
Source Selectable Path Diversity via Routing Deflections

Xiaowei Yang
University of California, Irvine

xwy@ics.uci.edu

David Wetherall
University of Washington

djw@cs.washington.edu

ABSTRACT
We present the design of a routing system in which end-systems set
tags to select non-shortest path routes as an alternative to explicit
source routes. Routers collectively generate these routes by using
tags as hints to independently deflect packets to neighbors that lie
off the shortest-path. We show how this can be done simply, by
local extensions of the shortest path machinery, and safely, so that
loops are provably not formed. The result is to provide end-systems
with a high-level of path diversity that allows them to bypass unde-
sirable locations within the network. Unlike explicit source routing,
our scheme is inherently scalable and compatible with ISP policies
because it derives from the deployed Internet routing. We also sug-
gest an encoding that is compatible with common IP usage, making
our scheme incrementally deployable at the granularity of individ-
ual routers.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.2 [Computer- Communication Networks]:
Network Protocols—Routing Protocols

General Terms
Design, Algorithms

Keywords
Routing deflections, path diversity, source routing

1. INTRODUCTION
Source routing, in which end-systems partially or fully specify

the paths taken by their packets, is the basis of a variety of schemes
to improve the reliability and performance of networks. For exam-
ple, the Detour study [17] and RON overlay [1] show that “loose
source route” style concatenations of default Internet paths may
possess lower latency or greater available bandwidth. Similarly,
SOSR [7] demonstrates that routing via a random point of indi-
rection can mask many Internet failures. And Perlman’s work on
sabotage-proof routing [13, 14] depends at its core on the ability of
sources to select their own routes to find one that works correctly.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

Source routing is a fundamental means of improving communica-
tions because it provides path diversity that reduces the dependence
on a single network path with undesirable characteristics.

Despite these advantages, source routes are not in mainstream
use in the Internet today, perhaps due to several associated prob-
lems. They do not scale to permit widespread use (except in triv-
ial applications) because each end-system needs some map of the
overall network to formulate its preferred routes. Yet detailed, up-
to-date maps do not readily exist, and even simple lists of locations
for indirection are complicated by the need to maintain availability
and spread load. By letting users specify paths, source routes do
not fit the Internet model in which ISPs set routing policy based
primarily on destination addresses. And in some forms, such as the
IP loose source route option, they pose a security threat and as a
result are often disabled.

In this paper, we revisit source-controlled routes. Our goal is to
find a design that provides much of the benefit of explicit source
routes but addresses the problems we have identified so as to re-
main practical. Our insight is that, to be useful, it is not necessary
for the end-system to specify which of the exponentially many pos-
sible routes to take. Instead, it is sufficient to provide a small set
of diverse paths and let the end-system select from them. This is
because many benefits of source routing stem from path diversity.
An end-system can then test different paths without knowing the
routes to which they correspond; even if the end-system did know
the path it would often need to test it for reliability or bandwidth.
And, as work on source routing for reliability has shown [7], simple
tests are sufficient to solve problems that depend on avoiding a bad
path rather than finding the optimal path. Thus, while this small set
of diverse paths is less flexible than arbitrary source routes, we are
willing to adopt it in exchange for a practical scheme.

Our approach to construct these diverse paths draws on deflec-
tion routing and hot-potato routing, in which routers forward pack-
ets off the shortest path when it is not available [11, 2]. We develop
routing deflection rules that enable routers to independently deflect
packets and thereby collectively construct a diverse set of paths.
Our rules exercise the latitude routers have to forward packets off
the shortest path yet maintain loop-free connectivity. For instance,
a well-known rule (on which we will improve) is that any router
can safely deflect packets to a neighbor that has a smaller cost to
reach the destination. Then, sources access this path diversity by
supplying a hint that affects the choice of deflection. Because rout-
ing deflections build on the shortest path machinery and do not alter
its character, they scale well and fit the Internet model of routing
that is based on destination addresses and ISP policy. They are
also incrementally deployable at routers within and across ISPs be-
cause different routers do not need to coordinate their deflection
decisions.

159

Figure 1: The Abilene backbone network. Numbers give the link
weights, which are symmetric. The solid line between Seattle and
Kansas City shows the lowest-cost route. The dotted line via Sun-
nyvale shows a deflected route, which avoids the Seattle-Denver link.
The map and weights were taken from the Abilene Observatory
(http://abilene.internet2.edu/observatory/) on Dec 5, 2005.

In the body of this paper, we present a design that provides
sources access to path diversity via routing deflections. We then
evaluate our design on real, measured and random network topolo-
gies. We find that, by using it, sources are very likely to have
enough diversity to avoid an undesirable node, link or peering point.
We make two contributions. The first is architectural: the use of
end-system tags to select path diversity as an alternative to explicit
source routes. Our tags are compact (10-bit in our design) and do
not have global meanings. We show how they can be encoded in
a way that is compatible with common IP usage as well as carried
more cleanly in a shim protocol layer. Routers can use whatever
mechanism is preferred to bind these tags to diverse paths, e.g.,
MPLS tunnels or routing deflections. The second contribution is
the design of routing deflections, and in particular two new rules
for constructing diverse paths that we prove to be loop-free despite
independent choices at different routers. These rules are similar
to local route repair mechanisms [25, 19, 8] but more general in
the sense that concurrent deflections can be made, e.g., to bypass
multiple failures, in arbitrary topologies and without the danger of
loops. That is, routing deflections are akin to multi-path routing
schemes.

The rest of this paper is organized as follows. In Section 2 we
motivate routing deflections and path selector tags with an example.
In Section 3 we present deflection rules that generate alternate paths
within ISPs; we prove them to be loop-free in the appendix. In
Section 4 we describe how path selector tags are used for routing.
In Section 5, we extend our rules to paths across multiple ISPs. In
Section 6, we evaluate the combination of path selector tags and
deflection rules on various network topologies. We then discuss
related work and conclude.

2. DIVERSITY VIA DEFLECTIONS
The key idea of this paper is that a diverse set of end-to-end

paths may be constructed by allowing the routers of a network to
individually “deflect” packets by forwarding them off the known
shortest path; end-systems can then select from the available paths
by labeling their packets with hints. The design we present here
realizes this idea with two components: 1) deflection rules that

determine which neighbors of a router can be used to forward a
packet; and 2) a signaling mechanism that lets end systems con-
trol which of the available paths routers use for a given packet. In
this section, we use a motivating example to explain the concept
of deflections within a single ISP. We describe the components in
the following sections, working up to deflections that change the
selection of peering points across multiple ISPs.

2.1 Example
Figure 1 shows the backbone of Abilene, a US-based research

and education network, complete with link weights. We omit the
intra-POP details for simplicity. Consider packets sent from Seattle
to Kansas City. The lowest-cost route (solid line) begins by sending
the packets to Denver. However, observe that as an alternative (dot-
ted line) it is possible for the Seattle router to instead forward the
packets to Sunnyvale. This is because the remaining cost to reach
the destination falls, and so the packets will still arrive at Kansas
City without the possibility of a loop. Moreover, multiple routers
along the path can safely deflect to neighbors in this manner; the
cost to reach the destination will fall at every step and so the desti-
nation must be reached eventually.

The example demonstrates a routing deflection rule that works
for all topologies: each router can deflect to any neighbor with a
lower cost to the destination than itself and the result will be a loop-
free path to the destination. In our example, the alternate path might
be useful to avoid the Seattle-Denver link if it were congested, had
a relatively high error rate, etc. To allow end-systems (rather than
routers) to choose between the available paths, we tag packets with
a path selection hint. For instance, a tag of 0 may indicate the
lowest-cost path, and a tag of 1 an alternate path. The source does
not need to name any intermediate router to use these paths.

The above rule is well-known and works for our simple scenario.
However, it may not work when intra-POP structure is considered,
as small uphill hops may be needed to switch egresses within a
POP [8]. And it is not sufficient to construct many desirable alter-
nate paths. Suppose, for instance, that we wished to avoid the Den-
ver node entirely. Then it would be necessary to reach Kansas City
on the lower route via Los Angeles and Houston. However, Sunny-
vale cannot safely deflect to Los Angeles because it will loop the
packet back. In the next section we give stronger routing deflection
rules that can, for example, forward along this lower route to avoid
Denver entirely.

2.2 Advantages
Routing deflections are conceptually simple, yet they general-

ize shortest-path routing. With shortest-path routing, a packet may
be forwarded to any one of multiple equal lowest-cost neighbors.
Similarly, with routing deflections, a packet may be forwarded to
any neighbor in a larger deflection set that is computed according
to the specific deflection rule. We restrict our attention in this paper
to sets that are computed via the shortest-path machinery and that
include the lowest-cost neighbors, though other kinds of deflection
would be possible. With shortest-path routing, each router may in-
dependently decide which packets to forward along which of the
equal-cost routes as a local matter, without causing loops. Corre-
spondingly, each router may decide its own deflection as a purely
local matter without loops. Loop-freedom is important in our con-
text because we allow end-systems to select paths even when there
are no transient repair events. So if deflections were to cause loops,
they would be persistent steady-state loops that may disrupt con-
nectivity.

Deflections have several other desirable properties by design.
First, deployment is trivial because deflection choices are compat-

160

ible with lowest-cost routing: individual routers can be upgraded
across multiple ISPs with no need for coordination. Moreover, end
systems need not know about the network topologies in order to
explore alternative paths. This leads us to suggest how to carry tags
in a manner that is compatible with common IP usage.

Second, deflections scale to real-world usage. This is because
they are simple extensions of the shortest-path routing machinery
that is already deployed at ISPs. They do not require additional
messages in the manner of other source routing schemes [27, 15,
28, 6, 4, 3]. And they require no more than a constant factor of
added computation. For example, our rule above only requires in-
formation about its neighbors’ costs to compute its own deflection
set. These costs are either already signaled in a distance-vector
routing protocol or can be easily computed in a link-state protocol.

Third, deflections are highly robust because they inherit the fail-
ure tolerance of distributed routing algorithms. No centralized pro-
cess is used to compute deflection routes, and hence they work as
well as shortest-path routing when the network is partitioned.

2.3 Applications
Our focus in this paper is on how to provide hosts with access to

a diverse set of Internet paths. However, deflections are likely to be
useful in other contexts such as local route repair, in which a failure
is masked while new global routes converge. For instance, deflec-
tion paths could be selected by routers, rather than end-systems,
to locally bypass faults while news of their existence is globally
suppressed. By construction, this would allow multiple faults to
be bypassed without loops, whereas most local repair schemes [25,
8, 19] target the common case of a single failure and may form
transient loops in other cases. However, deflections are not a com-
plete solution as they do not address transient loops due to incon-
sistent forwarding tables. Also, the price for their guarantee of
loop-freedom is that they may not be able to bypass as many sin-
gle faults as schemes with weaker guarantees. Section 7 compares
deflections with specific schemes for local route repair.

3. DEFLECTION RULES
In this section, we present our deflection rules from the view-

point of a single ISP network. We describe how deflections are
extended across multiple ISPs in Section 5.

Each rule generates a deflection set of neighbors that a router can
use to reach particular destinations. Routers can then independently
select any neighbor in their deflection sets to use for forwarding;
we describe how hosts can tag packets to influence this selection in
the next section. We define our rules in terms of shortest-path costs.
Routers can compute the various shortest path costs as an extension
of whatever routing protocol they run to provide base routing, be it
OSPF, ISIS or a distance vector style of protocol such as RIPv2 or
EIGRP.

For each rule, the key issues we must consider are the correctness
of its deflections and how effective they are at providing diversity.
By correct we mean that paths are loop-free (a safety condition) and
reach the destination (a liveness condition). We prove the correct-
ness in the appendix for arbitrary topologies with multiple equal-
cost paths and asymmetric link costs. We study effectiveness via
simulations as part of our evaluation in Section 6.

For all rules, we let ni for i ≥ 0 be the sequence of nodes along
a path, and let cost(ni) be the shortest path cost to reach a given
destination from node ni, by whichever neighbors are on the short-
est path. We omit the destination in the cost function, since it does
not change.

3.1 Rule 1 (One Hop Down)
Our first rule was used to motivate deflections, and serves as a

strawman for assessing the strength of our other rules: a router can
send to any neighbor provided that the neighbor has a lower cost to
reach the destination. More formally:

Rule 1 (One Hop Down): The deflection set for a node ni is
those neighbors ni+1 for which cost(ni+1) < cost(ni).

Intuitively, Rule 1 is loop-free to destinations because the cost
to a destination at each node is strictly decreasing, and will eventu-
ally become zero. Lowest-cost forwarding or Equal Cost Multiple
Path (ECMP) forwarding is a special case of Rule 1. We prove the
correctness of Rule 1 in Appendix A.

Rule 1 is simple to implement at routers. To run Rule 1, each
node needs to obtain costs for its neighbors as well as itself. With
a distance vector protocol the cost information is already signaled
between neighbors. With a link-state protocol, it requires multiple
shortest-path computations, but does not require additional routing
messages. These computations may be run in the background since
shortest-path routes already provide basic connectivity.

Rule 1 is also trivial to deploy in an ISP network on a per router
basis: observe that Rule 1 generalizes shortest path routing by in-
cluding the shortest path neighbors in its deflection sets. As a re-
sult, any mixture of routers following either Rule 1 or shortest path
routing are loop-free and reach the destination.

3.2 Rule 2 (Two Hops Down)
The first rule provides greater diversity than shortest-path rout-

ing, but it is limited because sometimes there will be very few
choices that cause cost to decrease. Our next rule provides greater
flexibility. It includes all choices allowed by Rule 1 plus that it al-
lows the cost to a destination to increase temporarily provided that
the cost decreases sufficiently on the next hop.

Rule 2 (Two Hops Down): The deflection set for a node ni is
those neighbors ni+1 for which either of these conditions apply,
subject to the two caveats that follow:

1. cost(ni+1) < cost(ni) [downhill]

2. cost(ni+1) < cost(ni−1) [two-hop]

We remove the incoming interface ni−1 from the deflection set
unless the set would otherwise be empty, and we expand the de-
flection set when ni is the initial node by treating cost(ni−1) as
infinity. Both are optimizations. The former case prunes the unin-
teresting deflection, in which a packet needlessly returns to a neigh-
bor only to take a different deflection. The latter case exploits a
situation that permits all neighbors to be in the deflection set.

To see the power of this rule, reconsider our example. Recall that
in sending from Seattle to Kansas City, Rule 1 could not take a long
round route via Los Angeles and avoid Denver entirely. But Rule
2 can. Los Angeles is a valid deflection, even though it normally
sends via Sunnyvale, because of the two-hop clause: its cost does
not rise as high as Seattle, which is two hops back. Continuing
on, Los Angeles can then forward to Houston using the downhill
clause, as the cost falls after crossing an expensive link.

In Appendix B, we prove Rule 2 to be loop-free in the sense that
a directional link can be crossed at most once in a deflection path.
Intuitively, on the forwarding path, the cost to a destination must
strictly decrease at every two hops. No two-node sequence can re-
peat. Hence, no link-level loop exists. Note that it is possible for a
node to be visited more than once with this rule. We do not consider
this to be a problem because a packet will not be queued twice for
the same interface, and it is interfaces that are the key underlying

161

resource. Rule 2 also satisfies the liveness property because the de-
flection set always contains the shortest path neighbor. Therefore,
a packet will eventually reach its destination.

Rule 2 has a slightly higher implementation cost than Rule 1.
Similar to Rule 1, each node must obtain costs for neighbors. In
addition, forwarding decisions depend on the incoming link (or pre-
vious router) as well as the destination. This is similar to the way
in which routers use source addresses or incoming links to forward
along equal-cost paths and multicast paths [22].

As before, mixtures of nodes that follow Rule 2 or shortest-path
routes provide loop-free routes to their destinations. This follows
because the shortest path neighbor satisfies the deflection rule.

3.3 Rule 3 (Two Hops Forward)
With Rule 2, it is possible that a node will send uphill to a neigh-

bor that has no alternative but to return the packet. We now con-
struct a new rule that always provides an alternative to immediate
backtracking in the hope that it will increase diversity.

To state Rule 3, we define the following terms. In the forwarding
path, we let li denote both directions of the incoming link used to
reach ni, i.e., the link connecting ni−1 and ni. Now we let G be the
overall network graph and G\li be the same graph with the link li
removed. These other graphs with incoming links removed are the
key to our rule. To use them, we also need to extend the cost func-
tion to include the graph to which it applies, i.e., cost(G\li, ni) is
the shortest path cost from the node ni to a given destination in the
graph G\li.

Rule 3 (Two Hops Forward): The deflection set for a node ni

is comprised of the neighbors ni+1 for which ni+1 �= ni−1 and
either:

1. cost(G\li+1, ni+1) < cost(G\li, ni) [downhill]

2. cost(G\li+1, ni+1) < cost(G, ni−1) [two-hop]

Rule 3 eliminates the need of immediate backtracking, because
if ni+1 receives a packet from ni, then cost(G\li+1, ni+1) must
not be infinity. It implies that ni+1 must have a path to reach the
destination without using the backtracking link li+1. Therefore, we
can safely remove the backtracking node ni−1 from the deflection
set for all nis.

The first clause compares cost(G\li+1, ni+1) with cost(G\li, ni)
rather than cost(G, ni), which might be simpler. This is because
cost(G\li, ni) is the larger quantity and leads to a larger deflec-
tion set; if we used cost(G, ni) then Rule 3 would actually have
been a subset of Rule 2. With our rule as stated, neither Rule 2 nor
Rule 3 are subsets of each other, but Rule 3 does allow paths that
Rule 2 does not. In Figure 1, for example, the path Indianapolis,
Kansas City, Huston, Atlanta, is a valid deflection path via Rule 3,
but not via Rule 2. This is because excluding the backtracking link
forces the shortest path to follow a more roundabout path to the
destination.

The cost of this increased flexibility of Rule 3 is a slight increase
in the implementation complexity over Rule 2. Specifically, a node
must now compute costs for its neighbors in related graphs rather
than the same graph. This might be done incrementally in a link-
state implementation. And curiously, as before, we observe that
distance vector protocols can already signal the required informa-
tion. This is because costs from all neighbors but one can be used to
derive costs in the graph with the link to the one neighbor removed.

Implementation considerations also led us to the asymmetry in
Rule 3. We deliberately do not use the graph G\li−1 in the two-
hop clause, as might be expected, even though it would result in
correct paths. This is because the current node will not in general

know the incoming link of the previous node unless it is signaled
with the packet.

As a variant of Rule 3, we observe that we can define an analo-
gous rule by removing the incoming node (rather than link). This
places stronger connectivity demands on the underlying topology:
it ensures that there is a path to the destination that does not re-
turn to the previous node, rather than one that does not re-cross the
previous link. We have found that it produces otherwise similar
results, and so omit it from our evaluation due to space limitations.

The correctness proof of the link version of Rule 3 is given in
Appendix C. It is similar to that of Rule 2, and the node version
follows by analogy. We also show that Rule 3 is compatible with
shortest-path routing and hence trivially deployable.

4. TAG ARCHITECTURE
In this section, we describe a tag routing architecture that pro-

vides end-systems with path diversity. Each packet carries a tag that
determines the path it takes through the network from the present
location to the destination1. Thus tags act as selectors across a set
of network paths. They are an alternative to explicit source routes
selected by hosts and label-switched paths selected by ISPs. To
describe our architecture, we begin with tags themselves, and then
present two design variants: a shim protocol that fits between IP
and higher protocol layers and cleanly signals tags; and an encod-
ing of tags into IP packets that is compatible with common IP us-
age.

4.1 Tag Properties
We require that tags have several properties to render them use-

ful and practical for path selection. First, tags must be consistent in
their path selections to the same extent as existing Internet routes.
This allows end-systems to systematically explore the tag space and
avoids adverse interactions with existing transports, e.g., packet re-
ordering slows TCP.

Second, tags are opaque and lack global meaning except that we
require a value of zero to correspond to the default Internet path.
For other tag values, each ISP selects a path through its network,
without the requirement that it communicate the choice of paths to
end-systems or other ISPs. This means that tag routes are policy
compliant in the same manner as default routes, since each ISP will
apply its policies by definition. It also means that end-systems must
send packets along tagged routes to discover them.

Third, different tags should select a diverse set of network paths.
By this we mean that union of all paths that can be selected be-
tween a source and destination covers a region of the network that
is significantly larger than the default Internet path (were tags not
used). This implies that it will usually be possible to avoid an un-
desirable portion of the default Internet path. However, we do not
require that different tags select different paths. This makes it eas-
ier to construct tag paths. It also enables incremental deployment
because ISPs that have not been upgraded can be viewed as trivially
mapping all tag values to the default path.

Given the above properties, tag routes are useful for applications
that benefit from diverse paths, such as routing around the location
of a fault that might be a lossy link, point of congestion, Byzantine
failure, low capacity link, or high delay link. For this kind of ap-
plication, it matters little that the route is not known a priori. This
is because finding a good route will typically involve testing an al-
ternative path to check that it does not suffer from loss, delay or
bandwidth problems, etc., regardless of whether the route is explic-

1Clearly, tags could be defined for a connection-oriented network
too. Here we focus on extending IP.

162

IP header tag
start
TTL TCP etc.

stop
TTL

16 bits 8 bits 8 bits

Tag Header

Figure 2: Shim Encoding. A shim header is inserted between IP and
the next higher layer to carry the tag and TTL range for which deflec-
tions are enabled.

itly known. In these applications there tend to be many paths that
are acceptable, e.g., any path that avoids the fault, so that trying
paths is a reasonable strategy. Conversely, tag routes are less suit-
able for sending packets along particular routes to satisfy security
or QoS policies, since the route must be found by trying tag values.

4.2 Shim Layer Tag Encoding
Figure 2 shows how packets are tagged using a shim protocol

layer that sits between IP and the next higher layer. Tagging is a
simple insertion of two pieces of compact, fixed-length informa-
tion. First, the tag itself is carried in the clear. Ten bits (selecting
among 1024 paths) are sufficient, and we round this up to 16 bits
for convenience. Note that this tag size is much smaller than the
(exponentially large) number of possible source routes. However,
there is no compelling reason to make the tag size large since, given
the properties of tags, it must be searched by trial and error. Sec-
ond, range information is carried in the form of a start TTL and stop
TTL values. This range signifies the portion of the path for which
tag selection is to be used. It enables the end-system to narrow the
region of faults, e.g., if a fault can be bypassed with tags operating
on the last half of a path then it must lie in the last half of the path.

Given this encoding, tags are used at routers as follows. First,
the current TTL is checked to see if it lies within the range. If
not, or if the tag is zero, the default route is used. We also use
the default route for IP fragments because only the initial fragment
will contain the shim header. Otherwise, the tag is used to select
a possibly alternative path. This begs the question of how ISPs
map tag values to paths. We give a procedure for doing so later in
this section, for the case in which the diverse paths are provided by
deflections. However, ISPs could use any method they prefer, e.g.,
to map tags to MPLS [16] paths if they are available.

4.3 IP Tag Encoding
We observe that it is possible to carry tag information on IP pack-

ets themselves by overloading IP header fields in a manner that is
compatible with common IP usage. The information is then used
at routers in the same manner as for the shim protocol. A sample
encoding is shown in Figure 3.

We use 10 of the IP identifier bits to encode the tag, setting the
remaining 6 bits to a well-known flag pattern. We then use TTL
values to define the tag selection region, carrying it implicitly by
setting the initial TTL instead of separate start and stop TTL values.
To do this, we define a rarely used portion of the TTL space to
indicate that tag selection should be used. Common initial TTL
values include 30, 32, 60, 64, 128, and 255, and Internet paths
rarely exceed 40 hops [26]. This means that TTL values between
128 and 215 are rarely seen in practice. We define the range 160
to 200 to indicate that tag selection should be used. Hosts can then
set their initial TTL value such that tag selection is applied to the
entire path (by using 200), only the end of the path (by using values
> 200) or only the beginning of the path (by using values > 160

tag DF on TCP etc.
<200
>160

Overloaded IP Fields

Identification Flags TTL

6 bit
flag

IP header

(16 bits) (3 bits) (8 bits)

Figure 3: IP Encoding. The tag is carried in a subset of the Identifi-
cation field, deflections are switched on for a range of TTL values, and
fragments are not deflected.

and < 200). Other initial TTL values, including those in common
use, will cause tag selection to be turned off and the default path
to be followed. Note that this scheme is not as flexible as the shim
protocol, where an arbitrary subpath can be used for tag selection,
but we will see that it is sufficient to provide useful diversity.

The advantage of this overloading is that it enables true incre-
mental deployment. Individual hosts and ISP networks can be up-
graded to use tag selection independent of all other parties; the de-
flection rules we consider in the next section allow routers within
an ISP to be individually upgraded too. An upgraded host can then
use tags for path diversity even when communicating with a host
that has not been upgraded.

The disadvantage of this method is that, like all such schemes,
no overloading of IP is entirely backwards-compatible. In our case,
the small fraction of hosts that do use TTLs within the tag selection
range will have a small fraction of their packets re-routed (when
the IP identifier contains the flag value). This will not cause a loss
of connectivity, but may degrade performance. A further issue is
that traceroute cannot be used to trace tag paths because the TTL
has been overloaded. Finally, note that there are other proposals
to overload the IP identifier field for incremental deployment (e.g.,
CSFQ [21] and IP traceback [18]) that, if adopted, would not be
compatible with our usage. Nonetheless, while we do not claim it
is the best that can be found, this encoding shows it is possible to
provide tag routing with a high degree of backwards-compatibility.

4.4 Mapping Tags to Deflections
When deflection routing is in use, we use the following proce-

dure to map tags carried on packets to choices in the deflection set
at a router.

Tag Mapping Procedure: Let the deflection set at a router given
by a rule contain K members. Number these members pseudo-
randomly, starting with zero for the default shortest cost neighbor.
Let the router also pseudo-randomly choose a small prime num-
ber P from the first few primes (e.g., the first 10) greater than or
equal to K. Given a tag value of T on a packet, the router should
forward to the member of the deflection set identified by number
N = (T mod P) mod K.

This rule uses modulo arithmetic to pick from the deflection set.
The outer mod operation produces a number in the right range.
The randomization is used to avoid correlated choices at different
routers. The purpose of the inner mod operation is to produce a
further degree of freedom. It converts the input tag into an effective
tag value that is different for routers that chose different primes. In
this manner, the same tag values can be found to make different
choices at different routers, even when the routers have deflection
sets of the same size. We find the inner mod operation to be valu-
able in terms of path diversity as part of our evaluation (Section 6).

163

src

dst

ISP A ISP C ISP D

ISP B

Figure 4: Inter-domain deflections can switch peering points and AS-
PATHs. The solid line from source to destination shows the default
path via ISPs A-B-D. The dotted line shows a deflection that changes
the peering point but not the ASPATH. The dashed line shows a deflec-
tion that changes both peering point and ASPATH to ISPs A-C-D.

5. INTER-DOMAIN RULES
We now show how to extend deflections across multiple ISPs

to provide peering point diversity. It is straightforward for each
ISP to independently use deflections to route to external IP prefixes
advertised by BGP via one or more peering points. Deflections may
then change the ISP egress point (and hence next ingress point)
compared to default routes.

For inter-domain routing, we consider each ISP in isolation. We
assume that all routers in the ISP run BGP (with some policy cho-
sen by the ISP) as well as an IGP protocol such as OSPF or ISIS.
Each router then forwards packets on the shortest path to the IP
nexthop of the path selected by its BGP decision process. This will
often result in different routers in the ISP sending to different egress
points for a given destination because IGP cost metric is included
in the BGP decision process, e.g., early-exit routing. Thus the com-
plication for our deflection rules is that the default egress point and
hence cost metric for a destination may change unexpectedly when
the packet is deflected.

We can handle this complication to avoid intra-ISP loops by ex-
tending the cost function. Revealing the destination parameter that
has been implicit, the cost metric so far has the form cost(n, dst).
To capture the BGP decision process, we simply extend it to have
the form cost(n, nexthop(n, dst)). Here, nexthop() models the
BGP decision process that selects the IP nexthop to a destination IP
address dst. This decision process is part of BGP implementation
and should be the same for all routers in one ISP to prevent rout-
ing inconsistencies. A node n can compute the nexthop() of any
neighbor as the inputs to the nexthop() function: the BGP route
advertisements to the destination dst and the IGP costs to the can-
didate nexthops in the BGP advertisements, are both known to n.
The former is known from iBGP relay sessions and the latter from
IGP. With this nexthop information, a node ni can compute the
costs cost(ni±1, nexthop(ni±1, dst)). They are all a node needs
to know to compute a deflection set (Section 3). With this extension
of cost, all proofs in the appendix go through unchanged.

Inter-domain deflections provide two benefits in terms of path
diversity. Both are shown in Figure 4. First, the peering point used
between two ISPs may change; deflections are not limited in their
diversity to intra-ISP changes. This can occur because a packet
heading for a given peering point may deflect to a router that prefers
a different peering point. In fact, the presence of multiple peering
points will tend to increase the deflection potential.

Second, and more generally, the next ISP may be changed. This
is because the BGP decision process that is run at each router chooses

the ASPATH and nexthop jointly; BGP does not bind an entire ISP
to an ASPATH before choosing nexthops. An important consider-
ation in this case, given that deflected paths are loop-free within
individual ISPs, is that they remain loop-free across multiple ISPs.
This will continue to be the case when ISPs use “prefer-customer”
and “valley-free” routing policies, as is the common case. These
policies mean that any router of an ISP will only choose an egress
point that advertises the most preferred ASPATH, barring inter-ISP
loops as long as there are no customer-provider loops. Interest-
ingly, it is possible that the deflected ASPATH is one that was not
advertised downstream, but is nonetheless policy compliant by its
construction. For instance, in Figure 4, the advertised ASPATH to
dst by ISP A is ISPs A-B-D, but the deflected one may be A-C-D.

6. EVALUATION
In this section we simulate our tag architecture and deflection

rules to characterize the kinds of path diversity that they provide.
A high degree of path diversity is desirable to increase the ability
of a source to avoid faulty links or nodes on their default paths. We
characterize path diversity in three respects: the deflection paths
that exist between particular source and destination nodes (6.2);
the ability to route around particular nodes or links deemed faulty
(6.3); and the ability to switch peering points (6.4).

6.1 Methodology
We implemented a custom simulator to explore deflection routes

and evaluate tag-based deflections.
Input Topologies: We study a wide range of topologies because

deflection routes are a property of the network on which they are
computed:

1. Real networks for which we can obtain topologies and link
weights. These are Abilene and GEANT, research and educational
networks based in the US and Europe, respectively. These networks
have relatively large capacities but relatively few nodes and links.

2. Measured ISP topologies from Rocketfuel [20]. We use five
topologies (Sprint, Ebone, Tiscali, Exodus and Abovenet) complete
with link-weights that are inferred to match observed routing pat-
terns. (We exclude Telstra because the mapping is of low quality.)
These networks are substantially larger than Abilene and GEANT.

3. Topologies randomly generated with Brite [12]. We used two
different models: Barabasi Albert (BA) and the Waxman model
(Waxman). The BA model generates graphs with a power-law de-
gree distribution, and the Waxman model generates graphs with a
uniform degree distribution. For each model, we use link delay as
the cost metric for routing and generate low and high degree graphs.

The size and degree of all simulated networks are given in the
first column of Table 1. Networks within the same category are
ordered by average node degrees. Rule 3 refers to the link-version
of Rule 3 (Section 3). The node-version has similar results and
is omitted to save space. For Abovenet, we use and give figures
for the maximally connected component, since the network is not
connected otherwise.

Output Metrics: We compute several metrics for each network
and each deflection rule. They are summarized below, with further
detail where the corresponding results are presented.

To measure the number of usable deflection paths, we compute
the number of neighbors in the deflection set at each router. This
captures the number of opportunities there are to deflect off the
shortest path. We next compute the number of different deflec-
tion paths between a source and a destination. This shows how de-
flection opportunities at nodes are translated into deflection paths
through the network. Finally, we find the largest fraction of the
shortest path between a source and a destination that can be by-

164

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Number of deflection neghbors

Rule 1
Rule 2
Rule 3

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Number of deflection neghbors

Rule 1
Rule 2
Rule 3

(b) Exodus

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Number of deflection neghbors

Rule 1
Rule 2
Rule 3

(c) Sprint

Figure 5: The number of deflection neighbors a router has per incoming interface per destination. Rule 2 and 3 produce more deflection neighbors
than Rule 1. (Note that the lines for these rules overlap in the left graph.) Larger networks produce more deflection neighbors in which the majority
of routers have a choice of neighbor and some routers have a large number of deflection choices.

passed by deflections. This looks at how diverse the different de-
flection paths are in terms of their component links and nodes.

To measure the ability to route around faults, we consider in-
dividual links and nodes instead of source-destination pairs. We
compute the fraction of shortest paths that can be re-routed to by-
pass a faulty link or node. We then consider how many of these
paths will be found when the source uses simple strategies to set
tag values.

To measure the ability to switch peering points, we pick sets of
nodes to represent egress points, and compute how often a source
can arrive at an egress that is not its lowest-cost exit. In this setting,
the lowest-cost path is the shortest path to any egress point.

For each metric, larger is better. Some of the results also differ
across runs since they depend on the pseudo-random ordering of the
deflection neighbors. When this is the case, we present the average
of 10 runs. We omit the deviation across runs unless otherwise
noted because it is generally too small to be visible.

The sections below describe our results. We summarize the av-
erage metrics for all topologies in Table 1 and present the distri-
bution of the metrics for Abilene, Exodus and Sprint. These three
networks have 11, 79 and 315 nodes, respectively. They provide a
sample of the results that allow us to see how deflections change
with the scale of the network. We also find that the results for ran-
domly generated networks are consistent with those for designed
ISP networks. This suggests that deflections are reasonably robust
to variations in topology.

6.2 Deflection Paths
The first metric we consider is the number of neighbors in the

deflection set, K. This number is the function of the router, the de-
flection rule, the destination, and the incoming interface of a packet.
We compute the value K for all legitimate combinations of router
interfaces and destinations. (Rule 1 and Rule 3 do not allow all
combinations, since they will not use certain incoming interfaces
for a given destination.) Average results for all topologies are sum-
marized in the Deflection Nbr column of Table 1. Figure 5 shows
the cumulative distribution of K for Abilene, Exodus, and Sprint.

We make several observations. First, Rule 2 and Rule 3 are more
flexible than Rule 1. They produce more deflection choices in all
simulated networks, usually by a substantial margin. Second, the
larger networks provide more opportunities to deflect, as measured
by the size of the deflection set. Third, a large fraction of the routers
can deflect off the shortest path with Rules 2 and Rule 3. More than
40% of routers have K > 1 in all simulated topologies, and the
fraction is considerably higher for larger networks.

Next, we measure the number of different deflection paths a
packet can take between any two nodes in a network. Roughly,
this shows how tags convert deflection opportunities at individual
routers into complete deflection paths. This measure also depends
on how a router maps a tag into a deflection neighbor and tends
to be larger for longer default paths. Again, average results for all
topologies are summarized in the Deflection Path column of Ta-
ble 1 and distributions are given for Abilene, Exodus and Sprint in
Figure 6.

As before, we see that Rule 2 and Rule 3 outperform Rule 1
by a wide margin. In this case they have more deflection paths.
Even for a small network such as Abilene, more than 80% of node
pairs have a deflection path that differs from the default shortest
path with Rule 2 or Rule 3. For larger networks, nearly all node
pairs have a deflection path. Moreover, in the case of Sprint we
see that many node pairs have close to the maximum number of
deflection paths, which is 210 − 1 for our ten bit tag. This suggests
that our tag mapping rule does a good job of mapping different
tags to different routes. We also simulated a different tag mapping
rule that does not use a pseudo-random modulo operation (Sec-
tion 4.4). The number of deflection paths (averaged over all rules
and all topologies) is nearly four times less than that produced by
our tag mapping rule. We also compared our deflection rules with
equal-cost multi-path (ECMP) routing. The average number of al-
ternative paths produced by ECMP on our input topologies ranges
from 0 to 1.4, much smaller than that produced by our deflection
rules (Table 1).

Finally, we measure how much the deflection paths differ from
the default shortest path. The more they differ, the more likely it is
that a source can bypass faulty nodes or links that lie on the default
routing path. We compute differences as the largest fraction of the
shortest path nodes and links, respectively, that can be bypassed
with a single deflection. Suppose Ps = (A, N1, N2, ..., Nn, B)
is the default shortest path routing between node A and B, Pd =
(A, M1, M2, ..., Mm, B) is a deflection path between A and B. If
Ni does not appear in Pd, then we count it as a node difference. If
there are a total of x node differences, the fraction of node differ-
ences is computed as x/n. For each node pair, we record the maxi-
mum node difference among all deflection paths. This corresponds
to the largest portion of the path that can be avoided. Similarly, we
also computed link difference. We omit results for link differences
to save space, since node differences provide the stricter test: a one
node difference requires at least two link differences.

We present summary results for each topology in the Node Dif-
ference column of Table 1 and distributions of node difference for

165

Network Rule Deflection Nbr Deflection Path Node Difference Node Bypassed Link Bypassed Peering Bypassed
|P | = 2 |P | = 5

Mean > 1 Mean Median Mean Median 10 tries All 10 tries All 10 tries All 10 tries All
R

ea
l

Abilene 1 1.2 19% 1 1 30% 0% 62% 64% 54% 64% 35% 37% 68% 69%
Nodes: 11 2 1.6 43% 5 4 68% 100% 90% 95% 93% 95% 77% 81% 98% 98%
Degree: 2.55 3 1.6 43% 4 3 69% 100% 90% 95% 97% 98% 77% 82% 98% 99%
Geant 1 1.4 33% 2 1 51% 50% 70% 72% 67% 72% 43% 48% 76% 77%
Nodes: 23 2 2.1 53% 24 20 76% 100% 89% 94% 95% 97% 84% 93% 99% 99%
Degree: 3.22 3 2.1 55% 18 16 76% 100% 90% 95% 96% 97% 84% 94% 99% 99%

M
ea

su
re

d

Ebone 1 1.8 46% 11 3 43% 40% 60% 61% 64% 61% 37% 40% 55% 57%
Nodes: 87 2 2.6 62% 311 258 70% 80% 77% 81% 87% 89% 69% 81% 84% 87%
Degree: 3.70 3 2.5 66% 167 112 72% 83% 78% 82% 88% 89% 70% 83% 86% 90%
Exodus 1 1.8 48% 26 6 53% 60% 68% 70% 65% 70% 41% 46% 55% 57%
Nodes: 79 2 2.6 63% 415 405 79% 100% 87% 90% 92% 93% 67% 78% 84% 89%
Degree: 3.72 3 2.6 68% 300 253 81% 100% 88% 91% 93% 93% 69% 79% 85% 90%
Tiscali 1 2.9 57% 74 22 60% 66% 68% 69% 69% 69% 43% 51% 65% 67%
Nodes: 161 2 4.0 67% 653 761 76% 85% 78% 80% 81% 83% 67% 81% 85% 88%
Degree: 4.07 3 3.8 71% 488 506 76% 87% 78% 81% 81% 83% 69% 82% 86% 89%
Abovenet 1 2.7 70% 101 29 73% 100% 85% 89% 80% 89% 42% 53% 64% 69%
Nodes: 138 2 4.0 81% 734 867 89% 100% 94% 97% 95% 97% 71% 88% 90% 95%
Degree: 5.39 3 3.9 85% 629 711 89% 100% 94% 97% 96% 97% 70% 88% 90% 96%
Sprint 1 3.3 71% 61 25 73% 100% 75% 77% 78% 77% 48% 56% 71% 74%
Nodes: 315 2 5.9 79% 849 984 89% 100% 86% 90% 95% 96% 68% 87% 89% 95%
Degree: 6.17 3 5.7 83% 808 952 90% 100% 87% 91% 95% 96% 68% 87% 90% 95%

R
an

do
m

BA-1 1 2.2 53% 14 6 62% 100% 81% 83% 76% 83% 65% 73% 82% 83%
Nodes: 100 2 4.1 67% 488 516 92% 100% 97% 99% 97% 99% 90% 98% 98% 99%
Degree: 3.94 3 3.5 69% 240 230 93% 100% 98% 99% 98% 99% 91% 99% 99% 99%
Waxman-1 1 1.9 55% 14 6 66% 100% 79% 81% 78% 81% 57% 65% 78% 79%
Nodes: 100 2 3.0 69% 357 363 94% 100% 97% 99% 97% 99% 86% 97% 98% 99%
Degree: 4.00 3 2.8 72% 218 208 94% 100% 97% 99% 98% 99% 89% 98% 99% 99%
BA-2 1 3.2 76% 38 19 75% 100% 89% 90% 86% 90% 74% 82% 88% 89%
Nodes: 100 2 5.0 87% 606 642 93% 100% 98% 99% 99% 99% 94% 99% 99% 100%
Degree: 5.88 3 4.8 91% 470 488 93% 100% 99% 99% 99% 99% 94% 99% 99% 100%
Waxman-2 1 3.0 77% 46 19 77% 100% 89% 90% 89% 90% 71% 78% 85% 85%
Nodes: 100 2 4.4 87% 554 584 93% 100% 99% 99% 99% 99% 93% 99% 99% 100%
Degree: 6.00 3 4.4 90% 467 475 93% 100% 99% 99% 99% 99% 94% 99% 99% 100%

Table 1: Summary of results for all simulated networks for all rules. Metrics other than medians and > 1 are averaged over all source-destination
pairs, nodes, links or peering trials, as appropriate from left to right. The node, link and peering bypass percentages are intended to convey the
chance that a node, link or peering point could be avoided with deflections.

our three example topologies in Figure 7. The value 100% corre-
sponds to deflection paths that are node-disjoint with the shortest
path (other than at source and destination). An ideal result would
hug the x-axis then jump to one at 100%, meaning that every node
pair had a node-disjoint deflection path. For the networks we show
here, we see positive results. At least 60% of all node pairs have
a node-disjoint deflection path under Rule 2 or Rule 3, with larger
networks having near node-disjoint deflections even more often.

6.3 Fault Tolerance
The results above show that deflections can provide significant

path diversity between source-destination pairs. We now consider
how well sources are able to harness this diversity by using tags to
avoid faults.

Specifically, we construct an experiment as follows. We pick a
random link or node to be faulty. This fault will lie on the default
routing path of a set of (perhaps many) source-destination pairs.
For each pair, we simulate the source as it tries to bypass the fault
by selecting different tag values. To stress the tag mechanism, we
assume that a source tries at most ten tags before it assumes it can-
not bypass the fault, since there is a cost to sending packets to try
tags. For each fault and node pair, we record whether the source
can bypass the failure and the number of tries it takes.

We use a simple strategy to select tag values. In the first five tries,
the source chooses tags 1 through 5. This instructs each router to
try five pseudo-random deflections, if that many exist. (Recall that
tag 0 is reserved to indicate the default routing path.) In the last
five tries, the source randomly picks a tag value in the remaining
tag space [6,1023]. The intent here is to try to decouple effective
tag choices at each router, since the tag is likely to be mapped to

different values with different primes at different routers. We have
not studied tag search strategies in detail, and better ones are likely
to exist. However, they will only improve our results.

The results of this experiment are shown in the Node Bypassed
and Link Bypassed columns of Table 1 and Figures 8 and 9. The
summary results show that for nearly all topologies the vast major-
ity of node pairs (often exceeding 90%) can bypass single node and
link faults with deflections and that these deflections can be found
by trying a small number of tags. The figures provide detail on the
distributions for our sample networks.

Figure 8 shows the distribution of the number of node pairs that
can avoid a faulty node after 10 tries. The x-axis specifies faulty
nodes that are on default routing paths. We rank these nodes ac-
cording to the number of source-destination pairs that use them for
default routes, R. We start with nodes that are on the most paths
because they are the most important ones to be able to bypass. The
vertical lines show the R values, and the points on each line show
how many node pairs can avoid the faulty node after trying 10 tags.
In the ideal situation, all points should stay on top of the vertical
lines, indicating all node pairs that are affected by the faulty node
can avoid it. We see that in all three networks the black squares that
represent Rule 3 stay close to the top of the lines. This shows that
a large fraction of node pairs affected by a faulty node can avoid
it. We also ran simulations for faulty links using the same method-
ology. These results are generally even better, since it is harder to
avoid a faulty node than a faulty link. We omit them to save space.

Figure 9 reports on the distribution of the number of tries that
were made (with different tag values) to avoid the faults. It shows
the fraction of the node pairs that could avoid a fault with a given
number of tries, averaged over the different possible faults. This ap-

166

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Number of deflection paths per node pair

Rule 1
Rule 2
Rule 3

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Number of deflection paths per node pair

Rule 1
Rule 2
Rule 3

(b) Exodus

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Number of deflection paths per node pair

Rule 1
Rule 2
Rule 3

(c) Sprint

Figure 6: The number of deflection paths between two nodes. An ideal result would hug the x-axis until 210 and then rise vertically, such that all
node pairs have the maximum number of deflection paths. We see that most paths have deflections and larger networks have more deflection paths.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Fraction of node difference

Rule 1
Rule 2
Rule 3

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Fraction of node difference

Rule 1
Rule 2
Rule 3

(b) Exodus

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m
u
l
a
t
i
v
e

f
r
a
c
t
i
o
n

Fraction of node difference

Rule 1
Rule 2
Rule 3

(c) Sprint

Figure 7: The largest fraction of node differences between a deflection path and the default shortest path for every node pair. Short vertical lines
with horizontal bars show the (very tight) standard deviations across runs. An ideal result would hug the x-axis then jump to one at 100%, meaning
that every node pair had a node-disjoint deflection path. We see that most node pairs can deflect a large fraction of the shortest path nodes, with
larger networks being able to deflect more of the path more often.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9

N
u
m
b
e
r

o
f

N
o
d
e

P
a
i
r
s

Node rank

Total
Rule 3
Rule 2
Rule 1

(a) Abilene

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50

N
u
m
b
e
r

o
f

N
o
d
e

P
a
i
r
s

Node rank

Total
Rule 3
Rule 2
Rule 1

(b) Exodus

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 20 40 60 80 100 120

N
u
m
b
e
r

o
f

N
o
d
e

P
a
i
r
s

Node rank

Total
Rule 3
Rule 2
Rule 1

(c) Sprint

Figure 8: The number of node pairs that can avoid a faulty node after 10 tries. The x-axis shows the index of the faulty node. The vertical bars show
the total number of node pairs that have the faulty node on their default routing paths. The points show how many node pairs successfully avoid the
faculty nodes. The closer the points are to the top of the lines, the better. Rule 3 is consistently able to mostly or completely avoid faults.

proximates the probability with which a source can avoid a faulty
node after a given number of tries. Not all faults can be bypassed.
The column labeled “failed” shows the fraction of node pairs that
needed more than 10 tries. The column labeled “unavoidable”
shows the fraction of node pairs that cannot avoid a faulty node
even if all tag values are tried. We see that, in all three networks, a
significant fraction of node pairs can avoid faulty nodes in 10 tries,
especially for Rules 2 and 3. Moreover, most successes happen
quickly, such that only one or two tags need to be tried in most
cases. The difference between trying ten tags and all tags is also

insignificant. This suggests that a source can quickly find an alter-
native path to avoid a particular node (or link).

6.4 Inter-domain Deflections
It is difficult to assess the path diversity that deflections will pro-

vide in the Internet. This is because it depends on inter-domain
routing policies and peering patterns as well as ISP topologies, and
precious little data are publicly available. Instead, to gain a basic
understanding of deflections with multiple ISPs, we look at how of-
ten they can change the peering points used between pairs of ISPs.

We construct a simple experiment to do this as follows. For each

167

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

unavoidablefailed 10 9 8 7 6 5 4 3 2 1 0

A
v
e
r
a
g
e

f
r
a
c
t
i
o
n

Number of Tries

Rule 1
Rule 2
Rule 3

(a) Abilene

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

unavoidablefailed 10 9 8 7 6 5 4 3 2 1 0

A
v
e
r
a
g
e

f
r
a
c
t
i
o
n

Number of Tries

Rule 1
Rule 2
Rule 3

(b) Exodus

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

unavoidablefailed 10 9 8 7 6 5 4 3 2 1 0

A
v
e
r
a
g
e

f
r
a
c
t
i
o
n

Number of Tries

Rule 1
Rule 2
Rule 3

(c) Sprint

Figure 9: The number of tags needed to bypass a fault. The y-axis gives the fraction of node pairs that can avoid a faulty node on their shortest path
after the number of tries on the x-axis. The column labeled “failed” shows the fraction of node pairs that needed more than 10 tries to bypass the
fault. The column labeled “unavoidable” shows the fraction of node pairs that cannot avoid a faulty node even if all tag values are tried. The short
vertical bars show the standard deviation across different node faults. We see that most faults can be bypassed with one or two tag choices, and that
the difference between trying 10 tags and all tags is insignificant. Note the y-axis stops at 0.7 to show more detail.

network, we randomly choose P nodes to be peering points, where
|P | = 2, 3, 4, 5. We assume that BGP policies have chosen this set
as the egress or peering points to an adjacent ISP. Each node n in
the network will have a default peering point p ∈ P for which n
has the lowest IGP cost. This simulates the shortest path routing
mechanism inside the ISP.

We then run simulations to measure the fraction of nodes that
can switch their peering points away from their defaults. We as-
sume a node only tries ten tags to stress the design. The fraction
we compute is the likelihood that a node can bypass its default peer-
ing point if it considers the default faulty. It depends on both the
number of peering points and the specific points we choose. To
obtain an overall estimate, for each simulation, we fix the number
of peering points |P |, and choose 100 random sets (or as many
combinations as exist, if that is smaller). We record the fraction of
nodes that can change their peering points for each peering set P ,
and average the results over all peering sets. As before, the final
results are averaged over 10 simulation runs to reduce the effect of
the pseudo-random ordering of deflection neighbors.

The Peering Bypassed column of Table 1 summarizes the results.
We only show the results when the number of peering points is
2 and 5, respectively. The sub-column All shows the fraction of
nodes that can bypass a peering point if all tags are tried. Figure 10
shows the results for 2, 3, 4, and 5 peering points for our example
networks. The x-axis shows the number of peering points. The
y-axis shows the fraction of nodes that can use a different peering
points after 10 tag tries.

Rule 2 and 3 consistently provide more peering choices than
Rule 1. With them, a significant fraction of nodes can change their
peering points after only 10 tag tries. When the number of peering
points is larger, this fraction is higher. When there are only two
peering points, more than 67% of nodes for all simulated topolo-
gies can use the alternative peering point. When there are five peer-
ing points, most topologies have more than 90% of nodes that can
choose a different peering point. We also note that trying all tags
helps to bypass a peering point somewhat more than to bypass a
faulty node or link that lies on the default routing path.

6.5 Summary
Overall, our results show that it is possible to construct deflection

rules that provide good path diversity. In particular, our Rules 2 and
3 are significantly better than the straightforward Rule 1. Greater
levels of diversity are available in designed networks that are larger

in size as well as random networks that have higher average degree.
Path diversity via deflections allows a peering point or a faulty node
(or link) to be avoided most of the time, even in small networks.
Moreover, tags are effective to access path diversity. A deflection
that bypasses one fault can be found by trying a single tag most of
the time, with a small number of faults requiring more tries.

7. RELATED WORK
Our work is motivated by results that show variants of source

routing to be beneficial. RON [1], Detour [17], and SOSR [7] show
that overlay routing can improve end-to-end reliability, throughput,
latency, and loss rate. In early work, Perlman used source routing
as an essential means to avoid Byzantine failures [13]. Clark et
al. [5] argue that end user control over provider-level routes has the
potential to create a competitive ISP marketplace.

Much work addresses the difficulties of implementing source
routes. In particular, to handle scaling issues, many schemes use a
link-state like routing protocol to provide end systems with a map
of the network [27, 15, 28, 6, 4, 3]. In contrast, we build on the ex-
isting shortest-path machinery to capture ISP policy and eliminate
the need for sources to obtain any map. Further, we do not require
end-systems to forward packets for each other, as do overlays, nor
install path-specific state at routers, as do schemes such as packet
reflection [9]. As a tradeoff, the region of the network over which a
source can deflect its packets is restricted. Nevertheless, our results
show most node and link failures can be bypassed in practice.

Other routing and forwarding schemes use short, fixed-length la-
bels to represent multiple paths. MPLS [16] is widely used by back-
bone ISPs to split traffic along multiple paths. Bananas [10] uses a
32-bit hash of an AS path as a label. NIRA [27] uses hierarchically
allocated IPv6 addresses to represent provider-level routes. Unlike
deflections, all these mechanisms map a label to a unique path and
so require additional signaling messages to establish the mapping.

Similar to deflections, some multi-path routing formulations al-
low a router to choose among multiple next hops to reach a desti-
nation without looping. OSPF and ISIS permit multi-path routing
among next hops with equal cost to a destination [22]. Vutukury
et al. propose a multi-path scheme similar to Rule 1 in which a
router can choose any neighbor with a cost less than itself as the
next hop [23, 24]. Our rules construct larger sets of paths.

Finally, work on local route repair explores the use of alternate
next hops to bypass faults before new routes have converged. On-
going work in the IETF [19] studies the well-known Rule 1 and

168

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
v
e
r
a
g
e

f
r
a
c
t
i
o
n

Number of peering points

Rule 1
Rule 2
Rule 3

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
v
e
r
a
g
e

f
r
a
c
t
i
o
n

Number of peering points

Rule 1
Rule 2
Rule 3

(b) Exodus

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

A
v
e
r
a
g
e

f
r
a
c
t
i
o
n

Number of peering points

Rule 1
Rule 2
Rule 3

(c) Sprint

Figure 10: The fraction of nodes that can switch peering points after 10 tag tries. The x-axis shows the number of peering points, which are
randomly chosen. The short vertical bars show the standard deviation across different peering sets. We see that Rule 2 and Rule 3 consistently
provide more peering choices.

variants that are similar to our Rule 2. The main distinction is that
this work targets a single fault and may result in loops if there are
multiple faults, whereas our deflections can be used safely at mul-
tiple locations. This IETF work is similar to earlier work by Wang
and Crowcroft [25]. More recently, Iyer [8] studied re-routings that
are equivalent to Rule 1 and similar to Rule 2. However, that work
places restrictions on the intra- versus inter-POP weights to avoid
loops while we do not.

8. CONCLUSIONS
We have presented a practical system that provides the benefits

of source-controlled routes in the Internet without the problems as-
sociated with explicit source routes. It is a tag-based routing archi-
tecture that uses routing deflections to provide path diversity. Users
tag packets with hints, rather than explicit source routes, and ISPs
use these hints to select among alternative paths. These tags can be
encoded in a way that is compatible with common IP usage. ISPs
generate the underlying path diversity with the routing deflections
that we have introduced. This mechanism is scalable, compatible
with ISP policies and easily incrementally deployable. To evaluate
the overall system, we performed simulations with real, measured
and random network topologies. We found that deflections provide
a high-level of path diversity and tags make effective use of this di-
versity. With our rules, a source can avoid most single node or link
faults by trying only a handful of tags, with better results for larger
networks.

We consider the routing deflections rules we have defined to be
the most interesting aspect of our work. We were surprised to
realize that such a large set of non-shortest path neighbors could
be used to reach the destination without the danger of loops, and
that this could be done robustly without any coordination between
neighboring routers. It is likely that there exist other, perhaps more
powerful, deflection rules, since we have not yet systematically ex-
plored the design space. We have also restricted our attention to
deflection rules that are incrementally deployable with the exist-
ing shortest path routers. Easing this restriction, say by signaling
path information on packets, would permit other deflections. We
are also interested in exploring the use of deflections in other set-
tings, the most immediate of which is to locally repair routes and
minimize transient loops during routing convergence.

9. ACKNOWLEDGEMENTS
Wetherall gratefully acknowledges the support of a Sloan Re-

search Fellowship. We thank Minas Gjoka for converting the input

topologies to the format needed by our simulator, and the anony-
mous reviewers, our shepherd Bruce Davie, Nick Feamster, Jinyang
Li, Xin Liu, and Junfeng Yang for providing useful feedback.

10. REFERENCES
[1] D. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient

overlay networks. In SOSP, Oct. 2001.
[2] P. Baran. On distributed communications, vol. i. RAND Technical Report

RM-3420-PR, Aug. 1964.
[3] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod Routing

Architecture. IETF RFC 1992, Aug. 1996.
[4] D. Clark. Policy Routing in Internetworks. Internetworking: Research and

Experience, 1, 1990.
[5] D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in cyberspace:

Defining tomorrow’s Internet. In SIGCOMM, Aug. 2002.
[6] D. Estrin, Y. Rekhter, and S. Hotz. Scalable Inter-Domain Routing Architecture.

In ACM SIGCOMM, 1992.
[7] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and

D. Wetherall. Improving the reliability of internet paths with one-hop source
routing. In OSDI, Dec. 2004.

[8] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot. An approach to alleviate link
overload as observed on an IP backbone. In INFOCOM, 2003.

[9] J. Jannotti. Network layer support for overlay networks. In IEEE OPENARCH,
June 2002.

[10] H. T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, and A. Gandhi. Bananas:
An evolutionary framework for explicit and multipath routing in the Internet. In
ACM SIGCOMM FDNA workshop, Aug. 2003.

[11] N. Maxemchuk. Routing in the manhattan street network. IEEE Trans. on
Communication, COM-35(5), May 1987.

[12] A. Medina, I. Matta, and J. Byers. BRITE: A flexible generator of Internet
toplogies. Technical Report BU-CS-TR-2000-005, Boston University, 2000.

[13] R. Perlman. Network layer protocols with byzantine robustness. Technical
report, MIT, Oct. 1988. MIT-LCS-TR-429.

[14] R. Perlman. Routing with byzantine robustness. Technical report, Sun Labs,
Aug. 2005. TR-2005-146.

[15] B. Raghavan and A. C. Snoeren. A System for Authenticated Policy-Compliant
Routing. In ACM SIGCOMM, 2004.

[16] E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching
architecture. IETF RFC3031, Jan. 2001.

[17] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. The end-to-end
effects of Internet path selection. In SIGCOMM, Aug. 1999.

[18] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support
for IP traceback. In SIGCOMM, Aug. 2000.

[19] M. Shand and S. Bryant. IP Fast Reroute Framework. IETF Routing Working
Group, work in progress, Mar. 2006.

[20] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with
Rocketfuel. In SIGCOMM, Aug. 2002.

[21] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: A scalable
architecture to approximate fair bandwidth allocations in high speed networks.
In SIGCOMM, 1998.

[22] D. Thaler and C. Hopps. Multipath issues in unicast and multicast next-hop
selection. IETF RFC 2991, Nov. 2000.

[23] S. Vutukury and J. Garcia-Luna-Aceves. MDVA: A distance-vector multipath
routing protocol. In IEEE Infocom, 2001.

169

[24] S. Vutukury and J. Garcia-Luna-Aceves. Mpath: a loop-free multipath routing
algorithm. Journal of Microprocessors and Microsystems, 2001.

[25] Z. Wang and J. Crowcroft. Shortest path first with emergency exits. In
SIGCOMM, 1990.

[26] A. Yaar, A. Perrig, and D. Song. Pi: A path identification mechanism to defend
against ddos attacks. In IEEE Symposium on Security and Privacy, 2003.

[27] X. Yang. NIRA: A new Internet routing architecture. In ACM SIGCOMM
FDNA workshop, 2003.

[28] D. Zhu, M. Gritter, and D. R. Cheriton. Feedback Based Routing. In Proc. of
HotNets-I, 2002.

APPENDIX
We prove that each rule provides paths that are loop-free and reach
their destinations, even when shortest-path routers are present in
the network.

A. RULE 1 (ONE HOP DOWN)
Let the sequence of nodes on the forwarding path be ni for i ≥ 0.

Consider the sequence cost(ni) for i ≥ 0. By Rule 1 it strictly
decreases. Hence each node in the sequence must correspond to a
different node so that the path is loop-free. To reach the destination,
it suffices to show that the deflection set is not empty. This is so
because shortest-path neighbors are always valid choices because
they have lower cost than the current node by the definition. This
further implies that shortest-path routers make valid deflections and
can be freely mixed with Rule 1 routers.

B. RULE 2 (TWO HOPS DOWN)
To show loop-freedom, we prove that no directional link will re-

peat in the forwarding path. Define the cost of a directional link ui

that connects ni and ni+1 to be the maximum cost of its endpoints.
We now show that the cost of adjacent links is non-increasing. To
do this we state link cost and substitute Rule 2 expressed in succinct
form as a maximum operator that combines its two clauses:

cost(ui+1) = max(cost(ni+1), cost(ni+2))

≤ max(cost(ni+1), max(cost(ni+1), cost(ni)))

= max(cost(ni), cost(ni+1))

= cost(ui)

Next we show that the cost of every other link along a path is
strictly decreasing:

cost(ni+3) < max(cost(ni+2), cost(ni+1))

≤ max(max(cost(ni+1), cost(ni)), cost(ni+1))

= max(cost(ni), cost(ni+1))

= cost(ui) (1)

By the definition of Rule 2 and link costs we also have:

cost(ni+2) < max(cost(ni), cost(ni+1))

= cost(ui) (2)

Both cost(ni+2) and cost(ni+3) are less than cost(ui). Hence
by definition, cost(ui+2) < cost(ui). And from (1) and (2) it fol-
lows that on the forwarding path, the cost of any link ui+k for
k > 1 is strictly less than ui. Therefore, any link ui+k with k > 1
cannot be the same as link ui. It remains to show that the adja-
cent link ui+1 cannot be the same as ui. This is true because these

two links start at different nodes. Thus, no directional link can be
re-visited on the forwarding path; there are no link-level loops.

To see compatibility with shortest-path routers, observe that the
shortest path neighbor is always valid deflection choice because it
satisfies the downhill clause. Liveness follows from this too, as the
deflection set is non-empty, and a packet will eventually reach its
destination.

C. RULE 3 (TWO HOPS FORWARD)
Observe that removing links from the graph can only increase

the cost of paths that would otherwise use it, i.e.:

cost(G, ni) ≤ cost(G\lj , ni) ∀ nodes ni, links lj (3)

We now restate Rule 3 compactly and substitute (3) for the bidi-
rectional incoming link li (that connects ni−1 and ni):

cost(G\li+1, ni+1) < max(cost(G\li, ni), cost(G, ni−1))

≤ max(cost(G\li, ni), cost(G\li−1, ni−1))

This has the same form we saw in Rule 2 when we consider
the sequence cost(G\li, ni) instead of cost(ni). Hence we can
show loop-freedom in precisely the same manner, by defining an
analogous directional link cost and showing that no directional link
is repeated. (We omit this to avoid repetition.)

To show that Rule 3 reaches destinations, it suffices to show that
the deflection set is not empty before the destination is reached.
To do this, we will show that the shortest-path neighbor in G\li is
always an allowed choice. Let this shortest-path neighbor be node
ni+1 so that by definition we have cost(G\li, ni+1) < cost(G\li, ni).
Next we show that cost(G\li+1, ni+1) < cost(G\li, ni+1). This
is because ni+1 is ni’s shortest path neighbor. Its shortest path in
the graph G\li cannot go back across the last incoming link li+1.
Hence, the cost of ni+1 in the graph that excludes both links li
and li+1, i.e., G\(li, li+1), is the same as cost(G\li, ni+1). Then
by using inequality (3), we can upper bound cost(G\li+1, ni+1).
With these steps we have:

cost(G\li+1, ni+1) ≤ cost(G\(li, li+1), ni+1)

= cost(G\li, ni+1)

< cost(G\li, ni) (4)

This inequality (4) satisfies Rule 3 because it is simply the down-
hill clause. So the shortest-path neighbor in G\l is in the deflection
set as required.

Finally, to show compatibility with shortest-path routes, it suf-
fices to show that the shortest path neighbor of ni in G is an allow-
able deflection choice. By definition of the shortest neighbor ni+1,
cost(G, ni+1) < cost(G, ni). In addition, the shortest path from
ni+1 will not go back across the incoming link, li+1. Therefore, the
cost of ni+1 in the graph G\li+1 is the same as in G. Combining
these facts we have cost(G\li+1, ni+1) < cost(G, ni). Applying
(3) we obtain cost(G\li+1, ni+1) < cost(G\li, ni). This is sim-
ply the downhill clause of Rule 3. Thus shortest path forwarding
satisfies Rule 3, as required.

170

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

