.

[15] H. Narayan, R. Govindan, and G. Varghese, “The
Impact of Address Allocation and Routing on the
Structure and Implementation of Routing Tables,” in
ACM SIGCOMM, 2003.

[16] P. Francis and R. Gummadi, “IPNL: A NAT-extended
Internet architecture.” ACM SIGCOMM, 2002.

[17] M. Caesar, T. Condie, J. Kannan,
K. Lakshminarayanan, I. Stoica, and S. Shenker,
“ROFL: Routing on flat labels.” ACM SIGCOMM,
2006.

[18] H. Song, S. Dharmapurikar, J. Turner, and
J. Lockwood, “Fast hash table lookup using extended
bloom filter: An aid to network processing,” in ACM

SIGCOMM, 2005.

[19] D. Taylor, J. Lockwood, T. Sproull, J. Turner, and
D. Parlour, “Scalable IP lookup for programmable
routers,” INFOCOM, 2002.

[20] T. Hayashi and T. Miyazaki, “High-speed table
lookup engine for IPv6 longest prefix match,”
GLOBECOM, 1999.

