IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000 281

Summary Cache: A Scalable Wide-Area
Web Cache Sharing Protocol

Li Fan, Member, IEEEPei Cao, Jussara Almeida, and Andrei Z. Broder

Abstract—The sharing of caches among Web proxies is an im- proxy caches that cooperate via ICP to reduce traffic to the In-
portant technique to reduce Web traffic and alleviate network bot-  ternet [27], [33], [44], [6], [16].

tlenecks. Nevertheless it is not widely deployed due to the overhead . .
of existing protocols. In this paper we demonstrate the benefits Nevertheless, the wide deployment of web cache sharing

of cache sharing, measure the overhead of the existing protocols, IS currently hindered by the overhead of the ICP protocol.
and propose a new protocol called “summary cache.” In this new ICP discovers cache hits in other proxies by having the proxy
protocol, each proxy keeps a summary of the cache directory of multicast a query message to the neighboring caches whenever
each participating proxy, and checks these summaries for poten- 5 cache miss occurs. Suppose thatproxies configured in

tial hits before sending any queries. Two factors contribute to our . xr
protocol’s low overhead: the summaries are updated only periodi- a cache mesh. The average cache hit ratiff isThe average

cally, and the directory representations are very economical, as low Number of requests received by one cachétisEach cache

as 8 bits per entry. Using trace-driven simulations and a prototype needs to handleN — 1) = (1 — H) = R inquiries from neigh-
implementation, we show that, compared to existing protocols such boring caches. There are a tofdk (N — 1)+ (1 — H)* R ICP

as the internet cache protocol (ICP), summary cache reduces the inquiries. Thus, as the number of proxies increases, both the

number of intercache protocol messagely a factor of 25 to 60re- e .
duces the bandwidth consumptionby over 50%, eliminates 30% to total communication and the total CPU processing overhead

95% of the protocol CPU overhead, all while maintaining almost increasequadratically.
the same cache hit ratio as ICP. Hence summary cache scales to a Several alternative protocols have been proposed to address

large number of proxies. (This is a revision of [18]. We add more the problem, for example, a cache array routing protocol that
data and analysis in this version.) partitions the URL space among proxies [48]. However, such

Index Terms—Bloom filter, cache sharing, ICP, Web cache, Web solutions are often not appropriate for wide-area cache sharing,
proxy. which is characterized by limited network bandwidth among

proxies and nonuniform network distances between proxies and

I. INTRODUCTION their users (for example, each proxy might be much closer to one

user group than to others).

S, THE treme.ndous growth of the' World Wide Web €ON" 13 this paper, we address the issue of scalable protocols for
tinues to strain the Internet, caching has been recognizg

. ) ‘w[de-area Web cache sharing. We first quantify the overhead
as one of_the most important techn_lques_ to reduce ba_ndW| he ICP protocol by running a set of proxy benchmarks. We
consumption [32]. In partlcula_r, caching within W?b Proxies haCgompared network traffic and CPU overhead of proxies using
bgen shown_ to be very effective [1,6]' [36]. To gain the full ben- P with proxies that are not using ICP. The results show that
efits of caching, proxy caches behind a common bottleneck I"% en when the number of cooperating proxies is as low as four,
sho_uld coopera_te and serve each other’s misses, thus furthegd’ﬁj increases the interproxy traffic by a factor of 70 to 90, the
ducing the trafflc_through the bottleneck. We call the procegs v of network packets received by each proxy by 13% and
web gaChi shar11r|n_g. G din th ; igher, and the CPU overhead by over 15%. (The interproxy
Web cac 1€ sharing was r|]rst proposed in t de c_onte(;df(]) t ffic with no ICP is keep-alive messages; the network packets
Harvest project [28], [14]. The Harvest group designed the ifl 4o messages between proxy and client, messages between
ternet cache protocol (ICP) [2,1] that. supports discovery a ?ioxy and server, and messages between proxies.) In the ab-
r etr[evgl of documents from .ne|ghbor|ng caphes. Tpday, Ma¥nce of interproxy cache hits (also called remote cache hits),
institutions and many countries have established hlerarchles[ﬁ)foverhead can increase the average user latency by up to 11%.

We then propose a new cache sharing protocol called “sum-

Manuscript received November 25, 1998; revised January 20, 1999 and Anary cache.” Under this protocol, each proxy keeps a compact
gUSt 17,1999; approved by|EEE/ACNRKNSACT|ONSONNETWORK|NG Editor Summary Of the Cache dlrectory Of every Other proxy When a
M. Ammar. . ! .

L. Fan and P. Cao were with the Department of Computer Scientfé‘?whe miss OCCWS* a proxy first pr_ok_)es all the Su_mma”es to see
University of Wisconsin-Madison, Madison, WI 53706 USA. They are noif the request might be a cache hit in other proxies, and sends
with Cisco Systems Inc., San Jose, CA 95134 USA (e-mail: Ifan@cisco.cog};query messages 0n|y to those proxies whose summaries show
cao@cisco.com). e .

J. Almeida is with the Department of Computer Science, University of Wi@rormsmg results. Th_e summaries do_ not need to be accur.ate. at
consin, Madison, W1 53706 USA (e-mail: jussara@cs.wisc.edu). all times. If a request is not a cache hit when the summary indi-

A. Z. Broder was with the Systems Research Center, Digital Equipment Ceigtes so (a false hit), the penalty is a wasted query message. If

poration, Palo Alto, CA 94301 USA. He is now with AltaVista Search, Saﬂ1 . . L .
Mateo, CA 94402 USA (e-mail: andrei.broder@av.com). e request is a cache hit when the summary indicates otherwise
Publisher Item Identifier S 1063-6692(00)05004-4. (a false miss), the penalty is a higher miss ratio.

1063-6692/00$10.00 © 2000 IEEE



282 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

TABLE |

STATISTICS ABOUT THE TRACES THE MAXIMUM CACHE HIT RATIO AND BYTE HIT RATIO ARE ACHIEVED WITH THE INFINITE CACHE.
Traces DEC UCB UPisa Questnet NLANR
Time 8/29-9/4, 1996 [ 9/14-9/19, 1996 | Jan-March, 1997 | 1/15-1/21, 1998 | 12/22, 1997
Requests 3,543,968 1,907,762 2,833,624 2,885,285 1,766,409
Infinite Cache Size 28.8GB 18.0GB 20.7GB 23.3GB 13.7GB
Max. Hit Ratio 49% 30% 40% 30% 36%
Max. Byte Hit Ratio 36% 14% 7% 15% 27%
Client Population 10089 5780 2203 N/A N/A
Client Groups 16 8 8 12 4

We examine two key questions in the design of the protocol: « Questnet logs of HTTP GET requests seen by the parent
the frequency of summary updates and the representation of proxies at Questnet, a regional network in Australia. The
summary. Using trace-driven simulations, we show that the up-  trace consists only the misses of children proxies. The full
date of summaries can be delayed until a fixed percentage (for set of user requests to the proxies are not avaliable.
example, 1%) of cached documents are new, and the hit ratioe NLANR : one-day log of HTTP requests to the four major
will degrade proportionally (for the 1% choice, the degradation  parent proxies, “bo,” “pb,” “sd,” and “uc,” in the National
is between 0.02% to 1.7% depending on the traces). Web Cache hierarchy by the National Lab of Applied Net-

To reduce the memory requirements, we store each summary work Research [43].

as a “Bloom filter” [7]. This is a computationally very effi- Table I lists various information about the traces, including du-
cient hash-based probabilistic scheme that can represent arggén of each trace, the number of requests and the number of
of keys (in our case, a cache directory) with minimal memomyients. The “infinite” cache size is the total size in bytes of
requirements while answering membership queries with O pralhique documents in a trace (i.e., the size of the cache which
ability for false negatives and low probability for false positivesncurs no cache replacement).
Trace-driven simulations show that with typical proxy config- To simulate cache sharing, we partition the clients in DEC,
urations, for N cached documents represented within justINCB and UPisa into groups, assuming that each group has its
bytes, the percentage of false positives is 1% to 2%. In fact, th&n proxy, and simulate the cache sharing among the proxies.
memory can be further reduced at the cost of an increased faf$gs roughly corresponds to the scenario where each branch of
pOSitiVG ratio. (We describe Bloom filters in more detail Iater.)a company or each department ina university has its own proxy
Based on these results, we design the summary caefghe, and the caches collaborate. The cache is restricted to each
enhanced ICP protocol and implement a prototype withiRdividual traces. We set the number of groups in DEC, UCB
the Squid proxy. Using trace-driven simulations as well agd UPisa traces to 16, 8, and 8, respectively. A client is put in
experiments with benchmarks and trace-replays, we show thajroup if its clientID mod the group size equals the group ID.
the new protocol reduces the number of interproxy messaggsgestnet traces contain HTTP GET requests coming from 12
by a factor of 25 to over G0reduces the network bandwidthchild proxies in the regional network. We assume that these are
consumption (in terms of bytes transferreoly over 50% the requests going into the child proxies (since the child proxies
and eliminates30% to 95%of the protocol CPU overhead. send their cache misses to the parent proxy), and simulate cache
Compared with no cache sharing, our experiments show tR@faring among the child proxies. NLANR traces contain actual
the protocol incurs little network traffic and increases CPYTTP requests going to the four major proxies, and we simulate
time only by 5% to 12% depending on the remote cache hife cache sharing among them.
ratio. Yet, the protocol achieves a cache hit ratio similar to the The simulation results reported here assume a cache size that
ICP protocol most of the time. is 10% of the “infinite” cache size. Results under other cache
The results indicate that the summary cache enhanced I§Fes are similar. The simulations all use least-recently-used
protocol can scale to a large number of proxies. Thus, it has f1§RU) as the cache replacement algorithm, with the restriction
potential to significantly increase the deployment of Web cacligat documents larger than 250 KB are not cached. The policy
sharing and reduce Web traffic on the Internet. Toward this end similar to what is used in actual proxies. We do not simulate
we are making our implementation publicly available [17] angxpiring documents based on age or time-to-live. Rather,
are in the process of transferring it to the ICP user communityhost traces come with the last-modified time or the size of a
document for every request, and if a request hits on a document
[I. TRACES AND SIMULATIONS whose last-modified time or size is changed, we count it as a
For this study we have collected five sets of traces of HTT?@Che MISS. .In other words, We assume that cache consistency
mechanism is perfect. In practice, there are a variety of proto-

requests (forlm-ore detf':uls, see [19]): . cols [14], [37], [30] for Web cache consistency.
« DEC: Digital Equipment Corporation Web Proxy server

traces [35].
» UCB: traces of HTTP requests from the University of Cal-
ifornia at Berkeley Dial-IP service [26]. Recent studies [10], [25], [16] have shown that under infi-
« UPisa traces of HTTP requests made by users in the Comite cache capacity, Web cache hit ratio appears to grow loga-
puter Science Department, University of Pisa, Italy. rithmically with the size of the user population served by the

I1l. BENEFITS OFCACHE SHARING



FAN et al. SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 283

— -4— - Single-Copy Cache Sharing —+— Simple Cache Sharing ---aA-- No Cache Sharing

0.50 —0— Global Cache - %~ - Global 10% less cache

0.40
2 030
S
= 0.20

0.10

0.00

1 10
Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%) Relative Cache Size (%)
Graph 1: DEC-8-29-9-4  Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 1. Cache hit ratios under different cooperative caching schemes. Results on byte hit ratios are similaxi§hein log scale.

cache. Clearly, the overlap of requests from different users reeeded to completely avoid replacements) for each trace. The
duces the number of cold misses, often a significant portion i&sults on byte hit ratios are very similar, and we omit them due
cache misses [3], since both first-time reference to documettsspace constraints.

and document modifications contribute to cold misses. Looking at Fig. 1, we see that, first, all cache sharing schemes

To examine the benefits of cache sharing under finite cacgignificantly improve the hit ratio over no cache sharing. The
sizes, we simulate the following schemes using the traces list€gults amply confirm the benefit of cache sharing even with
in the previous section. fairly small caches.

» No Cache SharingProxies do not collaborate to serve . Second, the h|t_rat|o under single-copy cache sharing _and
, : simple cache sharing are generally the same as or even higher
each other’s cache misses. . . . .
. . . , than the hit ratio under global cache. We believe the reason is
» Simple Cache Sharind’roxies serve each other’'s cachcteh ) )
at global LRU sometimes performs less well than group-wise

MISSes. Once a proxy fetches a documen.t from anth_eFEU. In particular, in the global cache setting a burst of rapid
proxy, it caches the document locally. Proxies do not co-

. o o uccessive requests from one user might disturb the working
ordinate cache replacements. This is the sharing imple- : . :
set of many users. In single-copy or simple cache sharing, each
mented by the ICP protocol. . . ; i
. . . ,_cache is dedicated to a particular user group, and traffic from
 Single-Copy Cache Sharin@roxies serve each other’s .
: each group competes for a separate cache space. Hence, the dis-
cache misses, but a proxy does not cache documents,. = . . - .
ruption is contained within a particular group.
fetched from another proxy. Rather, the other proxy —_ . . . . .
. Third, when comparing single-copy cache sharing with
marks the document as most-recently-accessed, and in- .
. . S O simple cache sharing, we see that the waste of space has only
creases its caching priority. Compared with simple cache : .
. : 7 ._aminor effect. The reason is that a somewhat smaller effective
sharing, this scheme eliminates the storage of duplicate . . . . .
. : S . cache does not make a significant difference in the hit ratio.
copies and increases the utilization of available cac . . . .
space 0 demonstrate this, we also run the simulation with a global

0 -
» Global Cache Proxies share cache contents and coororl__-".’mhe 10% smaller than the original. As can be seen from

o ig. 1, the difference is very small.
nate replacement so that they appear as one unified cac hus. despite its simplicity. the ICP-stvle simple cache
with global LRU replacement to the users. This is the ' P plcity, Y P

. . . .~ sharing reaps most of the benefits of more elaborate coopera-
fully coordinated form of cooperative caching. We sim-. ) . .

: tive caching. Simple cache-sharing does not perform any load
ulate the scheme by assuming that all requests go to gn

o . alancing by moving content from busy caches to less busy
cache whose size is the sum of all proxy cache sizes. .
ones, and does not conserve space by keeping only one copy

We examine these schemes in order to answer two questiagfseach document. However, if the resource planning for each
whether simple cache sharing significantly reduces traffiroxy is done properly, there is no need to perform load-bal-
to Web servers, and whether the more tightly coordinatinghcing and to incur the overhead of more tightly coordinating
schemes lead to a significantly higher hit ratio. Notice here thehemes.
hit ratio includes both local hits and remote hits. Local hits are Finally, note that the results are obtained under the LRU re-
those requested documents found in the proxy’s cache; remgigcement algorithm as explained in Section Il. Different re-
hits are those documents found in the neighoring proxigsfacement algorithms [10] may give different results. Also, sep-
cache. Both kinds of hit avoid traffic to web servers. arate simulations have confirmed that in case of severe load im-
Fig. 1 shows the hit ratios under the different schemes cdpalance, the global cache will have a better cache hit ratio, and
sidered when the cache size is set to 0.5%, 5%, 10%, and 20#érefore it is important to allocate cache size of each proxy to
of the size of the “infinite cache size” (the minimum cache sizee proportional to its user population size and anticipated use.



284 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

TABLE I
OVERHEAD OF ICP IN THE FOUR-PROXY CASE. THE SC-ICP RROTOCOL ISINTRODUCED IN SECTION VI AND WILL BE EXPLAINED LATER. THE EXPERIMENTSARE
RUN THREE TIMES, AND THE VARIANCE FOR EACH MEASUREMENT ISLISTED IN THE PARENTHESIS THE OVERHEAD ROW LISTS THEINCREASEN PERCENTAGE
OVER NO-ICP FOR EACH MEASUREMENT. NOTE THAT IN THESE SYNTHETIC EXPERIMENTS THERE IS NO INTERPROXY CACHE HIT

Exp 1 Hit Ratio | Client Latency User CPU System CPU | UDP Msgs | TCP Msgs | Total Packets
no ICP 5% 2.75 (5%) 94.42 (5%) | 133.65 (6%) | 615 (28%) | 334K (8%) 355K(7%)
ICP 25% 3.07 (0.7%) 116.87 (5%) | 146.50 (5%) | 54774 (0%) | 328K (4%) | 402K (3%)
Overhead 12% 24% 10% 9000% -2% 18%
SC-ICP 25% 2.85 (1%) 95.07 (6%) | 134.61 (6%) | 1079 (0%) | 330K (6%) 351K (5%)
Overhead 4% 0.7% 0.7% 5% -1% -1%

Exp 2 Hit Ratio | Client Latency User CPU System CPU | UDP Msgs | TCP Msgs | Total Packets
no 1CP 45% 2.21 (1%) 80.83 (2%) | 111.10 (2%) 540 (3%) | 272K (3%) 290K (3%)
ICP 5% 2.39 (1%) 97.36 (1%) | 118.50 (1%) | 39968 (0%) | 257K (2%) 314K (1%)
Overhead 8% 20% 7% 7300% -1% 8%
SC-ICP 45% 2.25 (1%) 82.03 (3%) | 111.87 (3%) 799 (5%) | 269K (5%) 7K 5%)
Overhead 2% 1% 1% 48% -1% -1%

V. OVERHEAD OF ICP same seeds in the random number generators for the no-ICP

Though ICP [49] has been successful at encouraging d ICP exp_enments o ensure 9°mpafab'e results; otherywse
ItI heavy-tailed document size distribution would lead to high

cache sharing around the world, it is not a scalable protocol. It". The relative diff bet ICP and ICP
relies on query messages to find remote cache hits. Every ti lance. The refative dilierences between no- an are

one proxy has a cache miss, everyone else receives and same across different settings of seeds. We present results

cesses a query message. As the number of collaborating pro>58§1 one set of exper.|mer.1ts.here.

increases, the overhead quickly becomes prohibitive. We measure the hit ratio in the caches, the average latency
To measure the overhead of ICP and its impact on pro en by the clients, the user and system CPU times consumed

performance, we run experiments using the Wisconsin pro the Squid proxy and network traffic. Using netstat, we collect

benchmark 1.0 [1]. The benchmark is designed by us and S number of user datagram protocol (UDP) datagrams sent

been used by several proxy vendors as a tool to validate proe§(nd received, the TCP packets sent and received, and the total
nL¥mber of IP packets handled by the Ethernet network interface.

performance [31]. It consists of a collection of client ProCess&s . nird number is roughly the sum of the first two. The UDP
thatissue requests following patterns observed in real traces {m- ’

cluding request size distribution and temporal locality), and faffic is incurred by the ICP query and reply messages. The

- ) P traffic includes the HTTP traffic between the proxy and
collection of server processes that delay the replies to emulmg servers, and between the proxy and the clients. The results
Internet latencies. !

Th . ¢ ‘ q 10 Sun S 20 a}(re shown in Table II.
ne experiments are periormed on Un Sparc-ct Workrpq rasuits show that ICP incurs considerable overhead even
stations connected with 100 Mb/s Ethernet. Four Workstatlom“,_}n the number of cooperating proxies is as low as four. The
act as four proxy systems running Squid 1.1.14, and each hag,her of UDP messages is increased by a factor of 73 to 90.
75 MB of cache space. Another four workstations run 120 clie e to the increase in the UDP messages, the total network
processes, 30 processes on each workstation. The client progic seen by the proxies is increased by 8% to 13%. Protocol
cesses on each workstation connect to one of the proxies. C"ﬁchessing increases the user CPU time by 20% to 24%, and
processes issue requests with no thinking time in between, gjgp processing increases the system CPU time by 7% to 10%.
the document sizes follow the Pareto distribution witk= 1.1 14 {he clients, the average latency of an HTTP request is in-
andk = 3.0 [11]. Two workstations act as servers, each WitBreased by 8% to 12%. The degradations occur despite the fact
15 servers listening on different ports. Each server forks a neMt the experiments are performed on a high-speed local area
process when handling an HTTP request, and the process Walyork.
for one second before sending the reply to simulate the networkrhe results highlight the dilemma faced by cache adminis-
latency. . _ . o trators: there are clear benefits of cache sharing (as shown in
We experiment with two different cache hit ratios, 25% anglig, 1), but the overhead of ICP is high. Furthermore, the effort
45%, as the overhead of ICP varies Wlth the_ cache miss ratiogient on processing ICP is proportional to the total number of
each proxy. In the benchmark, each client issues requests flche misses experienced by other proxies, instead of propor-
lowing the temporal locality patterns observed in [38], [10], [8ional to the number of actual remote cache hits.

and the inherent cache hit ratio in the I’equest stream can be adro address the prob'em, we propose a hew scalable protoco':
justed. In each experiment, a client process issues 200 requegifamary cache

for a total of 24 000 requests.

We compare two configurationso-ICP, where proxies do
not collaborate, andiCP, where proxies collaborate via ICP.
Since we are only interested in the overhead, the requests isih the summary cache scheme, each proxy stores a summary
sued by different clients do not overlap; there is no remote caabigts directory of cached document in every other proxy. When
hit among proxies. This is the worst-case scenario for ICP, aadiser request misses in the local cache, the local proxy checks
the results measure the overhead of the protocol. We use tiwe stored summaries to see if the requested document might be

V. SUMMARY CACHE



FAN et al. SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 285

& stale-hit ©Oexact_dir --ICP <© false-hit
0.50
0.40
DOOesrgrizaze .
£ 030
é ©0-O—~Oaannrzg OO0 Oraassssl)
= 020
0.10 i a L R A Aod -A----A
. T S Y
0.00 L S e SOOI POV OT TP
0 2 4 6 8100 2 4 6 81002 4 6 81002 4 6 8100 2 4 6 810
Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)
Graph 1: DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 2. Impact of summary update delays on total cache hit ratios. The cache size is 10% of the “infinite” cache size.

stored in other proxies. If it appears so, the proxy sends out of-cooperating proxies. Since the memory grows linearly with

quests to the relevant proxies to fetch the document. Otherwitdes number of proxies, it isimportant to keep the individual sum-

the proxy sends the request directly to the Web server. maries small. Below, we first address the update frequencies,
The key to the scalability of the scheme is that summariesd then discuss various summary representations.

do not have to be up-to-date or accurate. A summary does not

have to be updated every time the cache directory is changad;impact of Update Delays

rather, the update can occur upon regular time intervals or when

a certain percentage of the cached documents are not reflecte\é/e investigate delaying the update of summaries until the

. ; : ercentage of cached documents that are “new” (that is, not re-
in the summary. A summary only needs to be inclusive (that : . :

g . cted in the summaries) reaches a threshold. The threshold cri-
depicting a superset of the documents stored in the cache

0. .
avoid affecting the total cache hit ratio. That is, two kinds c{ﬁg&;ls Chgs?” pecauslehFhe numbe(rj of falljlse MISSes (ar|1d hre1nce
arrors are tolerated. egradation in total hit ratio) tends to e proportional to the
number of documents that are not reflected in the summary. An
* False missesThe document requested is cached at SOmternative is to update summaries upon regular time intervals.
other proxy but its summary does not reflect the fact. lihe false miss ratio under this approach can be derived through
this case, a remote cache hit is not taken advantage of, @verting the intervals to thresholds. That is, based on request
the total hit ratio within the collection of caches is reduceggte and typical cache miss ratio, one can calculate how many
* False hits The document requested is not cached at SOmgw documents enter the cache during each time interval and
other proxy but its summary indicates that itis. The proxeir percentage in the cached documents.
will send a query message to the other proxy, only to be sjng the traces, we simulate the total cache hit ratio when
notified that the document is not cached there. In this casge threshold is 0.1%, 1%, 2%, 5%, and 10% of the cached
a query message is wasted. documents. For the moment we ignore the issue of summary
The errors affect the total cache hit ratio or the interproxy trafficepresentations and assume that the summary is a copy of the
but do not affect the correctness of the caching scheme. For eaehe directory (i.e., the list of document URL'S). The results
ample, a false hit does not result in the wrong document beiage shown in Fig. 2. The top line in the figure is the hit ratio
served. In general we strive for low false misses, because falgeen no update delay is introduced. The second line shows the
misses increase traffic to the Internet and the goal of cachiratio as the update delay increases. The difference between
sharing is to reduce traffic to the Internet. the two lines is the false miss ratio. The bottom two curves show
A third kind of error,remote stale hitsoccurs in both sum- the ratio of remote stale hits and the ratio of false hits (the delay
mary cache and ICP. A remote stale hit is when a documenidges introduce some false hits because documents deleted from
cached at another proxy, but the cached copy is stale. Remnibie cache may still be present in the summary).
stale hits are not necessarily wasted efforts, because delta confhe results show that, except for the NLANR trace data,
pressions can be used to transfer the new document [42]. Hdlwe degradation in total cache hit ratio grows almost linearly
ever, it does contribute to the interproxy communication.  with the update threshold. At the threshold of 1%, the relative
Two factors limit the scalability of summary cache: the neteductions in hit ratio are 0.2% (UCB), 0.1% (UPisa), 0.3%
work overhead (the interproxy traffic), and the memory requirg@uestnet), and 1.7% (DEC). The remote stale hit ratio is
to store the summaries (for performance reasons, the summakiasily affected by the update delay. The false hit ratio is very
should be stored in DRAM, not on disk). The network overheaainall since the summary is an exact copy of the cache directory,
is determined by the frequency of summary updates and by theugh it does increase linearly with the threshold.
number of false hits and remote hits. The memory requirementig~or the NLANR trace, it appears that some clients are simul-
determined by the size of individual summaries and the numhkaneously sending two requests for the exact same document to



286 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

TABLE 1l Bit Vector v
STORAGE REQUIREMENT, IN TERMS OF PERCENTAGE OFPROXY CACHE Element a T
SIZE, OF THE SUMMARY REPRESENTATIONS
H@)=P, R

Approach DEC | NLANR
exact_dir 2.8% | 0.70% Ha)=P .
server_name 0.19% | 0.08% z 2 m bits
bloom filter. 8 | 0.19% | 0.038% _ L
bloom flter 16 | 0.38% | 0.075% Hy@=P; -
bloom filter 32 | 0.75% | 0.15%

H@ =Py~

CH

proxy “bo” and another proxy in the NLANR collection. If we _ _ _
only simulate the other three proxies in NLANR, the results afdd- 3 Bloom Filter with four hash functions.
similar to those of other traces. With “bo” included, we also
simulated the delay being 2 and 10 user requests, and thedfiitnain memoryper proxy The server-name approach, though
ratio drops from 30.7% to 26.1% and 20.2%, respectively. Tl®nsuming less memory, generates too many false hits that sig-
hit ratio at the threshold of 0.1%, which roughly correspondsficantly increase the network messages.
to 200 user requests, is 18.4%. Thus, we believe that the sharfhe requirements on an ideal summary representation are
drop in hit ratio is due to the anomaly in the NLANR trace. Unsmall size and low false hit ratio. After a few other tries, we
fortunately, we cannot determine the offending clients becauseind a solution in an old technique called Bloom filters.
client ID’s are not consistent across NLANR traces [43].

The results demonstrate that in practice, a summary update Bloom Filters—The Math
delay thresholql of 1% to 10% re_sults in a tolerable degradationA Bloom filter is a method for representing a set
of the caghe hit ratios. For the five traces, the threshold vaIugs — {ar,as,...,an} of n elements (also called keys) to
translate into roughly 300 to 3000 user requests between %

N

Bi port membership queries. It was invented by Burton Bloom
dates, and on average, an update frequency of roughly every 970 [7] and was proposed for use in the web context by

minutes to an hour. Thus, the bandwidth consumption of theﬁférais and Bharat [40] as a mechanism for identifying which
updates can be very low. pages have associated comments stored withibommon-
Knowledgeserver.
The idea (illustrated in Fig. 3) is to allocate a vectoof m
The second issue affecting scalability is the size of the sulits, initially all set to 0, and then choogeindependent hash
mary. Summaries need to be stored in the main memory fiohctions iy, ha, .. ., hy, each withrang€l, ..., m}. Foreach
only because memory lookups are much faster, but also becageisenenta € A, the bits at position&; (a), hz(a),. .., hi(a)
disk arms are typically the bottlenecks in proxy caches [39]. Alr v are set to 1. (A particular bit might be set to 1 multiple
though DRAM prices continue to drop, we still need a careftimes.) Given a query fdrwe check the bits at positioris (b),
design, since the memory requirement grows linearly with the(b), ..., hx(b). If any of them is 0, then certainllyis not in
number of proxies. Summaries also take DRAM away from thihe setA. Otherwise we conjecture théais in the set although
in-memory cache of hot documents, affecting the proxy perfdhere is a certain probability that we are wrong. This is called
mance. Thus, it is important to keep the summaries small. @rifalse positive.” or, for historical reasons, a “false drop.” The
the other hand, summaries only have to be inclusive to avoid prameterg andm should be chosen such that the probability
fecting the cache hit ratio. Therefore, we could use an unprecisfea false positive (and hence a false hit) is acceptable.
but small summary for the directory. The salient feature of Bloom filters is that there is a clear
We first investigate two naive summary representationsadeoff betweemn and the probability of a false positive. Ob-
exact-directory and server-name. In the exact-directory agerve that after inserting keys into a table of size, the prob-
proach, the summary is essentially the cache directory, wibility that a particular bit is still 0 is exactly
each URL represented by its 16-byte MD5 signature [41],
[24]. In the server-name approach, the summary is the list of <1 1 )""
the server name component of the URL's in cache. Since on m )
average, the ratio of different URL's to different server names
is about 10 to 1 (observed from our traces), the server-nafignce the probability of a false positive in this situation is
approach can cut down the memory by a factor of 10. L
We simulate these approaches using the traces and found that <1 < 1 )k"> N (1 e—kn/m)k

B. Summary Representations

neither of them is satisfactory. The results are in Table Ill, along 1= m

with those on another summary representation (Table Ill is dis-

cussed in detail in Section V-D). The exact-directory approaqthe right hand side is minimized fér= In2 x m/n, in which
consumes too much memory. In practice, proxies typically ha¥gse it becomes

8 GB to 20 GB of cache space. If we assume 16 proxies of 8 GB

each and an average file size of 8 KB, the exact-directory sum- <1

k
- — zym/n
mary would consumél6 — 1) « 16 = (8 GB/8 KB) = 240 MB 2) = (0.6185)™".



FAN et al. SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 287

As already mentioned the optimum value fofover reals) is
ln 2m/n so assuming that the number of hash functions is less
thanln 2m/n we can further bound

Pr(max(c) > i) <m <Ch,12> .
i

Hence taking = 16 we obtain that

Pr(max(c) > 16) < 1.37 x 1071° x m.

o T

In other words if we allow 4 bits per count, the probability of

. . . , overflow for practical values af: during the initial insertion in
Fig. 4. Probability of false positives (log scale). The top curve is for fou . .
e table is minuscule.

hash functions. The bottom curve is for the optimum (integral) number of ha ° ) )
functions. In practice we must take into account that the hash functions

are not truly random, and that we keep doing insertions and
In fact £ must be an integer and in practice we might chosedeletions. Nevertheless, it seems that 4 bits per count would be
value less than optimal to reduce computational overhead. Soameply sufficient. Furthermore if the count ever exceeds 15, we
example values are can simply let it stay at 15; after many deletions this might lead
to a situation where the Bloom filter allows a false negative (the
count becomes 0 when it shouldn’t be), but the probability of

20 25
Bits per entry

m/n=6 k=4 peror = 0.0561

m/n=8 k=06 peror =0.0215 such a chain of events is so low that it is much more likely that
m/n=12 k=8 peror = 0.00314 the proxy server would be rebooted in the meantime and the
m/n =16 k=11 peror = 0.000458. entire structure reconstructed.

The graph in Fig. 4 shows the probability of a false positive &. Bloom Filters as Summaries
a function of the number of bits allocated for each entry, that is,
the ratiooe = n/m. The above curve is for the case of four hasg_l|J
functions. The below curve is for the optimum number of has

functions. The scale is logarithmic so the straight line obserVﬁgn of the hash functions to other proxies. When updating the

qorrespont_ﬂs to an_exponential decrease. It is_ Clea_r that Blo mnmary the proxy can either specify which bits in the bit array
filters require very little storage per key at the slight risk of somg. flipped, or send the whole array, whichever is smaller (the

Iﬁlse poimve?. F?F ms:ﬁnce f(;r E_Ft't a:cra); 1|0 t'me_st_largerltgﬁplementation detail is discussed in Section VI).
¢ efnumh err(])fen ;!es, N zrg ;/'f'y (t)ha a?e positive 1S f.f‘ ° Each proxy maintains a local copy of the Bloom filter, and
or four hash functions, and =% Tor the oplimum case ot iy pdates it as documents are added to and replaced from the

hash functions. The probability of false positives can be eas Yche. As explained, to update the local filter, a proxy maintains

an array of counters, each counter remembering the number of
Ymes the corresponding bit is set to 1. When a document is
added into the cache, the counters for the corresponding bits

are incremented; when it is deleted from the cache, the counters

the bit arraya count(£) of the number of times that the bit is S€lre decremented. When a counter increases from 0 to 1 or drops
to 1 (thatis, the number of elements that hashegiuoder any from 1 to 0, the corresponding bit is set to 1 or 0, and a record

of the hash functions). All the counts are initially 0. When a kepé added to the list remembering the updates.

a (in our case, the URL of a document) is inserted or delete 'The advantage of Bloom filters is that they provide a tradeoff

the counts:(fy (), c(h2(a)), ..., c(hr(a)) are incremented or o o the memory requirement and the false positive ratio
decremented accordingly. When a count changes from 0 toﬁgﬁ%

: o hich induces false hits). Thus, if proxies want to devote less
the corresponding bit is turned on. When a count changes fr mory to the summaries, they can do so at a slight increase of
1to O the corresponding bit is turned off. Hence the local Bloomt ’

filter al flect tly th t direct erproxy traffic.
e e alse neod 10 allocats MmOy for . We experimented with three configurations for Bloom filter

. Since we also need to allocate memory for the counts, 'tlﬁ\sed summaries: the number of bits being 8, 16, and 32 times
Important to kqow how large they. can pecome. The asymptofi average number of documents in the cache (the ratio is also
;axpepted .maxmg)gm coun; after .|nsert|m%keys Wz'th k- hash called a “load factor”). The average number of documents is
unctions into a bit array of size: is (see [24, p. 72]) calculated by dividing the cache size by 8 K (the average doc-
r=1(m) <1 n In(kn/m) Lo < 1 )) ument size). All three configurations use four hash functions.
Inl'—1(m) In? I'—1(m) The number of hash functions is not the optimal choice for each
o . - configuration, but suffices to demonstrate the performance of
and the probability that any count s greater or qual Bloom filters. The hash functions are built by first calculating
nk) 1 <m <enk>Z the MD5 signature [41] of the URL, which yields 128 bits, then

Bloom filters provide a straightforward mechanism to build
mmaries. A proxy builds a Bloom filter from the list of URL's
cached documents, and sends the bit array plus the specifica-

to represent its own cached documents, changes of setist
be supported. This is done by maintaining for each location

mioe im dividing the 128 bits into four 32-bit word, and finally taking the

Pr(max(c) > ) < m< i



288 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

» exact_dir o bloom_filter_8 O bloom_filter_16 < bloom_filter_32 =+ server
0.50
0.40 MR- 35— = - —4
e oty
£ 030
é -
£ 0204
0.10
00+ 7T T rTTT T T T TR T T
0 2 4 6 8100 2 4 6 8100 2 4 6 8100 2 4 6 8100 2 4 6 810
Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)
Graph 1: DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 5. Total hit ratio under different summary representations.

.”_‘Eﬁci-ﬂr_ ~ — -4 ®bloom_filter_8 O bloom_filter_16 < bloom_filter_32 =+ server
1.00000 e e s ot e e ep A —— g PR oA oot
bAA——N——h
Shb——D App—D—A
o 0.10000 4 ot——t—28
. Bt f—m——p
5 ag---0-ore 0 poo---0-----e- o IR -1-T- TR SRS o
& 001000 e S o--—"% .g Bag-oer 3 ————0
= o T %t oo T T X pag---0----- ~o-== & o0o0-—% M
.§ * Lo S °W_. x0T woo
2 000100 X X oo T x Ut
= : o x "
0.00010 % ;
; x X
x
0000l VT T T MFrT T T T T T T I T T T T T T
0 2 4 6 8100 2 4 6 81002 4 6 81002 4 6 8100 2 4 6 8110
Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)
Graph 1: DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 6. Ratio of false hits under different summary representationsyJaes is in log scale.

modulus of each 32-bit word by the table sizeMD5 is a cryp- well, and server-name and ICP generate many more messages.
tographic message digest algorithm that hashes arbitrary lengtr Bloom filters, there is a tradeoff between bit array size and
strings to 128 bits [41]. We select it because of its well-knowthhe number of messages, as expected. However, once the false
properties and relatively fast implementation. hit ratio is small enough, false hits are no longer a dominant
The performance of these three summary representatiogsntributor to interproxy messages. Rather, remote cache hits
the exact-directory approach, and the server-name approagld remote stale hits become dominant. Thus, the difference
are shown in Figs. 5-8 and in Table Ill. In Fig. 5 we showh terms of network messages between load factor 16 and
the total cache hit ratios and in Fig. 6 we show the false had factor 32 is small. Compared to ICP, Bloom filter based
ratios.Note that they-axis in Fig. 6 is in log scaleThe Bloom summaries reduce the number of messages by a factor of 25 to
filter based summaries have virtually the same cache hit ratig.
as the exact-directory approach, and have slightly higher falserig. 8 shows the estimated total size of interproxy network
hit ratio when the bit array is small. Server-name has a muﬁkbssages in bytesl We estimate the size because update mes-
higher false hit ratio. It has a hlgher cache hit ratio, prObab%ges tend to be |arger than guery messages. The average size
because its many false hits help to avoid false misses. of query messages in both ICP and other approaches is assumed
Fig. 7 shows the total number of interproxy network mesp be 20 bytes of header and 50 bytes of average URL. The size
sages, including the number of summary updates and #fesummary updates in exact-directory and server-name is as-
number of query messages (which includes remote cache hiigmed to be 20 bytes of header and 16 bytes per change. The
false hits and remote stale hit)hey-axis in Fig. 7 is in log  size of summary updates in Bloom filter based summaries is es-
scale. For comparison we also list the number of messagémated at 32 bytes of header (see Section VI) plus 4 bytes per
incurred by ICP in each trace. All messages are assumedbitflip. The results show that in terms of message bytes, Bloom
be uni-cast messages. The figure normalizes the numberfiér based summaries improves over ICP by 55% to 64%. In
messages by the number of HTTP requests in each trace. Battier words, summary cache uses occasional burst of large mes-
exact-directory and Bloom filter based summaries perforeages to avoid continuous stream of small messages. Looking at



FAN et al. SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 289

o ICP # bloom_filter_8 > exact_dir < bloom_filter_32 -+ server

10.00 O-—=-0--—-=0 abloom_filter_16 0-—0--—-—0

0-—0-~—-—0
= bt = - — 4
7 L R s 3
)
g
g \
- Bg-ugunng
#
=
0l T rr T T T T T T T T T
0 2 46 8100 2 4 6 8100 2 4 6 8100 2 4 6 8100 2 4 6 8 10
Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)
Graph 1: DEC-8-29-9-4 Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet
Fig. 7. Number of network messages per user request under different summary forrgsadikes in log scale.
oICP & bloom_filter_8 * exact_dir < bloom_filter_32 =+ server
900 O bloom_filter_16
800
§ 700
g 600 ©000-—0--—-—0
!g. 500
T 400 000-—0--—-—0
B 000-—-0--—-—-0
(gb 300
200 J++~—+-——-+ o -
ﬁ -+ —-—— g o= ° ggro—o R e
100 ——----%
™ L T r 1 1 1

o1 T T T 1T ™ O LR R
0 2 46 8100 2 4 6 8100 2 4 6 8100 2 4 6 8100 2 4 6 810
Threshold (%) Threshold (%) Threshold (%) Threshold (%) Threshold (%)
Graph 1: DEC-8-29-9-4  Graph 2: UCB Graph 3: NLANR Graph 4: UPisa Graph 5: Questnet

Fig. 8. Bytes of network messages per user request under different summary forms.

TABLE IV
PERFORMANCE OFICP AND SUMMARY -CACHE FOR UPISA TRACE IN EXPERIMENT 3. NUMBERS IN PARENTHESIS
SHOW THE VARIANCE OF THE MEASUREMENT AMONG THREE EXPERIMENTS

Exp 3 Hit Ratio | Client Latency User CPU System CPU | UDP Traftic | TCP Traflic | Total Packets
no ICP 16.94 6.22(0.4%) 81.72(0.1%) 115.63(0.1%) 4718(1%) 242K(0.1%) 250K (0.1%)
ICP 19.3 6.31(0.5%) 116.81(0.1%) | 137.12(0.1%) | 72761(0%) | 245K(0.1%) | 325K(0.2%)
Overhead 1.42% 43% 19% 1400% 1% 25%
SC-ICP 19.0 6.07 (0.1%) 91.53(0.4%) 121.75(0.5%) 5765(2%) 244K(0.1%) 262K(0.1%)
Qverhead -2.4% 12% 5% 22% 1% 1%
TABLE V
PERFORMANCE OFICP AND SUMMARY -CACHE FORUPISA TRACE IN EXPERIMENT 4.

Exp 4 Hit Ratio | Client Latency | User CPU | System CPU | UDP Traffic | TCP Traffic | Total Packets

no ICP 9.94 7.11 81.75 119.7 1608 248K 265K

ICP 17.9 7.22 121.5 146.4 75226 257K 343K

Qverhead 1.6% 49% 22% 4577% 8.7% 29%

SC-ICP 16.2 6.80 90.4 126.5 4144 254K 274K

Overhead -4.83% 11% 5.7% 160% 2.4% 3.2%

the CPU overhead and network interface packets in Tablesdther aspects. The Bloom filter summary at the load factor of 8
IV and V (in which SC-ICP stands for the summary cache apas a similar or less memory requirement to the server-name
proach), we can see that it is a good tradeoff. approach, and much fewer false hits and network messages.
Table Il shows the memory per proxy of the summargonsidering all the results, we see that Bloom filter summaries
cache approaches, in terms of percentage of cache size. pravide the best performance in terms of low network overhead
three Bloom filter configurations consume much less memoand low memory requirements. This approach is simple and
than exact-directory, and yet perform similarly to it in alkasy to implement. In addition to MD5, other faster hashing



290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

methods are available, for instance hash functions can be baseBhough none of the traces are large enough to enable mean-
on polynomial arithmetic as in Rabin’s fingerprinting methodéhgful simulation of 100 proxies, we have performed simula-
(See [45], [9]), or a simple hash function (e.g., [24, p. 48}jons with larger number of proxies and the results verify these
can be used to generate, say 32 bits, and further bits can“back of the envelope” calculations. Thus, we are confident that
obtained by taking random linear transformations of these 838mmary cache scales well.

bits viewed as an integer. A disadvantage is that these faster

functions are efficiently invertible (that is, one can easily buildy|. | MPLEMENTATION OF SUMMARY -CACHE ENHANCED ICP

an URL that hashes to a particular location), a fact that might

be used by malicious users to nefarious purposes. Based on the simulation results, we propose the following

summary cache enhanced Internet cache protocol as an opti-
E. Recommended Configurations mization of ICP. The protocol has been implemented in a pro-
. totype built on top of Squid 1.1.14 and the prototype is publicly

c ogf(') ml:;rtl_lgrg]] ;2? a]beovse rrﬁ;:ll:s’ (\;\;irzgcgmrroe:ghth?hfgllow&n ailable [17]. A variant of our approach called cache digest is
'gural . y bp ' up o implemented in Squid 1.2b20 [46].

threshold should be between 1% and 10% to avoid significant
reduction of total cache hit ratio. If a time-based updatlg Protocol

approach is chosen, the time interval should be chosen such

that the percentage of new documents is between 1% and 1094 he design of our protocol is geared toward small delay
The proxy can either broadcast the changes (or the entire thiiesholds. Thus, it assumes that summaries are updated via
array if it is smaller), or let other proxies fetch the updateiending the differences. If the delay threshold is large, then it
from it. The summary should be in the form of a Bloom filteriS more economical to send the entire bit array; this approach is
A load factor between 8 and 16 works well, though proxieddopted in the Cache Digest prototype in Squid 1.2b20 [46].
can lower or raise it depending on their memory and networkWWe added a new opcode in ICP version 2 [49],
traffic concerns. Based on the load factor, four or more hathP-OP.DIRUPDATE (=20), which stands for directory
functions should be used. The data provided here and in [Mjdate messages. In an update message, an additional
can be used as references in making the decisions. For hAgader follows the regular ICP header and consists of: 16
functions, we recommend taking disjoint groups of bits frofits of Function _Num 16 bits of Function Bits ,

the 128-bit MD5 signature of the URL. If more bits are needed2 Dbits of BitArray _Size _InBits , and 32 bits of

one can calculate the MD5 signature of the URL concatenatdlgmber_of _Updates . The header completely specifies
with itself. In practice, the computational overhead of MD5 i€ hashing functions used to probe the filter. There are
negligible compared with the user and system CPU overhdagnction _Num of hashing functions. The functions are

incurred by caching documents (see Section VII). calculated by first taking bits O t&/ —1, M to2M —1, 2M to
3M — 1, etc. out of the MD5 signature [41], [24] of the URL,
F. Scalability where M is Function _Bits , and then modular the bits by

Although our simulations are done for 4 to 16 proxies, wBitATay ~ -Size _InBits . If 128 bits are not enough, more
can easily extrapolate the results. For example, assume that higpare generat(_ad t_>y computing the MD5 signature of the URL
proxies each with 8 GB of cache would like to cooperate. EafRNcatenated with itself. _ o
proxy stores on average about 1M Web pages. The Bloom filter! N€ header is followed by a list of 32-bit integers. The most
memory needed to represent 1M pages is 2 MB at load factor gignificant bit in an integer specm.es whet.her thg bit should b(_e
Each proxy needs about 200 MB to represent all the summari&s t0 0 or 1, and the rest of the bits specify the index of the bit
plus another 8 MB to represent its own counters. The interprofjt Needs to be changed. The design is due to the concemn that
messages consist of update messages, false hits, remote ci¢hg message specifies only which bits should be flipped, loss
hits and remote stale hits. The threshold of 1% correspond<fdrevious update messages would have cascading effects. The
10 K requests between updates, each update consisting of1§§ign enables the messages to be sent V|aaunre!|able multicast
messages, and the number of update messages per requé%rPFQCOL Fu_r_thermore, every update message carries the header,
less than 0.01. The false hit ratios are around 4.7% for the Io4Hich specifies the hash functions, so that receivers can verify
factor of 16 with 10 hash functions. (The probability of a falsE€ information. The design limits the hash table size to be less
positive is less than 0.000 47 for each summary, but there 4@ 2 billion, which for the time being is large enough.

100 of them.) Thus, not counting the messages introduced by re- _

mote cache hits and remote stale hits (which are relatively stabte Prototype Implementation

across the number of proxies), the overhead introduced by th&Ve modified the Squid 1.1.4 software to implement the above
protocol is under 0.06 messages per request for 100 proxiesp@dtocol. An additional bit array is added to the data structure
these messages, only the update message is large, on the dadl@ach neighbor. The structure is initialized when the first sum-
of several hundreds KB. Fortunately, update messages camizy update message is received from the neighbor. The proxy
transferred via a nonreliable multicast scheme (the implemengdso allocates an array of byte counters for maintaining the local
tion detail is discussed in Section VI). Our simulations predicopy of the bloom filter, and an integer array to remember the
that, while keeping the overhead low, this scheme reduces flier changes.

total hit ratio by less than 2% compared to the theoretical hit The current prototype sends the update messages via UDP,
ratio of ICP. since ICP is built on top of UDP. A variant of the design would



FAN et al. SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL 291

be to send the messages via TCP or multicast. Due to the sizeldinges, and enables scalable Web cache sharing over a
these messages, itis perhaps better to send them via TCP or mide-area network.

ticast. Furthermore, since the collection of cooperating proxies
is relatively static, the proxies can just maintain a permanent
TCP connection with each other to exchange update messages.
Unfortunately, the implementation of ICP in Squid is on top of Web caching is an active research area. There are many
UDP only. Thus, the prototype deviates from the recommendstudies on Web client access characteristics [12], [4], [16], [36],
tion in Section 5.5 and sends updates whenever there are endagi, Web caching algorithms [50], [38], [10] as well as Web
changes to fill an IP packet. The implementation further levetache consistency [30], [34], [37], [15]. Our study does not
ages Squid's built-in support to detect failure and recovery atidress caching algorithms or cache consistency maintenance,
neighbor proxies, and reinitializes a failed neighbor’s bit arrayut overlaps some of client traffic studies in our investigation
when it recovers. of the benefits of Web cache sharing.

Recently, there have been a number of new cache sharing ap-
proaches proposed in the literature. The cache array routing pro-
tocol [48] divides URL-space among an array of loosely coupled

We ran four experiments with the prototype. The first twproxy servers, and lets each proxy cache only the documents
experiments repeat the tests in Section IV and the results afeose URL's are hashed to it. An advantage of the approach is
included in Table Il in Section IV, under the title “SC-ICP.” Thethat it eliminates duplicate copies of documents. However, it is
improved protocol reduces the UDP traffic by a factor of 5(ot clear how well the approach performs for wide-area cache
and has network traffic, CPU times and client latencies similaharing, where proxies are distributed over a regional network.
to those of no-ICP. The Relais project [29] also proposes using local directories to

Our third and fourth experiments replay the first 24 006nd documents in other caches, and updating the directories
requests from the UPisa trace. We use a collection of 80 cliexstynchronously. The idea is similar to summary cache. How-
processes running on four workstations, and client processser, the project does not seem to address the issue of memory
on the same workstation connect to the same proxy serverdemands. From the publications on Relais that we can find and
the third experiment, we replay the trace by having each cliemiad [5], it is also not clear to us whether the project addresses
process emulate a set of real-life clients through issuing thée issue of directory update frequencies. Proxies built out of
Web requests. In the fourth experiment, we replay the trace tightly-coupled clustered workstations also use various hashing
having the client processes issuing requests round-robin fremmd partitioning approaches to utilize the memory and disks
the trace file, regardless of which real-life client each requdstthe cluster [22], but the approaches are not appropriate in
comes from. The third experiment preserves the boundimgde-area networks.
between a client and its requests, and a client’s requests alDur study is partially motivated by an existing proposal called
go to the same proxy. However, it does not preserve the ordirectory server [23]. The approach uses a central server to keep
among requests from different clients. The fourth experimetmack of the cache directories of all proxies, and all proxies query
does not preserve the bounding between requests and cliethts,server for cache hits in other proxies. The drawback of the
but do preserve the timing order among the requests. Tagproach is that the central server can easily become a bottle-
proxies are more load-balanced in the fourth experiment thaack. The advantage is that litle communication is needed be-
in the third experiment. tween sibling proxies except for remote hits.

In both experiments, each request’'s URL carries the size ofThere have also been many studies on Web cache hierar-
the request in the trace file, and the server replies with the spehies and cache sharing. Hierarchical Web caching is first pro-
ified number of bytes. The rest of the configuration is similgposed in the Harvest project [28], [14], which also introduces
to the experiments in Section IV. Different from the synthetithe ICP protocol. Currently, the Squid proxy server implements
benchmark, the trace contains a noticeable number of remaggsion 2 of the ICP protocol [49], upon which our summary
hits. The results from experiment 3 are listed in Table 1V, anshched enhanced ICP is based. Adaptive Web caching [51] pro-
those from experiment 4 are listed in Table V. poses a multicast-based adaptive caching infrastructure for doc-

The results show that the enhanced ICP protocol reduagrent dissemination in the Web. In particular, the scheme seeks
the network traffic and CPU overhead significantly, whiléo position the documents at the right caches along the routes to
only slightly decreasing the total hit ratio. The enhanced IQRe servers. Our study does not address the positioning issues.
protocol lowers the client latency slightly compared to thRather, we note that our study is complimentary in the sense
no-ICP case, even though it increases the CPU time by abthat the summary cache approach can be used as a mechanism
12%. The reduction in client latency is due to the remote cacfer communicating caches’ contents.
hits. Separate experiments show that most of the CPU timeThough we did not simulate the scenario, summary cache
increase is due to servicing remote hits, and the CPU tirrahanced ICP can be used between parent and child proxies.
increase due to MD5 calculation is less than 5%. Though thierarchical Web caching includes not only cooperation among
experiments do not replay the trace faithfully, they do illustratgeighboring (sibling) proxies, but also parent and child proxies.
the performance of summary cache in practice. The difference between a sibling proxy and a parent proxy is

Our results indicate that the summary-cache enhandb@t a proxy can not ask a sibling proxy to fetch a document
ICP solves the overhead problem of ICP, requires minimftbm the server, but can ask a parent proxy to do so. Though

VIIl. RELATED WORK

VII. EXPERIMENTS



292 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 8, NO. 3, JUNE 2000

our simulations only involve the cooperation among siblinthe optimal hierarchy configuration for a given workload. We
proxies, the summary cache approach can be used to propagége plan to study the application of summary cache to var-
information about the parent cache’s content to the childus Web cache consistency protocols. Last, summary cache can
proxies, and eliminate the ICP queries from the child proxies be used in individual proxy implementation to speed up cache
the parent. Our inspection of the Questnet traces shows thatltiekup, and we will quantify the effect through modifying a
child-to-parent ICP queries can be a significant portion (overoxy implementation.
two-thirds) of the messages that the parent has to process.

In the operating system context, there have been a lot of REFERENCES

studies on cooperative file cachmg [13]’ [2] and the gIObal [1] J. Almeida and P. Cao. (1997) Wisconsin proxy benchmark 1.0. [On-

memory system (GMS) [20]. The underlying assumption in line]. Available: http://www.cs.wisc.edu/~cao/wpb1.0.html
these systems is that the high-speed local area networks ar@] T.E.Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, D. S. Roselli,

faster than disks, and workstations should use each other’s idle 2d R. Y. Wang, “Serverless network file systems, Pic. 15th ACM
Symp. Operating Syst. Principld3ec. 1995.

memory tq cache ﬁle. pages or virtual memory pages FO avoid[z] M. Arlitt, R. Friedrich, and T. Jin, “Performance evaluation of Web
traffic to disks. In this aspect, the problem is quite different  proxy cache replacement policies,"Roc. Performance Tools'98, Lec-

from Web cache sharing. On the other hand, in both context34] ture Notes in Computer Scienck98, vol. 1469, pp. 193-206.

. . . . M. Arlitt and C. Williamson, “Web server workload characterization,” in
there is the issue of how tightly coordinated the caches should ~ proc. 1996 ACM SIGMETRICS Int. Conf. Measurement and Modeling

be. Most cooperative file caching and GMS systems try to  of Computer Systemblay 1996.

; ; [5] A. Baggio and G. Pierre. Oleron: Supporting information sharing in
emulate the global LRU replacement algorithm, sometimes large-scale mobile environments. presented at ERSADS Workshop, Mar.

also Us_ing hints _in dqing so [47]. It iS_ interesting to note that  1997. [Online]. Available: http://www-sor.inria.fr/projects/relais/
we arrive at quite different conclusions on whether global [6] K. Beck. Tennessee cache box project. presented at 2nd Web Caching

; ; ; ; Workshop, Boulder, CO, June 1997. [Online]. Available: http://ir-
replacement algorithm is necessary [20]. The reason is that in cache nlant.net/Cache/Morkshopo7/

the OS context, the global replacement algorithm is used forj7; B, Bioom, “Space/time trade-offs in hash coding with allowable errors,”
stealing memory from idle workstations (i.e., load-balancing Commun. ACMvol. 13, no. 7, pp. 422-426, July 1970.

Ha i ; ; 8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
the caches), while in Web cache sharing, every proxy 1s bus)'[ and zipf-like distributions: Evidence and implications,”fmnoc. IEEE

all the time. Thus, while simple cache sharing performs poorly  |NFocom, 1999.
in the OS context, it suffices for Web proxy cache sharing as[9] A. Z. Broder, “Some applications of Rabin’s fingerprinting method,”

) - : ; ; in Sequences Il: Methods in Communications, Security, and Computer
long as each proxy’s resource configuration is appropriate for ScienceR. Capocelli, A. De Santis, and U. Vaccaro, Eds.  New York,

its load. Finally, npte that the_ technique of Bloom filter bas_ed NY: Springer-Verlag, 1993, pp. 143-152.
summary cache is not restricted to the Web proxy cachindl0] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in

context, but can be used wherever the knowledge of other Proc. 1997 USENIX Symp. Intemet Technology and Systeers 1997,
! http://www.cs.wisc.edu/~cao/papers/gd-size.html, pp. 193-206.

caches’ contents is beneficial, for example, in caching angii; m. crovella and A. Bestavros, “Self-similiarity in world wide web

load-balancing in clustered servers. traffic: Evidence and possible causes,"Rroc. 1996 Sigmetrics Conf.
Measurement and Modeling of Computer Systesladelphia, PA,
May 1996.

[12] C. R. Cunha, A. Bestavros, and M. E. Crovella, “Characteristics of
WWW client-based traces,” Boston University, Boston, MA, Tech.
Rep. BU-CS-96-010, Oct. 1995.

We propose the summary cache enhanced ICP, a Scalatﬂ%] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson, “Co-

wide-area Web cache sharing protocol. Using trace-driven sim-  operative caching: Using remote client memory to improve file system
ulations and measurements, we demonstrate the benefits of Web Pperformance,” irProc. 1st USENIX Symp. Operating Systems Design

. . and ImplementatiorNov. 1994, pp. 267-280.
proxy cache sharing, illustrate the overhead of current cacl*ﬁ4] P. B. Danzig, R. S. Hall, and M. F. Schwartz, “A case for caching file

sharing protocols, and show that the summary cache approach objects inside internetworks,” iRroc. SIGCOMM 1993, pp. 239-248.

substantially reduces the overhead. We study two key aspectsdf] F.- Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul, “Rate of
this anproach: the effects of delaved updates. and the succinct change and other metrics: A live study of the world wide web Piac.
pp : y p ) USENIX Symp. Internet Technology and Systéres. 1997.

representation of summaries. Our solution, Bloom filter baseghi6s] B. M. Duska, D. Marwood, and M. J. Feeley, “The measured access char-
summaries with update delay thresholds, has low demand on acteristics of world-wide-web client proxy caches,”Rnmoc. USENIX

. . . L Symp. Internet Technology and Systebec. 1997.
memory and bandwidth, and yet achieves a hit ratio similar tcfl?] L. Fan, P. Cao, and J. Almeida. (1998, Feb.) A prototype implementation

that of the original ICP protocol. In particular, trace-driven sim- of summary-cache enhanced icp in Squid 1.1.14. [Online]. Available:
ulations show that, compared to ICP, the new protocol reduceg__ http://www.cs.wisc.edu/~cao/sc-icp.html

th b fint t | bsct 251 L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
€ NUMDEr Or Interproxy protocol messagesyCclor o 0 able wide-area web cache sharing protocolPinc. ACM SIGCOMM

60, reduces the bandwidth consumptimnover 50%while in- 1998. _
curring almost no degradation in the cache hit ratios. Simulatioft® —— (1998, Feb) Summary cache: A scalable wide-area web

. ;. cache sharing protocol. Tech. Rep. 1361, Computer Science De-
and analysis further demonstrate the scalability of the protocol. partment, University of Wisconsin-Madison. [Online]. Available:

We have built a prototype implementation in Squid 1.1.14. http://www.cs.wisc.edu/~cao/papers/summarycache.html

Synthetic and trace-replay experiments show that, in addition t&0] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy, and
h k traffic reduction. the new brotocol reduces the CPU C. A. Thekkath, “Implementing global memory management in a work-
the networ ’ p station cluster,” irProc. 15th ACM Symp. Operating Systems Principles

overhead betweeB0% to 95%and improves the client latency. Dec. 1995.
The prototype implementation is publicly available [17]. [21] ICP working group. (1998). National Lab for Applied Network Re-
M P h f yp P K . Wp | y . . [ ]h . search. [Online]. Available: http://ircache.nlanr.net/Cache/ICP/
uch future work remains. \We plan to investigate the IM-15; A Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier,

pact of the protocol on parent-child proxy cooperations, an “Cluster-based scalable network service, Pimc. SOSP’160ct. 1997.

IX. CONCLUSIONS AND FUTURE WORK



FAN et al. SCALABLE WIDE-AREA WEB CACHE SHARING PROTOCOL

(23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]
(31]

(32]

(33]

(34]

(35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

293

S. Gadde, M. Rabinovich, and J. Chase. Reduce, reuse, recycle: An ap#9] D. Wessels and K. Claffy. (1998) Internet cache protocol (ICP) v.2. [On-
proach to building large internet caches. presented at 6th Workshop Hot  line]. Available: http://ds.internic.net/rfc/rfc2186.txt

Topics in Operating Systems (HotOS VI), May 1997. [Online]. Avail- [50] S. Williams, M. Abrams, C. R. Stanbridge, G. Abdulla, and E.
able: http://www.research.att.com/~misha/ A. Fox. Removal policies in network caches for world-wide web
G. Gonnetand R. Baeza-Yatégndbook of Algorithms and Data Struc- documents. presented at ACM SIGCOMM'96. [Online]. Available:
tures Reading, MA: Addison-Wesley, 1991. http://ei.cs.vt.edu/~succeed/96sigcomm/

S. Gribble and E. Brewer, “System design issues for internet middlewar¢51] L. Zhang, S. Floyd, and V. Jacobson. Adaptive web caching. presented at
service: Deduction from a large client trace,”®noc. USENIX Symp. 2nd Web Caching Workshop, Boulder, CO, June 1997. [Online]. Avail-
Internet Technology and Systerigec. 1997. able: http://ircache.nlanr.net/Cache/ Workshop97/Papers/Floyd/floyd.ps

—, (1997, June) UCB home IP HTTP traces. [Online]. Available:
http://www.cs.berkeley.edu/~gribble/traces/index.html

C. Grimm. The dfn cache service in B-WiN. presented at 2nd Web
Caching Workshop, Boulder, CO, June 1997. [Online]. Available:
http://www-cache.dfn.de/CacheEN/

The Harvest Group. (1994) Harvest Information Discovery and Acce:
System. [Online]. Available: http://excalibur.usc.edu/

The Relais Group. (1998) Relais: Cooperative caches for the world-wi
web. [Online]. Available: http://www-sor.inria.fr/projects/relais/

J. Gwertzman and M. Seltzer, “World-wide web cache consistency,”
Proc. 1996 USENIX Tech. Confan Diego, CA, Jan. 1996.

IRCACHE. (1999, Mar.) Benchmarking Proxy Caches with Web Poly
graph. [Online]. Available: http://www.polygraph.ircache.net/slides/

V. Jacobson. How to Kill the internet. presented at SIGCOMM’'9
Middleware ~ Workshop, Aug. 1995. [Online]. Available:
ftp://ftp.ee.lhl.gov/talks/vj-webflame.ps.Z

J. Jung. Nation-wide caching project in korea. presented at 2nd Web
Caching Workshop, Boulder, CO, June 1997. [Online]. Available:
http://ircache.nlanr.net/Cache/Workshop97/

B. Krishnamurthy and C. E. Ellis, “Study of piggyback cache validatiol
for proxy caches in the world wide web,” ifroc. USENIX Symp. In-
ternet Technology and Systerigec. 1997.

T. M. Kroeger, J. Mogul, and C. Maltzahn.
Digital's web proxy traces. [Online]. Available:
ital.com/pub/DEC/traces/proxy/webtraces.html

T. M. Kroeger, D. D. E. Long, and J. C. Mogul, “Exploring the bounds o
web latency reduction from caching and prefetchingPimc. USENIX
Symp. Internet Technology and Systebec. 1997.

C. Liu and P. Cao, “Maintaining strong cache consistency for the

-
il

(1996, Aug.)
ftp://ftp.dig-

world-wide web,” presented at the 17th Int. Conf. Distributed ComPUter Society Task Force on Internetworking.

puting Systems, May 1997.

P. Lorenzetti, L. Rizzo, and L. Vicisano. (1996, Oct.) Replacement poli-
cies for a proxy cache. Universita di Pisa, Italy. [Online]. Available:
http://www.iet.unipi.it/~luigi/caching.ps.gz

C. Maltzahn, K. Richardson, and D. Grunwald, “Performance issues
enterprise level web proxies,” iRroc. 1997 ACM SIGMETRICS Int.
Conf. Measurement and Modeling of Computer Systéorse 1997, pp.
13-23.

J. Marais and K. Bharat. Supporting cooperative and persor
surfing with a desktop assistant. presented at ACM UIST'97
[Online].  Available:  ftp://ftp.digital.com/pub/DEC/SRC/publica-
tions/marais/uist97paper.pdf.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstblamdbook of

Applied CryptographyCRC Press, 1997.
J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Po,
tential benefits of delta encoding and data compression for httgnd video-on-demand.
presented at ACM SIGCOMM'97. [Online]. Available: http://www.re-
search.att.com/~douglis/

National Lab of Applied Network Research. (1997, July) Sanitized Ac-

cess Log. [Online]. Available: ftp://ircache.nlanr.net/Traces/

J. Pietsch. Caching in the Washington Stat20 network. presented at
2nd Web Caching Workshop, Boulder, CO, June 1997. [Online]. Avai
able: http://ircache.nlanr.net/Cache/Workshop97/

M. O. Rabin, “Fingerprinting by random polynomials,” Center for Re
search in Computing Technology, Harvard Univ., Tech. Rep. TR-15-8
1981.

A. Rousskov. (1998, Apr.) Cache digest.
http://squid.nlanr.net/Squid/CacheDigest/

P. Sarkar and J. Hartman, “Efficient cooperative caching using hints
in Proc. USENIX Conf. Operating System Design and Implementatior
Oct. 1996.

[Online]. Available

Li Fan (M'00) received the M.S. degree in computer
science from University of Wisconsin-Madison in
1998.

She is currently a software engineer at Cisco
Systems Inc., San Jose, CA, with the Advanced
Internet Architecture group. She does research and
software development on network QoS issues and
performance analysis.

Ms. Fan is a member of the Association for Com-
puting Machinery.

Pei Caoreceived the Ph.D. degree from Princeton
University, Princeton, NJ, in 1995.

She joined the Department of Computer Science,
University of Wisconsin-Madison, as Assistant Pro-
fessor in 1995. Recently she has taken a leave of ab-
sence and is now working at Cisco Systems, Inc., San
Jose, CA. Her research interests are in operating sys-
tems, caching and content distribution on the Internet,
and computer architecture. She served as the program
chair for the Fourth and Fifth Web Caching Work-
shops, and is currently a member of the IEEE Com-

Jussara Almeida received the B.S. and M.Sc.
degrees from Universidade Federal de Minas Gerais,
Brazil, in 1994 and 1997, respectively. As a graduate
student with a scholarship from CNPg/Brazil, she
joined the Computer Sciences Department, Univer-
sity of Wisconsin-Madison, where she received the
M.Sc. degree in computer science in 1999, and is
currently pursuing the Ph.D. degree.

She is a Research Assistant and Member of
the Sword project at the University of Wis-
consin-Madison. Her research interests include

operating systems, networking protocols, performance of the world-wide web

Andrei Broder graduated from Technion, the Israeli
Institute of Technology, Israel. He received the M.Sc.
and Ph.D. degrees in computer science from Stanford
University, Stanford, CA.

He is Vice President of Research at the AltaVista
Company, San Mateo, CA. Previously he was CTO
of the Search division at AltaVista, and a Senior
Member of the research staff at Compaq’'s Systems
Research Center, Palo Alto, CA. His main research
interests are the design, analysis, and implemen-
tation of advanced algorithms and supporting data

V. Valloppillil and K. W. Ross. (1997) Cache array routing protocoktructures in the context of web-scale applications.

v1.0. [Online].
vinod-carp-v1-02.txt

Available: http://ircache.nlanr.net/Cache/ICP/draft- Dr. Broder is currently a Member-at-Large of the Computer Society Technical
Committee on Mathematical Foundations of Computing.



