
Path Splicing

Murtaza Motiwala, Megan Elmore, Nick Feamster and Santosh Vempala
College of Computing, Georgia Tech
http://www.gtnoise.net/splicing

ABSTRACT
We present path splicing, a new routing primitive that allows net-
work paths to be constructed by combining multiple routing trees
(“slices”) to each destination over a single network topology. Path
splicing allows traffic to switch trees at any hop en route to the des-
tination. End systems can change the path on which traffic is for-
warded by changing a small number of additional bits in the packet
header. We evaluate path splicing for intradomain routing using
slices generated from perturbed link weights and find that splicing
achieves reliability that approaches the best possible using a small
number of slices, for only a small increase in latency and no ad-
verse effects on traffic in the network. In the case of interdomain
routing, where splicing derives multiple trees from edges in alter-
nate backup routes, path splicing achieves near-optimal reliability
and can provide significant benefits even when only a fraction of
ASes deploy it. We also describe several other applications of path
splicing, as well as various possible deployment paths.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign C.2.2 [Computer-Communication Networks]: Network
Protocols—Routing Protocols

General Terms: Algorithms, Design, Reliability

Keywords: Path Splicing, path diversity, multi-path routing

1. INTRODUCTION
Many networked applications can benefit from access to multiple

paths between endpoints. Multipath routing, which provides nodes
access to multiple paths for each destination, can increase avail-
ability by providing fast (or simultaneous) access to backup paths;
it can also improve capacity by increasing the number of paths that
endpoints can use to communicate with one another. As Internet
applications demand higher availability and faster recovery from
failures, multipath routing and pre-computed backup paths have
emerged as promising mechanisms for recovering from failures.

Despite the need for, and the promise of, multipath routing, many
such schemes require considerable precomputation to achieve even
a small number of paths through the network. Two obstacles have
hindered many multipath routing solutions; the first is scalabil-
ity. Existing schemes typically compute a small number of backup
paths that can protect against certain failure scenarios, but they do
not provide recovery from many others. Instead, the routing sys-
tem should provide much stronger guarantees: Unless the under-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

Figure 1: With k paths between the pairs of nodes, any k fail-
ures, one on each path disconnects the network. With splicing,
a graph cut must be created to disconnect the network.

lying network is partitioned, the routing system should provide at
least one path that allows endpoints to communicate. The second
obstacle is control: an endpoint (or intermediate point) should have
some ability to change the path or paths that it uses to send traffic to
each destination. Unfortunately, granting too much control to end
systems can interfere with traffic engineering and may potentially
result in traffic oscillations [24].

This paper presents the design, implementation, and evaluation
of a new routing primitive called path splicing, a scalable mech-
anism for providing network nodes or endpoints access to a very
large number of alternate paths. Path splicing has three key fea-
tures: (1) it constructs multiple routing trees over a single fixed
physical topology; (2) it allows traffic to take a path that switches
between these trees at intermediate hops en route to the destination;
(3) it allows end systems to change the forwarding path by changing
a small number of additional bits in the packet header. Intermedi-
ate nodes can also change the path on which traffic is forwarded.
These building blocks, of course, could apply to any routing proto-
col. In this paper, we study them in the context of intradomain and
interdomain routing.

We explore how path splicing can improve availability accord-
ing to two metrics: reliability and recovery. Reliability mea-
sures whether the routing information that is disseminated between
routers reflects the connectivity in the underlying topology. In other
words, it measures whether the paths that each router knows cre-
ate a connected graph in the underlying topology, even when links
or nodes in the underlying topology fail. Recovery measures how
quickly endpoints can re-establish working paths with one another
by finding a working path in among the available choices in the
routing tables. Our evaluation demonstrates that, with just a few
slices, path splicing can achieve reliability that approaches that of
the underlying graph (i.e., the best possible), and that, in the face of
failures, end systems can discover a new working path within two
trials (which are independent and can be run simultaneously), even
without any knowledge about the location of the failure. The actual
time to recover from a failure, of course, also comprises the time to
detect the existence of a failure, which we do not consider in this
work. Our results suggest that, when combined with a fast failure
detection mechanism, path splicing can provide end systems with
enough resilience to quickly recover from failures without waiting
for dynamic routing protocols to converge to a new working path.

To illustrate why path splicing can be so effective, consider Fig-
ure 1. A conventional routing algorithm would compute one path
between the nodes at each end. Multipath routing typically aims to

27

compute k edge-disjoint paths between these nodes. Unfortunately,
if at least one link fails on each path, the nodes may become dis-
connected, even if the underlying topology remains connected. Path
splicing computes multiple paths and also allows traffic to change
paths at intermediate nodes, thus “splicing” paths together. By pro-
viding access to these spliced paths, path splicing can sustain con-
nectivity in the face of many more link and node failure scenarios.
In Figure 1, the pair of nodes on each side of the graph will become
disconnected if a link fails on each of the k edge-disjoint backup
paths. With path splicing, k links must fail in the same cut to cre-
ate a disconnection, a much less likely event (since this is only one
specific way in which all k paths could be broken). If we assume
that links fail at random, then O(k log k) failures will disconnect
all k paths with high probability1, and the probability of a cut is
exponentially small.

Despite its conceptual simplicity, path splicing faces several
practical challenges. First, splicing forwards traffic along paths that
do not constitute a single tree to a destination, which creates the
possibility for paths to contain loops. We show, both analytically
and empirically, that in practice these loops are neither persistent
nor long. Second, splicing gives end hosts some control over where
traffic is forwarded, which can interfere with operators’ traffic en-
gineering goals and potentially cause oscillations if all end systems
forward traffic over the same set of links. Path splicing’s inter-
face for path selection carries no explicit semantics about the actual
path, however, which means that end systems have no mechanism
or incentive to select the same alternate path when a path fails. Our
experiments show that spliced paths do not adversely affect the traf-
fic distribution or load across the network links. Finally, there is an
inherent tradeoff between the extent to which alternate slices pro-
vide paths with a diverse set of edges and the additional latency
(“stretch”) incurred along the spliced paths. For intradomain rout-
ing, path splicing can achieve near-optimal reliability with a stretch
of about 30%; for interdomain routing, splicing can achieve near-
optimal reliability with negligible stretch in terms of the number of
AS hops.

Although this paper focuses on how splicing applies to Inter-
net routing (specifically, we focus on applications of splicing to
both intradomain and interdomain routing), the mechanism is gen-
eral and could certainly be applied in other contexts (e.g., routing
in wireless networks or overlays). This paper explores how path
splicing can improve availability by facilitating rapid recovery from
failures; however, splicing is useful in any scenario that requires ac-
cess to multiple paths. In Section 8, we discuss various open issues
with ultimately deploying path splicing in practice.

The rest of the paper is organized as follows. Section 2 summa-
rizes our design goals. Section 3 presents related work. Section 4
provides an overview of path splicing and describes the high-level
properties of the technique. Section 5 describes how splicing can be
applied to intradomain routing, and Section 6 describes an exten-
sion of splicing to interdomain routing. Section 7 presents experi-
ments that quantify how splicing improves both reliability and re-
covery, and explores splicing’s effects on and interactions with traf-
fic. Section 8 describes a possible implementation path for splicing,
as well as security concerns, and Section 9 concludes.

2. DESIGN GOALS
To achieve high availability, routing must exploit the underlying

diversity of the network graph. Routing should maintain paths be-
tween nodes in the network unless the underlying network graph
itself is disconnected. Current routing protocols, which are typi-

1This result follows from the coupon collector problem.

cally single-path, cannot achieve this. The challenge in providing
multiple paths in the network to provide high path diversity is to
disseminate the information about the multiple paths in a simple,
scalable fashion. Specifically, a routing system should have the
following design goals:

• High reliability. A routing protocol should allow nodes to
maintain information about connectivity between pairs of
network nodes, even as nodes or links in the network fail.
(Section 2.1)

• Fast recovery. In addition to providing many alternate paths,
the routing protocol should allow end systems to discover
and use these alternate paths. (Section 2.2)

• Small stretch. The alternate paths should not be signifi-
cantly longer, in terms of latency or number of hops, than
the default path. (Section 2.3)

• Control to end systems. End systems should have some
control over the paths that traffic uses. (Section 2.4)

The rest of this section describes these goals in more detail and
formally defines metrics that we use to evaluate them.

2.1 High Reliability
Many attempts to improve reliability through diverse, multiple

paths have operated without a clear definition of either reliability
or path diversity, although they have typically implicitly assumed
an “operational” definition of masking path failures along paths be-
tween endpoints. To capture the effect of increasing path diversity
on the actual availability of the network, we introduce a formal
metric for reliability, which describes how the graph behaves un-
der failure. It is convenient to talk about reliability in terms of the
fraction of node pairs become disconnected when a certain fraction
of edges fail. We formalize this notion below.

Definition 2.1 (Reliability) For a given graph G, and any 0 ≤
p ≤ 1, let R(p) denote the fraction of node pairs that are dis-
connected when each edge fails independently with probability p.
Reliability is then represented as a function y = R(x), where x
ranges from 0 to 1.

This metric has an edge version and a vertex version. We have
stated the edge version, but the vertex variant is quite similar. Note
that this metric can apply to any graph, including the underlying
network graph; we can assess the reliability of a routing protocol
by comparing the reliability achieved by the routing protocol to
that of the underlying graph. To achieve high reliability (i.e., to
attain a reliability curve that mirrors as closely as possible that of
the underlying graph), a routing protocol should exploit the path
diversity that exists in the underlying graph.

Conventionally, previous routing protocols have achieved high
path diversity by providing systems access to node-disjoint paths.
However, paths do not need to be completely node disjoint to pro-
vide high reliability (particularly if edges are failing, as opposed to
nodes). To capture this property, we quantify the diversity that is
achieved by two paths using a notion we call novelty. Essentially,
the novelty of two paths is the fraction of edges between the two
paths that are distinct.

Definition 2.2 (Novelty) Given a (source, destination) pair, let
Ps be the path with fewer edges and Pl be the path with more edges.
Formally, novelty is

1 − |Pl ∩ Ps|
|Ps|

Novelty provides a diversity metric for any two paths between a
source-destination pair. Note that novelty captures disjointness in

28

some fashion: For example, two paths that are completely edge
disjoint will have novelty 1. As with reliability, novelty has a vertex
version, but we focus on the edge version in this paper. In our
experiments, we use novelty to quantify the diversity of the paths
in each alternate slice relative to the original shortest path.

2.2 Fast Recovery
Simply achieving high reliability is not of much use if the rout-

ing system cannot quickly discover working paths when nodes or
edges fail. Beyond simply achieving high reliability, a routing sys-
tem should quickly, scalably, and simply provide working paths to
nodes and end systems when links or nodes fail. We define the time
it takes for a pair of nodes to establish a working path after a failure
has occurred the recovery time.

Definition 2.3 (Recovery Time) Recovery time is the time that
the routing system takes to re-establish connectivity between a
(source, destination) pair after the existing path has failed.

In the absence of pre-computed backup paths or other “fast recov-
ery” techniques, the recovery time is simply the convergence time
of the routing protocol (i.e., the time it takes to re-establish a work-
ing path after a failure has occurred). In the case where backup
paths are available, however (e.g., in the cases of fast reroute and
path splicing), recovery can be faster than convergence time, be-
cause a failure can trigger an immediate failover to a backup path.

When we consider recovery time for the case of path splicing,
we are interested in quantifying how long it takes for end systems
to discover alternate working paths after a failure occurs. Recovery
time should ideally be measured in units of time and include both
the detection time (i.e., the time taken to detect a failure) and the
time to discover a new working path. Without a complete imple-
mentation, however, it is difficult to express recovery time in units
of time. For the purposes of our evaluation in Section 7, we express
recovery in terms of number of trials—the number of recovery at-
tempts before a working path is found. One could estimate recovery
time as detection time plus the recovery time, where recovery time
is the number of trials required for recovery divided by the number
of trials that can be executed in parallel.

2.3 Low Stretch
Routing protocols should provide access to alternate paths that

are not significantly longer than the “default” path between those
nodes, both in terms of the actual latency of the alternate paths and
in terms of the number of hops that they traverse. We define a
notion of stretch to quantify the additional latency that is incurred
by alternate paths over the default path.

Definition 2.4 (Stretch) Stretch is defined as the ratio of the la-
tency on a path (between a pair of nodes) in the perturbed topology
to the ratio of the shortest path (between the same pair of nodes) in
the original topology.

We use total path cost as a proxy for latency. Path diversity and
stretch are somewhat conflicting goals. Thus, we must generate
slices to have low stretch, but high novelty. An easy approach to
creating paths with high novelty with acceptable stretch is to create
slices at random (i.e., by using random link weights for creating
each slice). Selecting link weights in this way would lead to paths
with high stretch.

2.4 Control to End Systems
The notions of availability and failure are specific to the appli-

cation sending traffic along these paths. In the case of real-time

applications such as VoIP, it matters if the packets cannot reach the
destination in a certain bounded time. For other applications (e.g.,
bulk file transfer), these constraints may matter less, but end sys-
tems may wish to find paths with high throughput. Because end
systems have differing requirements for what constitutes a “good”
path, building a “one size fits all” routing system that provides good
paths to all applications without taking input from the end systems
themselves about the quality of paths is difficult.

If an end system deems some path in the network to be non-
functional or detrimental to application performance, it should be
able to signal to the network the desire to send its traffic along a
different path. Of course, because network operators have traffic
engineering goals and constraints of their own, the routing system
should provide this control without introducing too much instabil-
ity to the offered traffic load in the network.

3. RELATED WORK
We survey related work in three areas—multihoming and multi-

path routing, fast recovery schemes and overlay networks—and ex-
plore the tradeoffs of each of these recovery schemes in terms of
processing overhead, storage overhead, recovery time, and required
modifications to existing routers.

Multihoming and multipath routing. Multihoming and multi-
path routing provide nodes multiple paths for exchanging traffic.
Various mechanisms manipulate routing to take better advantage of
multiple underlying network paths [9,15]. These schemes can oper-
ate without changing hosts or routers but are more coarse-grained,
since they still only forward traffic along one path to each destina-
tion at any time. Perlman designed a routing protocol that floods
routes in a way that is robust to Byzantine failure [22]. MIRO [31]
and R-BGP [16] allow networks to discover additional interdomain
routes to recover from failure. MIRO provides more explicit con-
trol over the AS path that traffic travels to a destination (e.g., it al-
lows a network to explicitly select the ASes that its traffic traverses)
and it requires no modifications to the data plane (i.e., packet head-
ers or forwarding functions), but it requires establishing additional
state at routers for each alternate path and additional out-of-band
control-plane signaling, which may make it too heavyweight as a
general recovery mechanism. R-BGP provides similar interdomain
failure recovery as splicing, without requiring any modifications
to the packet headers. Like splicing, it requires additional state in
forwarding tables like splicing. Unlike splicing, however, R-BGP
provides only local recovery at routers.

Path splicing relates to multi-topology routing, which precom-
putes backup topologies for specific failures by removing edges
from the underlying topology or by setting high costs on some
edges [3,12,17]; in contrast, path splicing computes alternate paths
for arbitrary failure combinations. Path splicing allows traffic to
traverse multiple topologies along a single path, whereas multi-
topology routing only allows traffic to switch topologies once en
route to the destination. It also allows end systems to divert traf-
fic along different paths. Aspects of multi-topology routing have
been standardized [23], and Cisco has recently incorporated a re-
lated mechanism called multi-topology routing into their IOS rout-
ing platform [8]; a small variant could ultimately enable path splic-
ing.

Fast recovery and reroute. Path splicing uses bits in the IP header
to affect how routers along a path forward traffic to a destination.
This mechanism is similar to the “deflection” mechanism recently
proposed by Yang et al. [32]. Although path splicing’s mecha-
nisms for deflecting traffic along a new end-to-end path are sim-
ilar, we show in Section 7 that path splicing achieves more path

29

diversity than this deflection mechanism with considerably shorter
paths. Establishing parallel backup paths resembles various tech-
niques proposed by the IETF routing working group [26] and router
vendors, including load balancing mechanisms such as equal-cost
multipath [14], link protection mechanisms such as MPLS Fast
Reroute [7], IP Fast Reroute [27] (as well as various optimiza-
tions [4, 28]), but fast reroute requires manual configuration and
requires additional routing state for each link or node to be pro-
tected. Furthermore, rerouting is triggered only by local failure de-
tection, not by end systems. Failure-carrying packets (FCPs) carry
information about failed links; this information allows routers to
re-route data packets around failed links [18]. Like fast reroute
mechanisms, FCPs allow routers to circumvent node and link fail-
ures without waiting for the routing protocol to reconverge, but
the mechanism only provides local recovery and requires insert-
ing large amounts of information into packets as well as potentially
expensive dynamic computation.

Improving reliability with overlays. Overlay networks can im-
prove diversity by routing traffic on alternate paths above the net-
work layer [1, 2, 13]. Others have investigated how to improve
connectivity by strategically placing overlay nodes within a sin-
gle ISP [6]. Splicing provides a similar recovery capability without
requiring continual probing of alternate paths.

4. PATH SPLICING: MAIN IDEA
Path splicing is a general mechanism for giving end systems ac-

cess to multiple paths composed from multiple routing trees. Any
instantiation of path splicing relies on the following three aspects:

1. Generate many alternate paths by running multiple routing
protocol instances.2 Instead of running a single instance of a
routing protocol over a topology, routers run k routing pro-
tocol instances on the same topology, each with a slightly
different configuration. The goal is to design the configura-
tion of the routing protocol instances such that the trees to
each destination do not share many edges in common. Every
node then stores k forwarding table entries for each destina-
tion (one corresponding to each tree).

2. Allow traffic to switch between paths at intermediate hops.
Rather than routing traffic over a single topology, path splic-
ing allows traffic to switch topologies at any intermediate hop
along the path. Thus, rather than having k options, a source
gains access to considerably more paths to a destination (in
theory, as many as kl, where l is the number of hops on a
path between the source and destination).

3. Give end systems the control to switch paths. To select a path,
an end system includes splicing bits in the packet, along with
the packet’s destination. These splicing bits control which of
the k forwarding tables is used at each hop en route to the
destination. In later sections, we describe several possible
designs for the splicing bits.

Path splicing has many possible realizations in various contexts.
For example, it does not mandate the use of any particular routing
protocol, nor does it specify how alternate topologies are gener-
ated. In the rest of this paper, we study path splicing in the con-
text of Internet routing. Section 5 discusses the application of path
splicing to intradomain routing; Section 6 discusses path splicing
in the context of interdomain routing. In each case, the methods for

2We describe splicing as running k routing protocol instances for
conceptual simplicity. Later, we describe how the same function
can be achieved by only running a single routing protocol instance.

generating alternate paths are slightly different, but both share the
above three properties.

5. INTRADOMAIN PATH SPLICING
In this section, we describe the design of path splicing in the

context of intradomain routing. We also define some of the termi-
nology we use when talking about splicing in the later sections.

5.1 Control Plane
The first step in splicing is to create a set of slices for the net-

work. A slice is essentially a set of shortest path trees for a partic-
ular view of the network graph.

Constructing slices. The path splicing control plane computes
multiple routing trees based on perturbations of the underlying net-
work topology. The control plane comprises of two main compo-
nents: (1) random perturbations of link weights to help deflect traf-
fic off the shortest paths for some gains in diversity; and (2) pushing
these routes in the data plane so that they can be used by the routers
in making forwarding decisions.

Conventional shortest paths routing is designed to route traffic
along low-cost paths, but it may create bottlenecks between various
source-destination pairs. To allow endpoints to discover paths other
than shortest paths between any two nodes in the network, path
splicing creates routing trees that are based on random link-weight
perturbations.

Path splicing perturbs link weights based on the original weight
of the link to ensure that the length of the new shortest path is not
very long compared with the original shortest path (stretch). The
following expression defines the link weight perturbations:

L′(i, j) = L(i, j) + Weight(a, b, i, j) · Random(0, L(i, j)) (1)

where L(i, j) is the original link weight of the link from nodes i
to j, Weight(a, b, i, j) is a function of some properties of nodes i
and j (e.g., the degrees of the nodes), a and b are constants and
Random(0, L(i, j)) is a random number chosen in the range of 0
to L(i, j).

The nature of the perturbation can be changed by using different
Weight() and Random() functions. The particular Weight() func-
tion used will have an effect on the types of shortest paths selected
by the shortest-path algorithm.

Degree-based perturbations of link weights. The function
Weight(a, b, i, j) is selected to be a linear function of the sum of
the degrees of i and j, i.e.

∀i,jWeight(a, b, i, j) = fab(degree(i) + degree(j))

where fab is a linear function in degree(i) + degree(j) ranging
from a to b. This function will cause the perturbations to depend
on the end vertices i and j of a link. Links connected to nodes
with a high degree may be perturbed more than links connected to
nodes with smaller degree, which reduces the likelihood of many
shortest paths using the same link. To describe a degree-based per-
turbation, we use the notation Degree-Based [a, b], where a and b
correspond to the minimum and maximum values that can be taken
by the Weight(i, j) function. The intuition behind degree-based
perturbations is to discourage the use of links between high-degree
nodes, introducing more diverse path choices.

5.2 Data Plane
Once we have precomputed multiple slices in the network, a

spliced path can be constructed by “splicing” together path seg-
ments from one or more slices. For example, as shown in Figure 2,

30

61

2 4

3 5

Slice 1
Slice 2

Figure 2: Example of path splicing: The two different slices
shown with dotted lines on top of the original topology reflect
two different trees, both rooted at node 6. Traffic can reach
node 6 by traversing one or more trees.

IP Header 011001100 ... PayloadTransport Header

Each hop examines/removes lg(k) bits

Figure 3: The path splicing header sits between the IP and
the transport headers, facilitating incremental deployment:
routers without path splicing simply forward traffic based on
the IP header.

a spliced path from node 1 to 6 is constructed by starting on slice 1
and then switching to slice 2 at the next hop (node 2). Thus, a
spliced path is composed of multiple path segments from different
slices. It is also easy to construct, since at each hop an independent
forwarding decision could be made to either let the packet be for-
warded on the same slice or switch to another slice. As we describe
further, the packet could carry splicing bits (shown in Figure 3),
which dictate the slice on which the packet is to be forwarded at
each hop along the path. Because each hop stores the forwarding
table entries (FTEs) for each slice in a separate forwarding table,
the bits can index the forwarding table to use (since a forwarding
table corresponds to a slice).

5.2.1 Header format
End systems insert a “shim” splicing header in between the net-

work and transport headers. End systems can set splicing bits in
this header to control the path taken by the packets in the network
by indicating, for each hop, which forwarding table should be used
to forward the packet en route to the destination.

We propose a simple encoding where the shim header contains,
for n hops along the network path, lg(k) bits that indicate an index
into the forwarding table that should be used to forward the traffic
at that hop, where k is the number of slices used to splice the net-
work paths. Thus, if the size of the splicing header is n · lg(k) bits,
then the header allows the packet to switch between k slices for as
many as n hops along the network. Our experiments in Section 7
indicate that reliability of path splicing approaches the best possi-
ble reliability (as limited by the underlying network topology) with
only about 4 or 5 slices. Given that most network-level paths are
typically less than 30 hops [5], even this inefficient encoding would
require only 30 lg(4) = 60 bits. Other encodings could reduce the
overall size of the splicing header.

5.2.2 Forwarding and failure recovery
Forwarding algorithm. To forward packets, each node along the
path: (1) reads the rightmost lg(k) bits from the splicing header
to determine the forwarding table to use for forwarding the packet;
and (2) shifts the bitstream right by lg(k) bits to allow subsequent

hops to perform the same operation. Our previous work describes
the forwarding algorithm in more detail [21].

In the default case, an end system sets the splicing bits in the
splicing header to direct traffic along a path in a single routing tree
(i.e., as would be the case with a conventional routing protocol).
A network can achieve some load balance if sources select their
initial slices at random: in the absence of failure, a different subset
of all sources can route traffic in each perturbed slice, achieving
better “spread” of traffic across the network than could be obtained
by routing all traffic along a single tree. We evaluate the effects of
splicing on traffic in the network in Section 7.7.

Splicing bits carry no explicit semantics; this characteristic has
two important implications. First, it allows path splicing to scale
well, since end hosts never need to learn the details of actual paths
through the network; rather, they simply use the splicing bits as
an opaque identifier for some path, and they can change the path
through the network simply by changing the splicing bits. We be-
lieve that this function is sufficient: end systems tend to care less
about the specific hop-by-hop details about the paths their traffic is
traversing than they do about whether or not they can route around
a poorly performing (or faulty) path with high likelihood.

Because splicing bits control which path segments from the dif-
ferent slices are used to construct a spliced path, the selection of the
bits determines whether an end-to-end path could be found between
two nodes for which the path on the default path is disconnected.
Our evaluation shows that even an extremely simple choice for the
splicing bits ensures that end systems will be able to find an avail-
able path within two trials.

Because the splicing bits are opaque and have no explicit seman-
tics (e.g., they do not specify node addresses for a path), path splic-
ing is incrementally deployable: routers that have implemented
path splicing can inspect the splicing header and route packets out
a different outgoing interface based on the rightmost lg k bits in
the header. Nodes along the path that do not support path splicing
simply forward data packets as they normally would, based on the
destination IP address in the IP header.

Failure recovery. When a failure occurs, traffic must be redirected
to a different slice; an end host can perform this redirection sim-
ply by changing the bits in the splicing header, which will cause
an end-to-end path to the destination to be spliced from a different
set of slices. This redirection could be performed by either a node
along the path that detects the failure or the end system, end sys-
tems can detect poorly performing paths from a variety of causes
(e.g., queueing, packet loss, etc.), and they are better equipped to
detect when traffic should be deflected off of a poorly performing
end-to-end path.

There are many possible ways to attempt recovery. Perhaps the
simplest approach is for an end host to select a new random bit-
string for the splicing header upon detection of a failure, which will
cause traffic to be sent, with high probability, along a completely
different path, thus avoiding the cause of the faulty path. If an end
system were able to determine the location of a failure, however, it
could change only the bits in the splicing header that were needed
to divert traffic around the failure. As a third option, an end system
could divert traffic to a different slice at an early point along the
path (i.e., close to the source) so as to divert traffic to a network
slice that avoided the failure with high likelihood.

Nodes in the network can also take advantage of splicing to di-
vert traffic from default paths during network failures or high con-
gestion. If a router detects that the next-hop for a particular destina-
tion is unreachable, it can send the packet on some other connected
slice while waiting for the routing protocol to converge.

31

5.3 Optimizations
Single routing protocol instance. It is easy to think of path splic-
ing as running multiple instances of the routing protocol, where
each instance runs with a slightly perturbed version of the topol-
ogy. Unfortunately, running multiple instances of a routing pro-
tocol introduces additional unnecessary overhead including addi-
tional routing messages, as well as resource consumption on the
nodes running multiple instances of the routing software.

Instead, we can implement path splicing within the context of a
single routing protocol instance, with a few minor modifications.
As in any intradomain routing protocol, each node would discover
the complete network topology via link-state advertisements. Each
node could then generate multiple variants of this topology by per-
turbing the weights on each edge in the graph in the same way as
on other nodes in the topology and could compute forwarding ta-
bles for each slice locally, without having to run multiple routing
protocol instances to advertise perturbed link costs.
Single forwarding table. The basic splicing scheme requires in-
serting FTEs corresponding to each slice in a separate forwarding
table at each node, essentially having a forwarding table for every
slice. Given that every node has a fixed number of neighbors, there
could be many common entries for a particular destination among
the different forwarding tables. For example, if a node has only
two neighbors and we compute 3 slices, then at least two of them
will have the same next hop for any destination. Thus, maintain-
ing separate forwarding tables for every slice can lead to inefficient
use of memory. One possible optimization involves having only a
single forwarding table for all slices and maintain a separate col-
umn which records the different slices for which a particular entry
is valid.
Embed splicing bits into the IP header. As we have described
path splicing, the splicing bits explicitly control which slice each
node on the path should use to forward traffic. In this case, the
size of the shim header is proportional to the length of the path. To
reduce this overhead, the splicing bits could instead be encoded in
a smaller number of bits and embedded into the type-of-service and
IP ID fields in the IP header; each router could then select the slice
on which to forward traffic based on, say, a hash of these bits (and
possibly also the source and destination IP address).

6. INTERDOMAIN PATH SPLICING
This section describes the application of path splicing to interdo-

main routing. Interdomain splicing can be deployed without mod-
ifying BGP’s message format and with no additional routing mes-
sages. In fact, it can be deployed using only a single BGP instance.

The key idea involves exploiting the fact that each router learns
one BGP route to each destination per session, and most BGP-
speaking routers already have multiple BGP sessions to neighbor-
ing routers. Rather than selecting a single best route per destination,
a router inserts the best k routes for each destination; a packet’s
splicing bits can then directly indicate which of these k routes a
router should use to forward traffic to each destination. This section
describes the control-plane and data-plane modifications to routers,
and practical considerations (e.g., ensuring that spliced BGP routes
do not violate business policy).

6.1 Control Plane
Routers typically learn multiple routes to any given destination

prefix both from neighboring ASes and from other routers within
the same AS (via internal BGP), as summarized in Figure 4. Some
of these routing table entries may correspond to alternate highly
disjoint paths in the network. Routers may thus already learn mul-

A

D

C

B

dst

B

C

tunnel to egress router

Splicing bits
select one of
the routes to

dstSplicing Bits
select one of
the tunnels

Figure 4: Interdomain splicing. The bits at the ingress router
select the egress router to use. The packet is tunneled to the
egress router and from there one of the external routes is used
to forward the packet to a neighboring AS.

tiple diverse routes for each destination. Today, BGP selects only
a single best route for each destination prefix. Instead, a router
could select the best k routes and push them into the forwarding
table. The splicing bits in a packet then index to the appropriate
FTE at each hop. Using splicing bits to access alternate FTEs con-
trasts with existing multipath interdomain routing schemes (e.g.,
MIRO [31], R-BGP [16]), which rely on the control plane to dis-
cover and exercise these alternate routes.

A naïve approach for selecting the top k best routes would be
to repeat the route selection k times, each time removing the best
route and pushing it into the IP routing table of the router. A more
efficient approach would be to modify the BGP decision process to
select the k best routes instead of a single best route.

6.2 Data Plane
Unlike intradomain splicing, interdomain splicing uses alternate

routes already in the BGP routing tables to achieve path diversity.
However, the forwarding plane of the router needs to be modified
to support path splicing.

6.2.1 Splicing bits
As before, an end system inserts splicing bits into the packet

header; the ingress and egress routers in each AS read these bits to
determine how to forward the packet, as shown in Figure 4. The
ingress router learns multiple paths to a destination prefix from the
various border routers using iBGP (either via a “full mesh” iBGP
or via its connections to multiple route reflectors) and thus may
learn multiple exit points (“egress routers”) from the network for
each destination prefix. For each packet, an ingress router reads
the rightmost lg(k) routing bits to determine which egress router
should receive the packet and tunnels the packet to one of the egress
routers. Similarly, an egress router learns multiple routes to a desti-
nation from the various border routers of the neighboring ASes via
eBGP. It uses the rightmost lg(k) routing bits to determine which
of the k eBGP-learned routes (i.e., which FTE) to use.

As with intradomain splicing, the ingress or egress router re-
moves the rightmost bits from the splicing header to allow the next
router that supports interdomain splicing to read the next rightmost
bits. Using this approach, an n-hop AS path requires 2n·lg(k) rout-
ing bits. To further reduce overhead, interdomain splicing can also
use an encoding that is similar to those described in Section 5.2.

Creating k copies of the forwarding tables could introduce sig-
nificant memory overhead on line cards, given the large (and grow-
ing) size of the default-free BGP routing tables. However, note that
in many cases, the next-hop for a destination may be the same for
different slices. In these cases, FTEs could be coalesced to save
space, similar to how routers can coalesce FTEs for contiguous IP
prefixes that use the same outgoing interface. In future work, we

32

I G P s p l i c i n g b i t s

p o l i c y

. . .

e g r e s s n e x t - h o p A S

A S 1 A S 2

B G P s p l i c i n g b i t s

Figure 5: Structure of splicing bits for intradomain and inter-
domain splicing.

will study the extent to which this coalescing can reduce this over-
head.

6.2.2 Interdomain and intradomain splicing
Path splicing’s splicing bits must direct traffic along an end-to-

end path that ultimately traverses multiple domains. To achieve
this function, these bits must carry semantics for both interdomain
and intradomain paths. Additionally, the interdomain paths that
splicing takes must also comply with ISPs’ business policies. To
achieve this function, we divide the splicing bits into several seg-
ments. The first segment is for interdomain routing (i.e., selecting
at both ingress and egress routers which alternate paths to use); the
second segment is for intradomain routing. We envision that the
interdomain splicing bits will be used at each hop along the path
to the destination; in contrast, the same intradomain bits can be
re-used in different ISPs along the end-to-end path.

Finally, we use a single bit in the packet header to indicate
whether the packet has traversed a “peer” or “customer” edge (in
the parlance of Gao-Rexford [11]); if this bit is set, the interdomain
bits can only be used to select a BGP route through a customer AS.
Routers can easily implement this mechanism by dividing the for-
warding table into two separate tables: routes to provider and peer
ASes, and routes to customer ASes. A router sets this bit before it
sends a packet along a customer or peer edge. With this additional
bit set, the interdomain splicing bits will be used to select only
routes from the latter forwarding table. This mechanism ensures
that all interdomain paths are valley-free.

6.3 Practical Concerns
This section discusses two practical concerns: the potential for

interdomain forwarding loops, and the possibility that the AS-level
forwarding path may not match the AS path for a destination.

Forwarding loops. Because interdomain splicing constructs a sin-
gle end-to-end interdomain path from multiple routing trees, inter-
domain paths can also have loops. As with intradomain splicing,
none of the loops formed are persistent because the splicing bits
are finite. We propose two simple techniques to mitigate the occur-
rence of even transient loops. The first requires the introduction of
a small counter in the shim header, deflection counter. This counter
limits the number of times a packet can switch slices. Because most
packet traverse only about four ASes [19], most potential loops will
be small. Recording the last four ASes traversed by a packet in the
packet header to restrict the ASes to which packets are deflected
could also prevent interdomain loops.

AS-level forwarding consistency. In interdomain splicing, traffic
might be forwarded along any of the top k best routes for a pre-
fix, but the AS announces only a single best route to its neighbors.
Some might view using a route that was not announced to its neigh-
bors as a violation of protocol semantics, but we note that an AS
will use a non-default path only if the splicing bits in the packet
explicitly request this behavior or if the default path has failed. We

Reliability with splicing approaches optimal. For in-
tradomain splicing, 5 slices and for interdomain splicing,
only 2 slices achieve near-optimal reliability.

7.1

Splicing has fast recovery. An end system can recover
from failure in about 2 trials when trying splicing bits at
random.

7.2

Perturbations achieve high novelty with low stretch. In-
tradomain splicing has an average stretch of 20% while
gaining 80% paths which are different from the original.
For interdomain, the average hop stretch is only 3.8%
when 5% of AS links have failed.

7.3

Splicing provides better recovery than routing deflec-
tions. Path splicing with only 5 slices can provide bet-
ter recovery than routing deflections [32] with bounded
stretch. Path splicing generally provides much shorter re-
covered paths, and the recovered paths have much lower
variance in terms of stretch.

7.4

Splicing is incrementally deployable. Splicing offers sig-
nificant benefits even if only a fraction of ASes deploy it.

7.5

Loops are rare. Forwarding loops are transient and in-
frequent. In intradomain splicing, we observe only 1 loop
longer than 2 hops and no persistent loops, even with 10%
of links failed.

7.6

Splicing causes minimal disruption to traffic. Splicing
does not have much adverse effect on traffic in the network.
Our evaluation using real traffic data on Abilene shows that
total load on links increases only by 4% on average.

7.7

Table 1: Summary of results.

also note that, even today, the AS-level forwarding path is by no
means guaranteed to match the advertise AS path, and many such
violations occur in practice [30].

7. EVALUATION
This section evaluates path splicing in terms of the reliability it

achieves, the ability to allow paths to quickly recover from failures
of nodes and links, the latency stretch of the resulting paths, the
reliability when only a fraction of ASes deploy it, the frequency
of loops in spliced paths, and the effects on traffic. Table 1 sum-
marizes the results of our evaluation. We find that path splicing
provides high reliability and rapid recovery from failures and pro-
vides end systems access to a large number of low-latency, rela-
tively loop-free paths. We also find that path splicing balances traf-
fic across links in the network in much the same fashion as the
“base” set of link weights and, to some extent, even balances this
traffic slightly more evenly.

7.1 High Reliability
This section presents the results for reliability experiments per-

formed with splicing for intradomain and interdomain networks.
We find that, in both cases, path splicing achieves reliability that
approaches that of the underlying network.

7.1.1 Intradomain splicing
To evaluate the reliability of path splicing under a variety of link-

failure scenarios, we implemented a simulator that takes as input a
“base” network topology (with link weights) and outputs the dif-
ferent shortest paths trees for that network using degree-based per-
turbations. To simulate link failures, we removed each edge from
the underlying graph with a fixed failure probability. We used the
Sprint backbone network topology inferred from Rocketfuel, which

33

 0

 0.1

 0.2

 0.3

 0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n
of

 s
ou

rc
e-

de
st

in
at

io
n

pa
irs

di

sc
on

ne
ct

ed

Probability of link failure (p)

k = 1 (normal)
k = 2
k = 3
k = 4
k = 5

k = 10
Best possible

Figure 6: Reliability of path splicing for the Sprint topology.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.01 0.02 0.03 0.04 0.05

F
ra

ct
io

n
of

 s
ou

rc
e-

de
st

in
at

io
n

pa
irs

di

sc
on

ne
ct

ed

Probability of link failure (p)

k = 1 (normal)
k = 2
k = 3
k = 4
k = 5

Best possible

Figure 7: Reliability using a 2,500 node policy-annotated Inter-
net AS graph.

has 52 nodes and 84 links [29]. We computed the reliability curves
for graphs generated using path splicing and compared this char-
acteristic both to “conventional” shortest paths routing and to that
of the original underlying graph, whose reliability reflects the best
possible reliability that could be achieved by any routing protocol.

A spliced graph with k slices is constructed by taking the union
of the k slices, each of which is a random perturbation, generated as
described in the previous section. Next, we remove each edge from
the graph independently with probability p. We start with k = 1,
evaluate the reliability for the resulting graph, increase k to 2 (i.e.,
add edges to the graph by taking the union of the two graphs) and
evaluate the reliability of the resulting graph by failing the same
set of links (simulating the effects of a link failure in the underlying
network). We perform this process 1, 000 times; in other words, for
each k and p, we construct a k-slice graph with appropriate edges
“failed”, and compute the average reliability for those 1, 000 trials.

Figure 6 shows the reliability curves for Sprint using degree-
based perturbations with Degree-based(0, 3). Adding just one slice
(i.e., increasing k to 2) significantly improves reliability; adding
more slices improves reliability further. Figure 6 demonstrates that
even with just a few slices (i.e., 5) and a simple scheme for generat-
ing alternate graphs (i.e., link-weight perturbations), the reliability
of path splicing approaches the reliability of the original underly-
ing network. We also performed a reliability experiment for single
node failures and found similar results.

7.1.2 Interdomain splicing
To evaluate the reliability of interdomain splicing, we used C-

BGP [25], an open-source BGP routing solver. C-BGP takes as
input a policy-annotated graph of ASes and calculates the interdo-
main routes for each AS. For our experiments, we use a 2,500 node
policy-annotated AS graph generated by Dimitropoulos et al. [10].
Once C-BGP computes the interdomain routes, we removed AS
edges at random with probability p. Next, on this modified AS
graph, we checked for connectivity between random pairs of ASes
in the graph (testing reliability for all pairs is not tractable).

In cases where the default path was disconnected, we checked
to see if a “spliced” path existed for the disconnected AS pair us-
ing up to k choices for the next-hop. We repeated this process 50
times for each value of p and k. Figure 7 shows the average frac-
tion of pairs disconnected for a range of values for p and k. We
observe that adding just one more slice significantly improves the
reliability of the AS graph. For the “best possible” case, we evalu-
ated reliability for the base graph (without policy restrictions). The
reliability curve for interdomain splicing that respects policy is so
close to the best possible reliability curve, which demonstrates that
BGP, even with policy restrictions, has near-optimal path diversity
if multiple routes are used. Path splicing can thus exploit this di-
versity without violating AS-level policies or any modifications to
BGP message format.

7.2 Fast Recovery
In this section, we demonstrate how an end system or a network

node can quickly recover from failures by selecting spliced paths
in the network at random. We evaluate two approaches to recov-
ery: end-system recovery is network-agnostic and relies on the end
system (e.g., user, proxy, edge router) to initiate recovery; network-
based recovery assumes that the node in the network can detect a
failure on an incident link and initiate recovery by diverting traffic
to a different slice. To generate a spliced graph with failures on the
Sprint topology, we use a simulation setup similar to the one for the
reliability experiment in Section 7.1.1. We only show results from
end-system recovery.

For all disconnected source-destination pairs, we evaluate
whether splicing allows pairs of nodes to discover working alter-
nate paths. If splicing can recover the path in five or fewer trials
(we assume that the end system or node could run these trials ei-
ther in sequence, in parallel, or even in advance), we consider the
path recoverable. As discussed in Section 2, our simulations do not
allow us to explicitly compute recovery time in terms of seconds,
but we can estimate what this time might be from the number of
trials: Because it would take about one round-trip time to estimate
whether a new set of splicing bits resulted in a functional path, we
can estimate the recovery time as the number of trials times the
round-trip time, divided by the number of trials that the system
makes in parallel.
End-system recovery. Figure 8 shows the recovery where the end
system controls the spliced path to the destination. In our exper-
iments, we used a header that allows 20 hops to be spliced. For
a failed path, the new shim header (i.e., the splicing bits) is con-
structed as follows: A coin is tossed for every hop in the shim
header; if the result is a head, a different slice is selected at random
for that hop (i.e., at every hop we switch slices with 0.5 probabil-
ity). We check to see if a failed path can be recovered in fewer than
5 trials. The average number of trials in any case where splicing
could recover from the failure was slightly more than 2. Paths were
on average 1.3 times longer (in terms of path cost) compared to the
shortest path in the “base” topology; the resulting paths typically
used about 50% more hops compared to the original shortest path.

34

 0

 0.1

 0.2

 0.3

 0.4

 0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n
of

 s
ou

rc
e-

de
st

in
at

io
n

pa
irs

di

sc
on

ne
ct

ed

Probability of link failure (p)

k = 1 (no splicing)
k = 3 (recovery)
k = 3 (reliability)
k = 5 (recovery)
k = 5 (reliability)

Figure 8: Recovery using end-system recovery and Sprint topol-
ogy.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.01 0.02 0.03 0.04 0.05

F
ra

ct
io

n
of

 s
ou

rc
e-

de
st

in
at

io
n

pa
irs

di

sc
on

ne
ct

ed

Probability of link failure (p)

k = 1 (no splicing)
k = 2 (recovery)
k = 2 (reliability)
k = 3 (recovery)
k = 3 (reliability)

Figure 9: Recovery using end-system recovery and a 2,500 node
policy-annotated Internet AS graph.

In any particular slice, 99% of all paths in each tree had stretch less
than 2.6. Figure 9 shows recovery for interdomain splicing. The re-
covery is slightly worse because we consider only policy-compliant
paths as recoverable. These results show that splicing provides ef-
fective recovery, even with the simplest possible recovery scheme
and no knowledge about the location of failures.

To understand how these recovery numbers compare to a simpler
scheme that simply tries to recover by using one of k paths at the
source (closer to what a simple multipath scheme might do), we
compared path splicing to a recovery scheme that selects one slice
at the first hop and does not switch at intermediate hops. We found
that splicing’s end-system recovery still exhibits slightly better re-
covery: With 2 slices and a 10% failure probability, splicing was
able to recover about 7% more paths. This margin may, in some
cases, not justify the additional cost of path splicing, but path splic-
ing may also be able to perform better with a more sophisticated
recovery scheme that uses specific information about the location
of network failures.

7.3 High Novelty, Low Stretch
Recall from our design goals in Section 2 that the paths gener-

ated in each slice should have low stretch and high novelty. Our
evaluation shows that, for intradomain splicing, random perturba-
tions achieve reasonable novelty while keeping the stretch of each
slice—and the stretch of the overall spliced paths—low.

Intradomain splicing. We show the results of our stretch and
novelty experiments using the Sprint topology. We vary the

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6

F
ra

ct
io

n
of

 T
ot

al
 P

at
hs

 (
C

C
D

F
)

Path Stretch

Degree-Based [0, 3]
Degree-Based [0, 4]
Degree-Based [0, 5]
Degree-Based [0, 10]
Degree-Based [0, 20]

Random

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
of

 T
ot

al
 P

at
hs

 (
C

D
F

)

Novelty

Degree-Based [0, 3]
Degree-Based [0, 4]
Degree-Based [0, 5]
Degree-Based [0, 10]
Degree-Based [0, 20]

Random

(b)
Figure 10: Stretch and novelty for degree-based perturbations
of the paths in the Sprint topology.

Weight(a, b, i, j) function from Equation 1 (Section 2) and observe
its effects on novelty and stretch. We also compared the results
of degree-based perturbations with the random case in which link
weights are set randomly in the range of [0, 5000]. For these ex-
periments, we ran the simulator to generate 100 different slices for
different values of b with a = 0, in Weight(a, b, i, j), which con-
trols the magnitude of the perturbations.

Figure 10 shows the stretch and novelty for the Sprint topol-
ogy with degree-based perturbations; each line reflects a different
Weight(a, b, i, j) function. Degree-based perturbations achieve al-
most as much novelty as random link weight settings, but with far
less stretch (particularly in the worst case). For example, in the case
of Degree-Based[0, 3], the average stretch is only 1.2; the worst-
case stretch is also far better than the random link-weight settings.
In fact, only about 3.5% of paths have stretch of more than 2. The
corresponding average novelty value for the slices for degree-based
perturbations is 0.41 and 80% of paths have one or more links dif-
ferent than those in the original shortest paths. Increasing the value
of the Weight() function results in small improvements in novelty
but higher stretch.

Uniform perturbations also have low stretch, but they provide
less novelty than degree-based perturbations. For example, the av-
erage stretch for the case of Weight() = 1 is only 1.03. The corre-
sponding average novelty for this case is 0.22. On average, 57% of
paths differ by one link or more from the original shortest paths.

Not only is the stretch of the paths in each slice low, but the
stretch of the actual spliced paths after recovery is also low. In
the case of end-system recovery, paths were on average 1.3 times

35

 0

 0.05

 0.1

 0.15

 0.2

 0 0.02 0.04 0.06 0.08 0.1

F
ra

ct
io

n
of

 te
st

ed
 s

ou
rc

e-
de

st
in

at
io

n
pa

irs
 d

is
co

nn
ec

te
d

Probability of link failure (p)

Routing Deflections
Recovery (5 slices)

Recovery (10 slices)
Reliability (5 slices)

Reliability (10 slices)

Figure 11: Comparison of recovery for splicing vs. routing de-
flections with stretch < 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

F
ra

ct
io

n
of

 r
ec

ov
er

ed
 p

at
hs

Path Stretch

Routing Deflections
Splicing (5 slices)

Splicing (10 slices)

Figure 12: Comparison of stretch for recovered paths for splic-
ing vs. routing deflections.

longer in delay compared to the shortest path in the “base” topol-
ogy; the resulting paths typically use about 50% more hops com-
pared to the original shortest path. In any particular slice, 99% of all
paths in each tree have stretch of less than 2.6. The average stretch
network-based recovery was 1.33, while there were 55% more hops
in the recovered paths; these numbers are slightly higher compared
to the end-system recovery scheme.

Interdomain Splicing. We computed the average hop-count
stretch for the interdomain reliability experiment in Section 7.1.2.
The hop-count stretch with 5% of the AS links failed was only
1.038, or 3.8% more hops than in the default AS paths.

7.4 Comparison to Routing Deflections
We compared the end-system recovery achieved by intradomain

path splicing to that achieved by the routing deflection mecha-
nism proposed by Yang et al. [32]. We re-implemented the deflec-
tion routing system and compared the reliability achieved by this
scheme to that achieved by path splicing. Previous work on routing
deflections does not consider the stretch of the resulting paths and
considers all possible recovered paths. With routing deflections,
the number of neighbors that a node can potentially send a packet
to is not bounded, whereas in path splicing it is bounded by the
number of slices; hence, routing deflections may require signifi-
cantly more storage. To provide a fair comparison between the two
schemes, we consider a path “recovered” only if it has a stretch of
less than 2. Figure 11 shows the recovery achieved by path splic-
ing for different numbers of slices compared to routing deflections.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.01 0.02 0.03 0.04 0.05

F
ra

ct
io

n
of

 te
st

ed
 s

ou
rc

e-
de

st
in

at
io

n
pa

irs
 d

is
co

nn
ec

te
d

Probability of link failure (p)

k = 3 slices
0% ASes

25% ASes
50% ASes
75% ASes

100% ASes

Figure 13: BGP Splicing: Incremental deployment.

Path splicing recovers more paths than routing deflections using
just five slices.

In addition to directly comparing recovery, we compared the
stretch of the recovered paths using each of the schemes for this ex-
periment. Figure 12 shows the resulting statistics. The results show
that path splicing can recover paths that have lower stretch than the
stretch of the paths recovered using routing deflection. Path splic-
ing generated paths with an average stretch of 1.26, whereas the
path stretch using routing deflections was 1.78. Path splicing also
generates shorter paths more consistently: the variance of stretch
values for paths generating using path splicing was 0.09; in con-
trast, the variance of stretch for recovered paths using routing de-
flections was 4.83.

7.5 Incremental Deployability
Interdomain splicing requires ASes to independently decide to

deploy additional functionality. It is reasonable to ask, then, how
well interdomain splicing would perform if only a fraction of ASes
deployed it. Our experiments show that path splicing provides sig-
nificant benefits even if only a small fraction of a fraction of ASes
deploy it. To evaluate the benefits of partial deployment, we use
the same AS topology as in the interdomain reliability experiments.
We fixed the number of slices and performed the reliability experi-
ment as before; for each experiment, we let only a fraction of ASes
select an alternate AS-level path if the next-hop on the default route
has failed. We evaluate reliability for five levels of deployment:
0% to 100% with 3 slices, as shown in Figure 13. Reliability im-
proves significantly even if only 25% of the ASes deploy interdo-
main splicing. We expect that the benefits might be even higher if
all “Tier-1” ISPs deployed splicing.

7.6 Infrequent (and avoidable) Loops
Because traffic is not forwarded along a single routing tree, splic-

ing does create the potential for transient forwarding loops if some
precautions are not taken. Forwarding loops are a concern because
they increase the total length of the end-to-end path, and they also
unnecessarily use extra network capacity and node resources (note
that these detriments are the same as paths with longer stretch; we
have already shown that spliced paths have reasonable stretch).

Fortunately, certain recovery strategies can avoid persistent for-
warding loops entirely. First, a persistent loop would require the
splicing bits to be repeated in exactly the right sequence. Second,
in the design we presented in Section 5.2, the splicing header will
eventually run out of splicing bits as each node shifts lg(k) bits
from the header; at this point, the packet stays in the same tree to the
destination. Second, paths that never switch back to a previously

36

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14

T
ra

ffi
c

(M
B

)

Link ID

No splicing
k = 2
k = 5
k = 9

Figure 14: Abilene Network: Effect of splicing on traffic in the
network using real traffic traces.

used slice would never contain persistent forwarding loops of any
length; recovery strategies could pick only these paths. Although
it would not necessarily prevent transient loops entirely, restrict-
ing the number of switches between slices that any packet takes
would also limit the likelihood of loops significantly. Our evalua-
tion shows that loops were quite infrequent. Using network-based
recovery, there was less than 1 loop on average with length greater
than 2 when recovering from the case where the network had 10%
of links failed. Two-hop loops occurred more frequently (about
one per 100 trials for k = 2, and about one in ten trials for higher
values of k). Using any of the schemes discussed above could elim-
inate loops entirely, at the cost of restricting the paths available for
recovery.

7.7 Minimal Disruption to Traffic
We studied the effects of splicing on traffic loads within a single

ISP. We extended C-BGP to support intradomain path splicing and
provided C-BGP with BGP routing tables, IGP configurations, and
NetFlow traffic traces for the Abilene network; we then used it to
determine the traffic load on each link in the network in the default
case and for various instantiations of splicing. Abilene has only 11
nodes and 14 links, but we ran our experiments using this network
because it makes routing and traffic data publicly available.

For the experiment, we create k slices for the Abilene topology in
C-BGP; we used degree-based perturbations to generate the slices.
C-BGP computes shortest paths for each slice and loads the routes
into the respective forwarding tables on each of the nodes. Next, we
load the BGP routing table dumps obtained from Abilene on each
of the nodes. We then “play” 5-minute NetFlow traces through the
network; we load a NetFlow trace onto each node that corresponds
to the traffic collected from the node in the actual Abilene network.

For every packet reflected in the trace statistics, C-BGP selects
a slice based on the hash value of the source and destination IP
addresses in the packet. So traffic is split randomly among the k
slices. Figure 14 shows the resulting link loads.3 We also per-
formed a similar experiment using the Sprint topology and a syn-
thetic traffic matrix, which consisted of unit traffic for all node
pairs. Figure 15 shows the results of this experiment.

The plots sort links on the basis of their load in the case without
splicing and show the corresponding load on the same links using
splicing. The plots demonstrate that splicing does not cause sig-
nificant adverse effects on traffic. Splicing can increase stretch if

3We repeated the experiment with different 5-minute NetFlow
packet traces and found similar results.

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90

T
ra

ffi
c

(u
ni

ts
)

Link ID

No splicing
k = 2
k = 5
k = 9

Figure 15: Sprint Network: Effect of splicing on traffic in the
network using synthetic traffic.

traffic is routed on paths other than the shortest path in the network.
As a result, the sum of the load on the links in the network will be
higher when using splicing. Fortunately, the utilization is not that
much greater: the sum of the load on the links is on average only
about 4% higher (and never more than 10% higher) than without
splicing. In the Sprint network, traffic under splicing is 9% higher
on average (and never more than 12%).

8. DISCUSSION AND OPEN ISSUES
This section explores the changes both to hosts and to routers

that would be required to deploy and evaluate various aspects of
splicing in practice (e.g., recovery time).

Changes to routers. Path splicing requires changes to the for-
warding plane in routers in order to support multiple routes for a
destination and the ability to select one of those routes based on
the splicing bits. Recently, multi-topology routing has been stan-
dardized [23], and router vendors are also supporting this func-
tion [8, 20]. The basic forwarding mechanism required for splicing
is very similar to multi-topology routing. We expect that the data-
plane implementation of splicing will entail only a small extension
to MTR. Additionally, we have developed a Click element that uses
bits in the IP ID and type of service fields and to index into separate
forwarding tables generated by the path splicing control plane; we
plan to use this in conjunction with the changes to end systems de-
scribed below to evaluate the recovery time of splicing in practice.

Changes to end systems. Path splicing relies on a failure detection
mechanism before it can find a new working path. As we discussed
in Section 7, detection could take place either at the routers them-
selves (as it is done today with other recovery mechanisms, such as
fast reroute) or at end hosts (which might allow for recovery from
different classes of “failures”, such as paths that exhibit high packet
loss or jitter, as well as those that might exhibit complete outages).
Instrumenting applications to take advantage of path splicing will
require designing and developing mechanisms for receiving infor-
mation about path quality as well as an extension to the sockets API
for setting splicing bits in the packet headers.

Adversarial concerns. An adversary could set splicing bits that
send packets into a forwarding loop, thus wasting resources. This
attack seems unlikely, because it requires an adversary to actually
discover splicing bits that will induce a loop. An adversary cannot
use the splicing bits to create arbitrary loops. Our previous work
discusses defenses in more detail [21].

37

9. CONCLUSION
This paper presented the design and evaluation of path splicing,

a primitive for increasing reliability by composing routes from mul-
tiple routing protocol instances. We have applied path splicing to
both intradomain and interdomain routing and evaluated its ability
to allow end systems to find alternate paths when links fail. Our ex-
periments show that running just a few slices in parallel allows path
splicing to achieve reliability that is close to that of the underlying
graph (i.e., as long as endpoints remain connected in the underly-
ing graph, there will be some spliced path that connects them). We
have also demonstrated that even simple recovery schemes, such as
randomly selecting splicing bits, allows end systems to realize this
reliability using alternate paths with small stretch. Path splicing
can be deployed on existing routers with small modifications to ex-
isting multi-topology routing functions. We also foresee many pos-
sible applications to other routing protocols (e.g., wireless, overlay
routing) and to many other applications that could take advantage
of having access to multiple paths in parallel.

Acknowledgments
This work was funded by NSF Awards CNS-0626950, CCR-
0307536, NSF CAREER Award CNS-0643974, ARC ThinkTank
at Georgia Tech and a Raytheon fellowship. We thank our shep-
herd Alex Snoeren for helping us improve the paper. We thank the
Algorithms and Randomness Center at Georgia Tech for inspiring
discussions. We also thank David Andersen, Hari Balakrishnan,
Andy Bavier, Navin Goyal, Roch Guerin, Dick Karp, Amund Kval-
bein, Dick Lipton, Bruno Quoitin, Luis Rademacher, Jennifer Rex-
ford, Stefan Savage, Scott Shenker, Geoff Voelker, and Muhammad
Mukarram bin Tariq for helpful feedback and discussion.

10. REFERENCES

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In Proc. 18th ACM Symposium on
Operating Systems Principles (SOSP), pages 131–145, Banff,
Canada, Oct. 2001.

[2] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan. Best-path vs.
multi-path overlay routing. In Proc. ACM SIGCOMM Internet
Measurement Conference, Miami, FL, Oct. 2003.

[3] G. Apostolopoulos. Using multiple topologies for ip-only protection
against network failures: A routing performance perspective.
Technical Report 377, ICS-FORTH, Apr. 2006.

[4] A. Atlas and A. Zinin. Basic Specification for IP Fast-Reroute:
Loop-free Alternates. http://tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-spec-base-10, Nov. 2007.

[5] A. Broido and kc claffy. Topological Resilience in IP and AS Graphs.
http:
//www.caida.org/analysis/topology/resilience/,
2006.

[6] M. Cha, S. Moon, C.-D. Park, , and A. Shaikh. Placing Relay Nodes
for Intra-Domain Path Diversity. In Proc. IEEE INFOCOM,
Barcelona, Spain, Mar. 2006.

[7] MPLS Traffic Engineering Fast Reroute – Link Protection.
http://www.cisco.com/univercd/cc/td/doc/
product/software/ios120/120newft/120limit/
120st/120st16/frr.htm.

[8] Cisco Multi-Topology Routing.
http://www.cisco.com/en/US/products/ps6922/
products_feature_guide09186a00807c64b8.html.

[9] Cisco Optimized Edge Routing (OER).
http://www.cisco.com/en/US/products/ps6628/
products_ios_protocol_option_home.html, 2006.

[10] X. A. Dimitropoulos, D. V. Krioukov, A. Vahdat, and G. F. Riley.
Graph Annotations in Modeling Complex Network Topologies.
CoRR, abs/0708.3879, 2007.

[11] L. Gao and J. Rexford. Stable Internet routing without global
coordination. IEEE/ACM Transactions on Networking, pages
681–692, Dec. 2001.

[12] S. Gjessing. Implementation of two Resilience Mechanisms using
Multi Topology Routing and Stub Routers. In International
Conference on Internet and Web Applications and
Services/Advanced, Feb. 2006.

[13] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall. Improving the reliability of Internet paths with one-hop
source routing. In Proc. 6th USENIX OSDI, San Francisco, CA, Dec.
2004.

[14] C. Hopps. Analysis of an Equal-cost Multi-Path algorithm. Internet
Engineering Task Force, Nov. 2000. RFC 2992.

[15] Internap. http://www.internap.com/, 2006.
[16] N. Kushman, S. Kandula, D. Katabi, and B. M. Maggs. R-BGP:

Staying connected in a connected world. In Proc. 4th USENIX NSDI,
Cambridge, MA, Apr. 2007.

[17] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast
IP Network Recovery using Multiple Routing Configurations. In
Proc. IEEE INFOCOM, pages 23–26, Barcelona, Spain, Mar. 2006.

[18] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica. Achieving Convergence-Free Routing with
Failure-Carrying packets. In Proc. ACM SIGCOMM, Kyoto, Japan,
Aug. 2007.

[19] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
Densification laws, shrinking diameters and possible explanations. In
Proc. 11th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, IL, Aug. 2005.

[20] Juniper Networks: Intelligent Logical Router Service.
http://www.juniper.net/solutions/literature/
white_papers/200097.pdf.

[21] M. Motiwala, N. Feamster, and S. Vempala. Path Splicing: Reliable
Connectivity with Rapid Recovery. In Proc. 6th ACM Workshop on
Hot Topics in Networks (Hotnets-VI), Atlanta, GA, Nov. 2007.

[22] R. Perlman. Network Layer Protocols with Byzantine Robustness.
PhD thesis, Massachusetts Institute of Technology, Oct. 1988.
MIT-LCS-TR-429. http://www.lcs.mit.edu/
publications/specpub.php?id=997.

[23] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault.
Multi-Topology Routing in OSPF. Internet Engineering Task Force,
June 2007. RFC 4915.

[24] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On selfish routing in
Internet-like environments. In Proc. ACM SIGCOMM, Karlsruhe,
Germany, Aug. 2003.

[25] B. Quoitin and S. Uhlig. Modeling the routing of an autonomous
system with C-BGP. Network, IEEE, 19(6):12–19, 2005.

[26] Routing Area Working Group (rtgwg). http://www.ietf.org/
html.charters/rtgwg-charter.html.

[27] M. Shand and S. Bryant. IP Fast Re-route framework.
http://www3.tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-framework-07, June 2007.

[28] M. Shand and S. Bryant. IP Fast Reroute Using Not-via Addresses.
http://www3.tools.ietf.org/html/
draft-ietf-rtgwg-ipfrr-notvia-addresses-01, July
2007.

[29] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. In Proc. ACM SIGCOMM, Pittsburgh, PA, Aug.
2002.

[30] R. White and B. Akyol. Considerations in Validating the Path in
BGP. IETF Draft, 2007.

[31] W. Xu and J. Rexford. MIRO: Multi-path Interdomain ROuting. In
Proc. ACM SIGCOMM, Pisa, Italy, Aug. 2006.

[32] X. Yang, D. Wetherall, and T. Anderson. Source selectable path
diversity via routing deflections. In Proc. ACM SIGCOMM, Pisa,
Italy, Aug. 2006.

38

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

