TCP Congestion Control:
Algorithms and Analysis

Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Little's Law

Average population
= (average delay) x 1 N
(throughput) average delay = N El delayi
where Nis number of departures
throughput = N/T
where T is duration of observation
average population (to be defined)

Try homework problem at
http://www.cs.utexas.edu/users/lam/cs356/homework/hw2.html
TCP Congestion Control (Simon Lam) 2

Number in system n(t)

-
[R

Timet —

average population = % [y n(tydt

TCP Congestion Control (Simon Lam) 3

Sliding Window Protocol

0 Consider an infinite array, Source, at the
sender, and an infinite array, Sink, at the
receiver.

Source: I‘ send window —-|

sender IONEIZA NN R RS < [[[[[[[[]

|<— acknowledged —>|<— unacknowledged —>|

next expected r+RW-1

Sink : received l
r2
0§ EEENEEEEE

|<— delivered I receive window —>|

RW receive window size
SW send window size (s - a<SW) 1¢p Congestion Control (Simon Lam) 4

Sliding Windows in Action

0 Data unit r has just been received by P2
O Receive window slides forward

0 P2 sends cumulative ack with sequence
number it expects to receive next (r+3)

Source: I‘— send window —|

sender ONERIZA NN IR S < [[[[[[[[]

|-— acknowledged —'|<— unacknowledged —’I
s3]

\ next expected r+RW-1

Sink: 1
RecPeziver |||||||||

|~— delivered I I receive window —|

TCP Congestion Control (Simon Lam) 5

Sliding Windows in Action

0 P1 has just received cumulative ack with
r+3 as next expected sequence number
o Send window slides forward

Source: I‘— send window —|
P1
sender NN -1 [[[[[[[|
|‘— acknowledged —-|

next expected r+RW-1

Sink: l
Recpeziver |||||||||

I‘—— delivered I receive window —-|

TCP Congestion Control (Simon Lam) 6

Window Flow Control

Source Tl?l 77777777777777 |W| 1 2| W S time

data ACKs

Destination 1 IZ l W Tl?,

0 ~ W packets per RTT when no loss
O Lost packet detected by missing ACK
(note: timeout value T,>RTT)

TCP Congestion Control (Simon Lam) 7

Throughput (send rate)

O Limit the number of unacked transmitted
packets in the network to window size W

W
0 = —— k
Throughput ~TT Pac ets/sec

_ WxMSS

= —grr Dyfes/sec

0 Where did we apply Little's Law?

Answer: Consider send buffer

TCP Congestion Control (Simon Lam) 8

Clarifications

O Average number in the send buffer is typicall
less than W unless packet arrival rate to sen
buffer is infinite -> previous formula provides a
throughput upper bound

0 If each %aclket may be lost with rate p, then the
average delay is (L— p)x RTT + pxT,

Since Ty > RTT, actual throughput is smaller.

0 With loss, goodput is (1— p) xthroughput

O Note: in some papers and other context (e.g., random
access protocols), goodput is called throughput. To avoid
confusion, 'rhr'oughpuf is called send rate

TCP Congestion Control (Simon Lam) 9

Effect of Congestion

3 W too big for each of many flows -> congestion

O Packet loss -> transmissions on links prior to packet
loss are wasted

0 Congestion collapse due too many retransmissions
and too much waste

O October 1986, Internet had its first congestion

collapse
\\\\\\\“~‘ load

TCP Congestion Control (Simon Lam) 10

goodput

TCP Window Control

0 Receiver flow control
O Avoid overloading receiver
o rwnd: receiver (advertised) window
O Receiver sends rwnd to sender

0 Network congestion control
O Sender tries to avoid overloading network

o It infers available network capacity from “loss
indications”

O cwnd: congestion window

0 Sender sets W = min (cwnd, rwnd)

TCP Congestion Control (Simon Lam) 11

Receiver Flow Control

O Receiver advertises rwnd with each packeft it
sends

0 Size of rwnd indicates available space in
receive buffer

O decreased when data is received from IP layer and
ackd

O increased when data is consumed by application
process

TCP Congestion Control (Simon Lam) 12

Network Congestion Control

0 Sender calculates cwnd from indications of
network congestion
0 Congestion indications
O timeout (loss)
o dupACK (loss likely)
Q queueing delay
o mark (needs ECN)
0 TCP algorithms to calculate cwnd
O Tahoe, Reno, Vegas, ...
0 Link algorithms:
O RED, REM ...

TCP Congestion Control (Simon Lam) 13

TCP & AQM

Congestion measures p|(t) for distributed feedback control of x(t)
O loss and dupACK (DropTail)
O queueing delay (Vegas)

with the help of active queue management (AQM)
O queue length (RED)
O price (REM)

TCP Congestion Control (Simon Lam) 14

TCP Congestion Control

3 Tahoe (Jacobson 1988)
o Slow Start
O Congestion Avoidance
o Fast Retransmit
3 Reno (Jacobson 1990)
O Fast Recovery
O Its variants: NewReno, SACK
O Vegas (Brakmo & Peterson 1994)
o New Congestion Avoidance
0 AQM
o RED (Floyd & Jacobson 1993)
* Probabilistic marking or dropping
o REM (Athuraliya & Low 2000)
+ Clear buffer, match rate

O Others...

TCP Congestion Control (Simon Lam)

15

Slow Start

O Start with cwnd = 1
0 On each successful ACK, increment cwnd
cwnd < cwnd + 1
O Exponential growth of cwnd
each RTT: cwnd « 2 x cwnd

0 Enter CA when cwnd >= ssthresh

O For initial slow start, ssthresh is set to a very large
value (e.g., 65 Kbytes)

Note: for clarity, cwnd, rwnd, and ssthresh are
counted in packets (segments) rather than in bytes

TCP Congestion Control (Simon Lam)

16

Slow Start

sender receiver

cwnd

1RTT:

cwnd « cwnd + 1 (fOf each ACK)FCP Congestion Control (Simon Lam)

1
[~ data packet

e

ACK

hw

oo~

———

window size

— cwnd
—— ssthresh

1] 05

1 15
time (seconds)

17

Congestion Avoidance

sender receiver

cwnd
1

[~ data packet

ACK

\

0 CA starts when
cwnd > ssthresh

03 On each successful
ACK:
cwnd « cwnd + 1/cwnd

O Linear growth of cwnd
each RTT:
cwnd <« cwnd + 1

TCP Congestion Control (Simon Lam) 18

Packet Loss

0 Assumption: loss indicates congestion

0 Packet loss detected by
O Retransmission timeout (RTO timer)
O Duplicate ACKs (at least 3)

Packets

1

2

3

Acknowledgements

1]

B

5l B BB

TCP Congestion Control (Simon Lam) 19

Fast Retransmit

0 A timeout is quite long (> RTT)

0 Upon receiving 3 dupACKs, immediately
retransmit without waiting for timeout

0 Adjusts ssthresh

ssthresh « max(flightsize/2, 2)

where flightsize is number of outstanding packets,
which may be less than W = min(rwnd, cwnd)

0 Enter Slow Start (cwnd = 1)

TCP Congestion Control (Simon Lam) 20

10

TCP Tahoe (Tacobson 1988)

cwnd

a7 ad

“time
(in RTTs)

SS: Slow Start
CA: Congestion Avoidance

TCP Congestion Control (Simon Lam) 21

Successive Timeouts

0 When there is another timeout, double the
timeout value

O Keep doing so for each additional loss-
retransmission
o Exponential backoff up to
max timeout value equal
to 64 times initial timeout !
value

1.4

1.2

=
o

=
o

bit rate (Mbps)

=
S

0.2

|

4] 5 10 is 20
time {seconds)

Note: red line in figure denotes a loss indication

TCP Congestion Control (Simon Lam) 22

11

Summary: Tahoe
0 Basic ideas

O Probe network for spare capacity during SS and

CA and increase send rate

O Drastically reduce rate on congestion indication

o Self-clocking

O Error recovery by retransmission
O Round trip time estimation (fo get T, value)

for every ACK {

else W += 1/W
}
for every loss indication {
ssthresh = W/2
w =1

if (W < ssthresh) then W++ (5S)

(CA)

TCP Congestion Control (Simon Lam) 23

TCP TClhOC (Jacobson 1988)

cwnd

e

> time

SS: Slow Start
CA: Congestion Avoidance

TCP Congestion Control (Simon Lam)

24

12

TCP Reno (Tacobson 1990)

cwnd

r

b

/
I

-
\

> time

SS: Slow Start

CA: Congestion Avoidance

Fast retransmission/fast recovery

TCP Congestion Control (Simon Lam) 25

TCP Reno (another scenario)

cwnd

|

3 dupACKs

g halved

TO

Initial slow start |

Slow start until cwnd
reaches ssthresh

TCP Congestion Control (Simon Lam) 26

13

Fast recovery (in detail)

0 Idea: each dupACK represents a packet
successfully received. Therefore, no need for
very drastic action

O Enter FR/FR after 3 dupACKs

O Set ssthresh < max(flightsize/2, 2)

O Retransmit lost packet

O Set cwnd « ssthresh + #dupACKs (window inflation)

O Wait till W=min(rwnd, cwnd) is large enough; transmit
new packet(s)

O On non-dup ACK (1 RTT later), set cwnd <« ssthresh
(window deflation)

0 Enter CA

TCP Congestion Control (Simon Lam)

27

Example: FR/FR

2[3]4|s5]|6]7]8] 9 [10[11] e
Exit FR/FR
R oJo]oldlo]gle DB, time
cwnd 8 7 9 1i 4
ssthresh 4 4 4 4

O Above scenario: Packet 1 is lost, packets 2, 3, and
4 are received; dupACKs with seq. no. O returned
O Fast retransmit
O Retransmit on 3 dupACKs
O Fast recovery

O Inflate window such that new packets 9, 10, and 11 can be
sent while repairing loss
TCP Congestion Control (Simon Lam)

28

14

Summary: Reno

0 Basic ideas
O Fast recovery avoids slow start
O dupACKs: fast retransmit + fast recovery
o Timeout: fast retransmit + slow start

dupACKs
congestion i
avoidance FR/FR

timeou

slow start retransmit

TCP Congestion Control (Simon Lam)

29

AIMD in steady state

multiplicative decrease:
cut cwnd in half after

additive increase:
increase cwnd by 1

MSS every RTT in the 3 dupACKs
absence of any loss
event

congestion
window

24 Kbytes —

16 Kbytes —

8 Kbytes —

time

Long-lived TCP connection
TCP Congestion Control (Simon Lam)

30

15

TCP throughput (send rate)

0 We derived the approximate formula

throughput = W packets/sec
RTT

O W changes with the arrival of each
congestion indication

0 To calculate (average) send rate, we need
the average value of W

Q: W is a function of what parameter?

TCP Congestion Control (Simon Lam) 31

First approximation

M. Mathis, et al., "The Macroscopic Behavior of the TCP Congestion

Avoidance Algorithm," ACM Computer Communicatons Review, 27(3), 1997.

3 No slow-start, no timeout, long-lived TCP
connection

0 Independent identically distributed "periods”
0 Each packet may be lost with probability p

congestion window (packets)

ZV/// /

!
!
|
|
I
I
|
i)

W W
2 W 2 2w Time (RTT)

TCP Congestion Control (Simon Lam) 32

16

Geometric Distribut
Ave. no. of Transmission

ion
s to get first loss

no= Yib=Yi-pp
i=1 i=1
E pZi(l—p)“l
d d & -
= —p—2.(-p)=-p_—> 1-p)
i i 25
- pd_t 1
~ Tdp1-1+p | p?
= 1/p

Similarly, ave. no. of transmissions to get first success is

1/(1-p)

TCP Congestion Control (Simon Lam)

33

First approximation (cont.)

O Average number of
packets delivered in
one period (area under
ohe saw-tooth)

2 2
(ﬂj + E (ﬂj = EW 2
2 2\ 2 8

O Average number of
packets sent per period
(incl. loss at the end) is
1/p

A Equating the two and
solving for W, we get

send rate (in packets/sec)

3
_no. of packets/period g

WZ

time per period RTT(

. lp 1 3

RTTL/ZJ RTT \2p
3p

TCP Congestion Control (Simon Lam)

2)

34

17

TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

TCP Congestion Control (Simon Lam) 35

Receiver implements Delayed ACKs

0 Receiver sends one ACK for every two packets
received -> each saw-tooth is WxRTT wide

-> area under a saw-tooth is AN 2
4
O Send rate is 1 i
RTT \4p

0 One ACK for every b packets received -> send rate
is

13
RTT \ 2bp

TCP Congestion Control (Simon Lam) 36

18

Modeling TCP Throughput: A Simple
Model and its Empirical Validation,
Proc. ACM SIGCOMM, 1998

Jitendra Padhye, Victor Firoiu,
Don Towsley, and Jim Kurose

Motivation

A Previous formulas not so accurate when
loss rates are high

A TCP traces show that there are more loss
indications due to timeouts (TQO) than due
to triple dupACKs (TD)

TCP Congestion Control (Simon Lam) 38

19

Objectives

0 More accurate steady-state throughput
formula as a function of loss rate and RTT
by also accounting for TO behavior of a
TCP connection

0 Formula applicable over a wider range of
loss rates

0 Explicit statements of assumptions and
approximations used in derivation of
throughput formula

0 Formula to include the impact of a small
rwnd

TCP Congestion Control (Simon Lam) 39

Many assumptions and
approximations

3 Al. TCP sender is saturated, i.e., source
application process always has a packet to
send when send window has space available

O i.e., bulk transfer application

[A2. Slow Start not modeled

0 A3. Time to send all packets in a window is
smaller than RTT

0 i.e.,fransmission rate is not too low

TCP Congestion Control (Simon Lam) 40

20

A3. Time to send W packets is
less than RTT Ak .
. reception

sender receiver marks the end of

current round and
beginning of next
round.

Start of round——

time
*Approximation: For
b>1, ACK is not
received
immediately after
one RTT, but it is so
assumed in the
analysis

End of round

WT,<2t+1,

space ——
P TCP Congestion Control (Simon Lam) 41

AIMD evolution of Window Size over time

W W, W,
,,_l__’_l_ W,
A, A, |A,| ¢
[N
DP, TDP, TDP,

0 Each TD period is ended by a TD loss indication.
0 TDP; period has duration A; rounds
0 A4. Duration of a round (RTT) is independent of
window size
O approximation (poor for a slow line)
3 AB5. No window inflation in Fast Recovery

O approximation
TCP Congestion Control (Simon Lam) 42

21

Markov regenerative assumption

0 For the /~th TD period, W, is window size at
the end of the period, Y; is the number of
packets sent in the period

0 A6. Assume {W} to be a Markov
regenerative process with rewards {Y;}

0 Given A6, the steady-state TCP throughput
is

B = limB, = limx — ENil » EIY]
e et E[A] E[A]

TCP Congestion Control (Simon Lam) 43

Consider /~th TD period
packets LEGEND
sent
W, I:l ACKed packet
g lost packet
W % Thoccws <when ACK of
< |3 il TDP ends .
e s 0 last packet is
1 |4 received
I < no of rounds
A 3 i
T 1]— last round
b b b penultimate round

TDP
0 One ACK after receiving b packets (6= 2 in above

figure) -> linear increase has a slope of 1/b packet per
RTT

O Number of rounds is X +1
O a,; is the first packet lost in /~th TD period

TCP Congestion Control (Simon Lam) 44

22

Loss assumptions

[A7. Losses in different rounds are
independent

O approximation
1 A8. Losses within the same round are
correlated as follows: If a packet is lost,

all remaining packets transmitted until the
end of that round are also lost

O approximation - bursty loss behavior but only
within the same round

o all lost packets in the same round are counted
as a single loss indication when estimating p

TCP Congestion Control (Simon Lam)

45

AIMD throughput derivation (1)

E[a]=1/p & seq. no. of first loss
E[r]=RTT r round trip time
Y no. of packets sent
E[Y]=E[a]+ E[\N]—1=1 -1+EW] W window size
P X no. of rounds

From W _WL _i_);i, We have A time duration of a period
b
E[X] =5 EW]
b

E[A]=(E[X]+DEIr]= (5 EW]+DRTT from A4 that round trip

1 times are independent of W,

——-1+E[W]
send rate B = Elv] = bp

EA (; EW]+DRTT

TCP Congestion Control (Simon Lam)

46

23

AIMD throughput derivation (2)

Another way to

V- Xfl(%+ Obs 4 compute E[Y]
XWey X X,
Ty G

X, Wi _
:7(\Ni +7 D+5

Let E[5] be E[\ﬂ] and we have
[VV]

<- A9. Assume that
{X} and {W} are
mutually
independent i.i.d.
sequences of

random variables
TCP Congestion Control (Simon Lam)

E[Y]= E[X](E[\N]+

bE[W](E[W] E[vv]

-1 +E[A]
1)+ [5]

47

AIMD throughput (3)

O Equate the two previous formulas for E[Y]. Solve the quadratic
equation with E[W] as the only unknown

E[Y]:%—1+ EW]

E[W]

- =W e w 1)+ E[]

2+Db 8(1- p) 2+Db.,
EW =3 \/ 3p T Cap)

1=P Ew]

send rate B(p) = E[A]

TCP Congestion Control (Simon Lam)

48

24

AIMD throughput (4)

To get a simple formula, collect terms that are o(1/sqrt(p))

W= 50 +0lUp)
E[X] = EW] - j—';w(llﬁ)
send rate B(p) = 1/p+od/p) ~ R11‘r Zsp +o(t//p)

2b
RTT (\/; +o(1/ﬁ)J

TCP Congestion Control (Simon Lam) 49

AIMD with TO

i2

W

O Let 7, denote the number of TD periods within a
cycle ending in ~th TO period, R; denote no. of
retransmissions in /~th TO period
0 A10. {n;} form an i.i.d. sequence, independent of
{Yij} and {Aij} n; n;
M= Y +Ri, Si=3 A,+2zT°
i=1 =1
TCP Congestion Control (Simon Lam) 50

25

Throughput of AIMD with TO (1)
E[M]=E[n]E[Y]+E[R] Assumption of
E[S]=E[]E[A]+E[2™] ﬁ/:;r‘el:\zvm’rive
E[M] _ _E[nIE[Y]+E[R] process again.

send rate B = =
E[S] E[n]E[A]+E[Z"]
_ E[Y]+QxE[R]
E[A]+QxE[Z2™]
a1
where Q = ——
Q E[n] <- Probability that a
1 given loss
E[R] "1 indication is a TO

with Q and E[Z] to be determined

TCP Congestion Control (Simon Lam) 51

Approximate solution for Q

LEGEND

sequence
nmumber D received packet

B lost packet

[I%ilﬁ OA(‘.K

1“]
!

RIT RIT
penultimate round last round

A given loss indication is a TO is the union of two
events <> Two or less acked packets in penultimate

round or two or less acked packets in final round
TCP Congestion Control (Simon Lam) 52

26

Approximate solution for Q (cont.)

) <- penultimate round of w
A(W, k) = 1-p)p packets, first k packets
1-(1-p)" ack'd given there is a loss

C(k,m)=(1-p)"p, m<k-1 < forlastround, k packets
o sent, m packets ack'd in
Clmy={-p)%, m=k sequence

Q(w) =1 ifw<3 <- at most 2 dupACKs
2 w 2 <- probability of fewer than 3
=D AW, k) + 2 A(w, k) 3 C(k,m) packets sent successfully
k0 = o0 in penultimate round or
less than 3 acks in last

round
TCP Congestion Control (Simon Lam) 53

ifw>4

Approximate solution for Q (cont.)

After algebraic manipulations, we have

O(w) = min (1, (1-(-p)i+a-p'a-a —p)“'“)))
L—(1—p)

Observe (for example, using L."Hopital’s rule) that

N 3
lim Q(w) = —.

p—0 u

Numerically we find that a very good approximation of (9 is

N 3
()(w) = min(1l, —)
w

7 Qis EQW)]
But we don't know the probability distribution of W,

O Approximation |~ o 3 . . 3bp
Q—Q(E[\N])—mm(ll—E[W])—mm(ly?’ g)

TCP Congestion Control (Simon Lam) 54

27

Throughput of AIMD with TO (2)

P[R=k]=p**(-p) fork=12,.. <- duration of
L =(“-1T, fork<6 TOs in a row
= (63+64(k —6))T, fork>7

1+ p+2p°+4p®+8p* +16p° +32p°
1-p

éTOI(_F:O) =T,(1+32p?) <- approximation

E[z™°]1=T,

E[Y]+QxE[R]
E[A]+QxE[Z™]

P EWI-QEWD,

send rate B(p) =

Bp)= 5 (o)
RTT(E[X]+1)+Q(EW]T, ﬁ

TCP Congestion Control (Simon Lam) 55

Throughput of AIMD with TO (3)

1- ~ 1
=P, E[W]+Q(E[W])ﬁ «- Eq. (27)
B(p) = — t(p) more accurate
RTT(E[X]1+1) +Q(E[W]T, o version of
—P throughput
_ 1/ p formula
RTT(22} min[1,3 /3b8p](1+32)T,
= 1 <-Eq. (29)
2bp : |3bp 2 most well-
RTT[3 J+m|n(1,3 8 j p(+32p)T, Known version
of throughput
formula

TCP Congestion Control (Simon Lam) 56

28

Impact of receiver's rwnd limitation

W 12

W,

W \’vmax —'J W 3 R,:2 T
0
! ‘Ail Ai? A i3 TO | 2TO | 4TO t
z® z°
Compute E[W]. IfE[W]<W,., use Eq. (27): Full model Eq. (31)
1- ~ 1
~ P EWIQEW])
B(): p - P .
p ~ f (p) 'f E[W] <Wmax1
RTT(E[X]+1)+Q(EW]T, 11
-p
1-p ~ 1 .
—+W_, +QW_)— otherwise, use W, for
B(p) = 1-p E[W] and recompute
b 1-p A f(p) E[X]
RTT (*Wmax ot 2) + Q(vaax)TO PN
8 PW o 1-p (derivation omitted)

TCP Congestion Control (Simon Lam) 57

Impact of receiver's rwnd
limitation—approximate model

Use the well-known Eq. (29) from before,

W, 1
RTT'
RTT(22pJ+ min[1,3 /3b8p] p(1+32p?)T,

which is referred to as Eq. (32)

B(p) = min()

TCP Congestion Control (Simon Lam) 58

29

Summary data from traces (1 hour)

Sender | Recerver | Packets | Loszs [TD | 7)) ol | 1, RTT | Time
Sent | Indic or more Qut

manic alps 54402 | 722 | 19 [611 [67 | 15| 6 | 2 2 0.207 | 2505
manic | baskerville | 58120 | 735 [306 | 411 [17 | 1 | O[O 0 0.243 | 2495
manic ganef 38024 | 743 | 272 444 (22| 4 | 1[0 0 0226 | 2405
manic | mafalda | 56283 | 404 | 2 [474 [17 | 1 | O[O 0 0233 | 2146
manic maria 68752 | 649 1|64 |35 8 | 1|0 0 0.180 | 2415
manic spiff 117992 | 784 [47 | 702 |3 | 1 | 0|0 0 0211|2274
manic sutton 81123 | 1638 | 988 [507 [41 | 7 | 3 [1 1 0204 | 2459
manic tove 7938 | 264 1 190 [37 | 18| 8 |3 7 0275 | 3.597
void alps 37137 | 838 T 388 | 164 | 56 |17 4 2 0.162 | 0.489
void | baskerville | 32042 | 853 [330| 430 | 67 | 12 | 5| 0 0 0432 | 1.004
void ganef 60770 | 1112 | 414 | 582 [79 | 2 g4 2 0.254 | 0.637
void maria 93003 | 1651 | 33 (1344 (197 | 54 |15 3 3 0152 | 0.417
void spiff 65336 | 671 | 72 [339 [36| 4 | O[O 0 0415 | 0.749
void sutton 78246 | 1928 | 840 863 [132| 45 |18 9 1 0211 | 0.601
void tove 8263 | 836 5| 444 100 | 51| 27 12 0272 | 1356
habel alps 13460 | 1466 1068 | 2: 87 | 33|18 8 0194 | 1359
babel | baskerville | 62237 | 1733 | 197 | 1467 | 76 [10 | 3 | 0 0 0253 | 0.429
babel ganef 86673 23 | 398 (1686 (38 | 2 | 1[0 0 0201 | 0308
habel spiff 37687 | 1120 | 0 [939 [137| 36 | T [1 0 0.331 [0933
habel sutton 83486 | 2320 | 683 [1448 [142 | 31 | O | 4 1 0.210 | 0.705
babel tove 83044 | 1516 | 1 (1364 (118 17 | 7 [3 3 0.194 | 0520
pif alps 83071 | 762 | O [377 [111| 46 | 16| 8 2 0.168 | 7278
pif imagine | 44801 | 1346 | 13 [1044 [186 | 63 | 21 [10 3 0.229 | 0.700
pif manic 34251 | 1422 | 43 | 944 (272|103 | 36 | 14 6 0257 | 1.454

Table 2: Summary data from 1hr races

O Saturated TCP

sender

O p computed

from dividing
total no. of loss
indications by
total number of
packets sent

0O RTTand T,

values are
averaged over
entire 1-hour
Trace

TCP Congestion Control (Simon Lam) 59

Summary data from 100s traces

Sender | Fecemver | Packets [Loss | TD T, I I AP A B T, RIT Time
Sent | Indic. or larger Cut
manic ada 531533 | 6432 | 4320 (2010 93 (7| 2|0 0 0.1419 | 22231
manic afer 255674 | 4577 | 2384 (1898 | 83 (10 1| 1 0 0.1804 | 2.3009
manic al 264002 | 4720 | 2841 (184 | TO [S| 0| O 0 0.1885 [2.3542
manic alps 667206 | 3797 | 841 (2866 | & (5| 0| O 0 0.1125 [1.9151
manic | baskerville | 89244 | 1638 | 627 | 955 [42 | 11| 2 | 1 0 04735 [3.2260
manic ganef 160152 | 2470 | 1048 | 1308 | 29 (18| 6 | 1 0 0.2150 | 2.6078
manic | mafalda | 171308 | 1332 9 1269 48 [5| 1|0 0 0.2501 | 2.5127
manic maria 316498 | 2476 5 |2362| 9% | 8|20 0 0.1166 | 1.8798
manic modid 282547 | 6072 | 3976 | 1988 | 99 (B | 1| O 0 0.1749 | 2.2604
manic pong 358535 | 4230 | 2328 (1830 | T4 (T | O] O 0 0.1769 [2.1371
manic spuff 208465 | 2035 | 150 (1781 75 (14| 4| 2 0 02539 | 24545
manic sutton 348026 | 6024 | 3604 (2238 | 87 (5| 0| O 0 0.1683 | 2.1852
manic tove 262363 | 2603 6 | 2422)135(30| 8 | 2 0 0.1153 | 1.9551

Each row represents results
100 seconds in duration for same S-D pair

Totals are cumulative over 100 traces

RTTand T,are average values over 100 traces for

same S-D pair

TCP Congestion Control (Simon Lam)

of 100 traces each of

60

30

Experimental comparison (1)

manic-baskerville, RTT=0.243, TO=2.495, Whax=6, 1x1hr

pif-imagine, RTT=0.228, TQ=0.700, WMax=8, 1x1hr
—— T

0.0 0.1
Frequency of Loss Indications (p)

Figure 9: pif to manic

W ox = 33

10000 T T 10000 T
. e
£ 1000 ﬁ”ﬁ* = 1000 |
@ @
::é 100 ﬁ 100 |
5 ™ s .
g T £ :
2 10 TSUrnIUE : 2 noE T3 or mors : \
TO Only —— TOD Only -
Proposed (Full} — Proposed (Full) —
i E)CICH 0.01 01
oot Flagﬁggw of Loss Indicat%lls (p)) Frequency of Loss Indications (p)
Figure 7: manic to baskerville Figure 8: pif to imagine
O Each point represents number of packets in 100s interval of trace
O TO ~ single TO, T1 ~ at least 1 double TO in trace, etc.
0 “TD Only" is analytic model by Mathis et al.
O Note: W, is only 6 in Figure 7 TCP Congestion Control (Simon Lam) 61
10000 pif-manic, RTT=0.257 TO=1.454 WMax=33, Tx1hr <0000 woid-alps. RTT=0182, TO=0 438, WMax=43, 1x1hr
3 1000 | € 1000 |
& &
g £
§ 100 | g 100 |
i ; 2
= o Taormuz . 4. \ E z e T30rmuTr§ . \
Proposed (Full) — A PmposeTE[EE'u:- f—
1 1
0.001 0.001

0.0 0.1
Frequency of Loss Indications (p)

Figure 10: void to alps

W, =44

TCP Congestion Control (Simon Lam) 62

31

Number of Packets Sent

Experimental comparison (3)

0000 (=

1000

void-tove, RTT=0.272, TO=1.358, WMax=8, 1x1hr

babel-alps, RTT=0.1%4, TO=1.359, WMax=48, 1x1hr

10000
= 1000
5
@
n
k]
i
o 100
™ 5
T0 x
i 5
T3ormore = = L3
TD Cnly -
Proposed (Full)
1
o0a1 1 0.001

T3ormers =
TO Only ——
Proposed (Full)

001 01
Freguency of Loss Indications (p)

Figure 11: void to tove

Winax=8

oo 01
Frequency of Loss Indications (p)

Figure 12: babel to alps

W, =48

TCP Congestion Control (Simon Lam) 63
Accuracy of approximate model
RTT=0.2539, TO=2.4545, WMax=32.0, 100x100s
10000
E 1000 E
w
5
S
o 100 E
5 o
T 4
E a
3 x
= 10 ¢ T3 ormore =]
TD Only —— \
Proposed (Full) ——
Proposed (Approx) - '\,“
\.
1 ‘ ‘
0.001 0.01 01 1
Frequency of Loss Indications (p)
Figure 18: manic to spiff, with predictions by both full and
approximate models (W, ,,=32)
TCP Congestion Control (Simon Lam) 64

32

Average errors

=~ Proposed (Full
Proposed (Apprasimate)
0 Orly TO Only

%
—‘]
%

0,01

el
manic=modid
ol
anie=pong
ol
man omalp:
manic~spift

rranismatalds

manicsbaskenville

Figure 20: Comparison of the models for 100s
Figure 19: Comparison of the models for 1hr)

traces
traces
N N

predicted ~ ' observed

2

observations N observed

no. of observations Tcp Congestion Control (Simon Lam) 65

ave. error =

Conclusions

O A much more rigorous analysis than the one by
Mathis et al.

0 Numerous assumptions and approximations used
but (almost) all of them are explicitly stated

O Large amount of experimental measurements on
the Internet to validate accuracy of the full model
(less for the approximate model)

O Throughput formula accounts for loss indications
due to TO as well as rwnd restriction

O Using the formula requires accurate measurements of
loss rate and RTT values (which could be tricky)

O For TCP Reno and drop-tail router

O Accuracy (like beauty) is in the eye of the
beholder. What do you think?

TCP Congestion Control (Simon Lam) 66

TCP Throughput limited by loss rate

0 TCP average throughput (approximate) in
terms of loss rate, L:

1.22-MSS

0 Example: 1500-byte segments, 100ms RTT,
to get 10 Gbps throughput, loss rate needs
to be very low

p=2x1010

0 New version of TCP needed for connections

with high-delay bandwidth product
O addressed in paper by Katabi's et al

TCP Congestion Control (Simon Lam) 67

The End

TCP Congestion Control (Simon Lam) 68

34

