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Little’s Law

Average population g p p
= (average delay) x

(throughput)   



where N is number of departures

where T is duration of observation

N1average delay delayiN i 1

throughput N/T

average population (to be defined)

2

average population (to be defined)

Try homework problem at 
http://www.cs.utexas.edu/users/lam/cs356/homework/hw2.html
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 T dttn
T 0 )(1 population average
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Sliding Window Protocol
 Consider an infinite array, Source, at the 

sender, and an infinite array, Sink, at the 
receiver.

0 1 2 a–1 a s–1 s

send window

acknowledged unacknowledged

Source:
P1

Sender

0 1 2 r

received

delivered receive window

r + RW – 1

Sink:
P2

Receiver

next expected

RW  receive window size
SW  send window size (s - a  SW) 4TCP Congestion Control (Simon Lam)
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Sliding Windows in Action
Data unit r has just been received by P2

 Receive window slides forward
P  d  l  k h   P2 sends cumulative ack with sequence 
number it expects to receive next (r+3)

unacknowledged

0 1 2 a–1 a s–1 s

send window

acknowledged

Source:
P1

Sender

0 1 2 r

delivered receive window

r + RW – 1
Sink:

P2
Receiver

next expected

r+3

5TCP Congestion Control (Simon Lam)

Sliding Windows in Action
 P1 has just received cumulative ack with 

r+3 as next expected sequence number
 Send window slides forward

0 1 2 a–1 a s–1 s

send window

acknowledged

Source:
P1

Sender

0 1 2 r

delivered receive window

r + RW – 1
Sink:

P2
Receiver

next expected

6TCP Congestion Control (Simon Lam)
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Window Flow Control

RTT 

time

time

Source

Destination

1 2 W

1 2 W

1 2 W

data ACKs

1 2 W

7

 ~ W packets per RTT when no loss
 Lost packet detected by missing ACK 

(note:  timeout value TO > RTT)

time

TCP Congestion Control (Simon Lam)

Throughput (send rate)
 Limit the number of unacked transmitted 

packets in the network to window size W

 Throughput                  packets/sec

=                bytes/sec

W

R T T


W MSS

RTT



8

Where did we apply Little’s Law?
Answer: Consider send buffer

TCP Congestion Control (Simon Lam)
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Clarifications
 Average number in the send buffer is typically 

less than W unless packet arrival rate to send 
buffer is infinite -> previous formula provides a 
throughput upper boundthroughput upper bound

 If each packet may be lost with rate p, then the 
average delay is   

Since TO > RTT, actual throughput is smaller.
 With loss, goodput is 

(1 ) Op RTT p T   

(1 ) th h t

9

g p

 Note: in some papers and other context (e.g., random 
access protocols), goodput is called throughput.  To avoid 
confusion, throughput is called send rate 

(1 )p throughput 

TCP Congestion Control (Simon Lam)

Effect of Congestion
 W too big for each of many flows -> congestion
 Packet loss -> transmissions on links prior to packet 

loss are wastedloss are wasted
 Congestion collapse due too many retransmissions 

and too much waste
 October 1986, Internet had its first congestion 

collapse
goodput

10
load

TCP Congestion Control (Simon Lam)
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TCP Window Control

 Receiver flow control
 Avoid overloading receiver Avoid overloading receiver
 rwnd: receiver (advertised) window 
 Receiver sends rwnd to sender

 Network congestion control
 Sender tries to avoid overloading network
 It infers available network capacity from “loss 

i di ti ”

11

indications”
 cwnd: congestion window

 Sender sets W = min (cwnd, rwnd)

TCP Congestion Control (Simon Lam)

Receiver Flow Control

 Receiver advertises rwnd with each packet it 
sendssends

 Size of rwnd indicates available space in 
receive buffer
 decreased when data is received from IP layer and 

ack’d
 increased when data is consumed by application 

12

 increased when data is consumed by application 
process

TCP Congestion Control (Simon Lam)
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Network Congestion Control
 Sender calculates cwnd from indications of 

network congestion
 Congestion indications Congestion indications

 timeout (loss)
 dupACK (loss likely)
 queueing delay
mark (needs ECN)

 TCP algorithms to calculate cwnd

13

 Tahoe, Reno, Vegas, …
 Link algorithms: 

 RED, REM …

TCP Congestion Control (Simon Lam)

TCP & AQM

pl(t)

xi(t)

pl( )

Congestion measures pl(t) for distributed feedback control of xi(t)

14

Congestion measures pl(t) for distributed feedback control of xi(t)

 loss and dupACK (DropTail)
 queueing delay (Vegas)

with the help of active queue management (AQM)
 queue length (RED)
 price (REM) 

TCP Congestion Control (Simon Lam)
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TCP Congestion Control
 Tahoe (Jacobson 1988)

 Slow Start 
 Congestion Avoidance

F t R t it Fast Retransmit
 Reno (Jacobson 1990)

 Fast Recovery
 Its variants: NewReno, SACK

 Vegas (Brakmo & Peterson 1994)
 New Congestion Avoidance

 AQM
E  (Fl d & b  1 )

15

 RED (Floyd & Jacobson 1993)
• Probabilistic marking or dropping

 REM (Athuraliya & Low 2000)
• Clear buffer, match rate

 Others…

TCP Congestion Control (Simon Lam)

Slow Start 
 Start with cwnd = 1
 On each successful ACK, increment cwnd

cwnd  cwnd + 1cwnd  cwnd + 1
 Exponential growth of cwnd

each RTT: cwnd  2 x cwnd

 Enter CA when cwnd >= ssthresh

 For initial slow start, ssthresh is set to a very large 

16

, y g
value (e.g., 65 Kbytes)

Note: for clarity, cwnd, rwnd, and ssthresh are 
counted in packets (segments) rather than in bytes

TCP Congestion Control (Simon Lam)
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Slow Start
receiversender

cwnd
1

data packet

ACK
1 RTT

1

2

3
4

17

5
6
7
8

cwnd  cwnd + 1 (for each ACK)TCP Congestion Control (Simon Lam)

Congestion Avoidance

 CA starts when 
cwnd  ssthresh

cwnd
1

receiversender

cwnd  ssthresh

 On each successful 
ACK:
cwnd  cwnd + 1/cwnd

1

2

3

1 RTT

data packet

ACK

18

 Linear growth of cwnd
each RTT: 
cwnd  cwnd + 1

4

TCP Congestion Control (Simon Lam)
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Packet Loss

Assumption: loss indicates congestion
 P k t l  d t t d b Packet loss detected by

 Retransmission timeout (RTO timer)
 Duplicate ACKs (at least 3)

1 2 3 4 5 6

Packets

7

19

1 2 3 4 5 6

1 2 3

Acknowledgements

3 3

7

3
TCP Congestion Control (Simon Lam)

Fast Retransmit

A timeout is quite long  (> RTT)
Upon receiving 3 dupACKs, immediately p g p , y

retransmit without waiting for timeout

Adjusts ssthresh
ssthresh  max(flightsize/2, 2)

h  fli htsiz  is numb  f utst ndin  p ck ts  

20

where flightsize is number of outstanding packets, 
which may be less than W = min(rwnd, cwnd) 

 Enter Slow Start (cwnd = 1)
TCP Congestion Control (Simon Lam)
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TCP Tahoe (Jacobson 1988)

cwnd

time

21

SS time
(in RTTs)

CA

SS: Slow Start
CA: Congestion Avoidance

TCP Congestion Control (Simon Lam)

Successive Timeouts
 When there is another timeout, double the 

timeout value 
 Keep doing so for each additional loss- Keep doing so for each additional loss-

retransmission
 Exponential backoff up to 

max timeout value equal 
to 64 times initial timeout 
value

22

Note: red line in figure denotes a loss indication

TCP Congestion Control (Simon Lam)
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Summary: Tahoe
 Basic ideas

 Probe network for spare capacity during SS and 
CA and increase send rateCA and increase send rate

 Drastically reduce rate on congestion indication
 Self-clocking
 Error recovery by retransmission
 Round trip time estimation (to get TO value)

for every ACK {

if (W < ssthresh) then W++ (SS)

23

if (W < ssthresh) then W++ (SS)

else W += 1/W (CA)

}

for every loss indication {

ssthresh = W/2

W  = 1    

} TCP Congestion Control (Simon Lam)

TCP Tahoe (Jacobson 1988)

cwnd

time

24

SS CA

SS: Slow Start
CA: Congestion Avoidance

TCP Congestion Control (Simon Lam)
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TCP Reno (Jacobson 1990)

cwnd

time

25

SS CA

SS: Slow Start
CA: Congestion Avoidance Fast retransmission/fast recovery

TCP Congestion Control (Simon Lam)

TCP Reno (another scenario) 

TO

halved

3 dupACKscwnd

26

Initial slow start
t

Slow start until cwnd 
reaches ssthresh

TCP Congestion Control (Simon Lam)
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Fast recovery (in detail)

 Idea: each dupACK represents a packet 
successfully received   Therefore  no need for successfully received.  Therefore, no need for 
very drastic action

 Enter FR/FR after 3 dupACKs
 Set ssthresh  max(flightsize/2, 2)
 Retransmit lost packet
 Set cwnd  ssthresh + #dupACKs (window inflation)
 Wait till W=min(rwnd  cwnd) is large enough; transmit 

27

 Wait till W=min(rwnd, cwnd) is large enough; transmit 
new packet(s)

 On non-dup ACK (1 RTT later), set cwnd  ssthresh
(window deflation)

 Enter CA
TCP Congestion Control (Simon Lam)

9

Example: FR/FR

time
S 1 2 3 4 5 6 87 1 10 11

9
4

0 0

 Above scenario: Packet 1 is lost, packets 2, 3, and 
4  i d  d ACK  i h   0 d

timeR 8

cwnd 8
ssthresh

7
4

0 0 0

Exit FR/FR

4
4

4
11

00

28

p
4 are received; dupACKs with seq. no. 0 returned

 Fast retransmit
 Retransmit on 3 dupACKs

 Fast recovery
 Inflate window such that new packets 9, 10, and 11 can be 

sent while repairing loss
TCP Congestion Control (Simon Lam)
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Summary: Reno

 Basic ideas
 Fast recovery avoids slow start Fast recovery avoids slow start
 dupACKs: fast retransmit + fast recovery
 Timeout: fast retransmit + slow start

congestion 
FR/FR  

dupACKs

29

slow start retransmit

avoidance FR/FR  

timeout

TCP Congestion Control (Simon Lam)

AIMD in steady state
multiplicative decrease:

cut cwnd in half after 
3 dupACKs

additive increase:
increase  cwnd by 1 
MSS every RTT in the 
bs  f  l ss 

16 Kbytes

24 Kbytes

congestion
window

absence of any loss 
event

30

8 Kbytes

time

Long-lived TCP connection
TCP Congestion Control (Simon Lam)
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TCP throughput (send rate)

We derived the approximate formula

throughput =                 packets/sec

W changes with the arrival of each 
congestion indication

 l l  ( ) d   d 

W

RTT

31

 To calculate (average) send rate, we need 
the average value of W

Q:  W is a function of what parameter?

TCP Congestion Control (Simon Lam)

First approximation
M. Mathis, et al., “The Macroscopic Behavior of the TCP Congestion 
Avoidance Algorithm,”ACM Computer Communicatons Review, 27(3), 1997.

No slow-start, no timeout, long-lived TCP 
connectionconnection

 Independent identically distributed “periods”
 Each packet may be lost with probability p

32TCP Congestion Control (Simon Lam)
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Geometric Distribution
Ave. no. of transmissions to get first loss

1

1 1

(1 )i
i

i i

n ib i p p
 



 

   
1

1

1 0

2

(1 )

(1 ) (1 )

1 1

1 1

i

i

i i

i i

p i p

d d
p p p p

dp dp

d
p p

dp p p






 

 

 

     

  
 



 

33

1 1

1/

dp p p

p




Similarly, ave. no. of transmissions to get first success is 
1/(1-p)

TCP Congestion Control (Simon Lam)

First approximation (cont.)
8

3
W

p


 Average number of 
packets delivered in 
one period (area under 

2 2
21 3

2 2 2 8

W W
W

       
   

2

send rate (in packets/sec)

3
no. of packets/period 8

time per period
2

W

W
RTT

 
 
 
 

one period (area under 
one saw-tooth)

 Average number of 
k    i d 

34

2

1 / 1 3

22
3

p

RTT p
RTT

p

 

 
 
 
 

packets sent per period 
(incl. loss at the end) is 
1/p
 Equating the two and 
solving for W, we get

TCP Congestion Control (Simon Lam)
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TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out of order segment

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK

35

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

Immediately send duplicate ACK, 
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

TCP Congestion Control (Simon Lam)

Receiver implements Delayed ACKs

 Receiver sends one ACK for every two packets 
received -> each  saw-tooth is WxRTT wide 
    h -> area under a saw-tooth is

 Send rate is 

 One ACK for every b packets received -> send rate 
i

23

4

W

1 3

4RTT p

36

is

1 3

2RTT bp
TCP Congestion Control (Simon Lam)
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M d li  TCP Th h t  A Si l  Modeling TCP Throughput: A Simple 
Model and its Empirical Validation, 

Proc. ACM SIGCOMM, 1998

Jitendra Padhye, Victor Firoiu, 
D  T l  d Ji  KDon Towsley, and Jim Kurose

Motivation 

 Previous formulas not so accurate when 
loss rates are highloss rates are high

 TCP traces show that there are more loss 
indications due to timeouts (TO) than due 
to triple dupACKs (TD)

38TCP Congestion Control (Simon Lam)
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Objectives

More accurate steady-state throughput 
formula as a function of loss rate and RTT formula as a function of loss rate and RTT 
by also accounting for TO behavior of a 
TCP connection

 Formula applicable over a wider range of 
loss rates

 Explicit statements of assumptions and 
i ti  d i  d i ti  f 

39

approximations used in derivation of 
throughput formula

 Formula to include the impact of a small 
rwnd

TCP Congestion Control (Simon Lam)

Many assumptions and 
approximations
A1. TCP sender is saturated, i.e., source 

application process always has a packet to application process always has a packet to 
send when send window has space available
 i.e., bulk transfer application

A2. Slow Start not modeled
A3. Time to send all packets in a window is 

smaller than RTT

40

smaller than RTT
 i.e.,transmission rate is not too low

TCP Congestion Control (Simon Lam)
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A3. Time to send W packets is 
less than RTT

Start of round

•ACK reception 
marks the end of 
current round and 

time

Start of round beginning of next 
round.

•Approximation: For 
b > 1, ACK is not 
received 
immediately after 

41

End of round

space

immediately after 
one RTT, but it is so 
assumed in the 
analysis

TCP Congestion Control (Simon Lam)

AIMD evolution of Window Size over time

 Each TD period is ended by a TD loss indication.  
 TDPi period has duration Ai rounds 

42

i p i
 A4.  Duration of a round (RTT) is independent of 

window size
 approximation (poor for a slow line)

 A5. No window inflation in Fast Recovery
 approximation

TCP Congestion Control (Simon Lam)
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Markov regenerative assumption
 For the i-th TD period, Wi is window size at 

the end of the period, Yi is the number of 
packets sent in the period

A6.  Assume {Wi} to be a Markov 
regenerative process with rewards {Yi}

 Given A6, the steady-state TCP throughput 
is 

[ ] [ ]N E Y E Y

43

[ ] [ ]
lim lim

[ ] [ ]
t i

t
t t

i

N E Y E Y
B B

t E A E A 
   

TCP Congestion Control (Simon Lam)

Consider i-th TD period

when ACK of 
last packet is 

received

44

 One ACK after receiving b packets  (b = 2 in above 
figure) -> linear increase has a slope of 1/b packet per 
RTT

 Number of rounds is Xi +1
 i is the first packet lost in i-th TD period

TCP Congestion Control (Simon Lam)
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Loss assumptions

A7.  Losses in different rounds are 
independentindependent
 approximation

A8.  Losses within the same round are 
correlated as follows: If a packet is lost, 
all remaining packets transmitted until the 
end of that round are also lost

i ti  b t  l  b h i  b t l  

45

 approximation – bursty loss behavior but only 
within the same round

 all lost packets in the same round are counted 
as a single loss indication when estimating p

TCP Congestion Control (Simon Lam)

AIMD throughput derivation (1)
seq. no. of first loss 

r    round trip time 
Y     no. of packets sent

[ ] 1/

[ ]

1

E p

E r RTT

 




p
W    window size
X     no. of rounds
A    time duration of a period1

1
[ ] [ ] [ ] 1 1 [ ]

From , we have
2

[ ] [ ]
2

i i
i

E Y E E W E W
p

W X
W

b
b

E X E W

b





     

 



46

<- from A4 that round trip       
times are independent of Wi

[ ] ( [ ] 1) [ ] ( [ ] 1)
2

1
1 [ ]

[ ]
send rate 

[ ] ( [ ] 1)
2

b
E A E X E r E W RTT

E W
E Y p

B
bE A E W RTT

   

 
 


TCP Congestion Control (Simon Lam)
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AIMD throughput derivation (2)
Another way to 

compute E[Y]/ 1
1

0

( )
2

iX b
i

i i
k

W
Y k b 






  

<- A9. Assume that 

1

1

( 1)
2 2

( 1)
2 2

Let [ ] be [ ] and we have
2

i i i i
i

i i
i i

X W X X

b
X W

W

W
E E











   

   

47

{Xi} and {Wi} are 
mutually 
independent i.i.d. 
sequences of 
random variables

[ ] [ ]
[ ] ( [ ] 1) [ ]

2 2
[ ] [ ]

( [ ] 1) [ ]
4 2 2

E X E W
E Y E W E

bE W E W W
E W E

   

   

TCP Congestion Control (Simon Lam)

AIMD throughput (3)
 Equate the two previous formulas for E[Y].  Solve the quadratic 

equation with E[W] as the only unknown
1

[ ] 1 [ ]E Y E W  

2

[ ] 1 [ ]

[ ] [ ]
( [ ] 1) [ ]

4 2 2

2 8(1 ) 2
[ ] ( )

3 3 3

E Y E W
p

bE W E W W
E W E

b p b
E W

b bp b



   

  
  

48

3 3 3

1
[ ]

send  ra te    ( )
[ ]

b bp b

p
E W

p
B p

E A

 


TCP Congestion Control (Simon Lam)
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AIMD throughput (4)
To get a simple formula, collect terms that are o(1/sqrt(p))

88
[ ] (1/ )

3

2
[ ] [ ] (1/ )

2 3

1/ (1/ ) 1 3
send rate ( ) (1/ )

E W o p
bp

b b
E X E W o p

p

p o p
B p o p

 

  


  

49

send rate ( ) (1/ )
22

(1/ )
3

B p o p
RTT bpb

RTT o p
p

  
 

 
 

TCP Congestion Control (Simon Lam)

AIMD with TO

 Let ni denote the number of TD periods within a 
cycle ending in i-th TO period, Ri denote no. of 

50

cycle ending in i th TO period, Ri denote no. of 
retransmissions in i-th TO period

 A10.  {ni } form an i.i.d. sequence, independent of 
{Yij} and {Aij}

TCP Congestion Control (Simon Lam)
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Throughput of AIMD with TO (1)
[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

TO

E M E n E Y E R

E S E n E A E Z

E M E E Y E R

 

 

Assumption of 
Markov 
regenerative 

[ ] [ ] [ ] [ ]
send rate 

[ ] [ ] [ ] [ ]

[ ] [ ]
  

[ ] [ ]

1
where 

[ ]

TO

TO

E M E n E Y E R
B

E S E n E A E Z

E Y Q E R
B

E A Q E Z

Q
E


 


 


 



process again.

P b bilit  th t  

51

[ ]

1
[ ]

1

with  and [ ] to be determinedTO

E n

E R
p

Q E Z




<- Probability that a 
given loss 
indication is a TO 

TCP Congestion Control (Simon Lam)

Approximate solution for Q

52

A given loss indication is  a TO is the union of two 
events Two or less acked packets in penultimate 
round or two or less acked packets in final round

TCP Congestion Control (Simon Lam)
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Approximate solution for Q (cont.)
<- penultimate round of w 

packets, first k packets 
ack’d given there is a loss 

(1 )
( , )

1 (1 )

k

w

p p
A w k

p




 

<- for last round, k packets 
sent, m packets ack’d in 
sequence 

<- at most 2 dupACKs

( , ) (1 ) ,      1

( , ) (1 ) ,         

( ) 1                 if 3

m

m

C k m p p m k

C k m p m k

Q w w

   

  

 

53

p
<- probability of fewer than 3 

packets sent successfully 
in penultimate round or 
less than 3 acks in last 
round

2 2

0 3 0

( )

( , ) ( , ) ( , )

                               if 4

                           

w

k k m

Q

A w k A w k C k m

w
  

 



  

          
TCP Congestion Control (Simon Lam)

Approximate solution for Q (cont.)

54

 Q is 
But we don’t know the probability distribution of Wi

 Approximation  3 3
( [ ]) min(1, ) min(1,3 )

[ ] 8

bp
Q Q E W

E W
  

[ ( )]E Q w

TCP Congestion Control (Simon Lam)
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Throughput of AIMD with TO (2)
1[ ] (1 )     for 1, 2,...

(2 1)     for 6

k

k
k O

P R k p p k

L T k

   

  
<- duration of k

TOs in a row

2 3 4 5 6

2
0

    (63 64( 6))     for 7

1 2 4 8 16 32
[ ]

1

( )
             (1 32 )

1

[ ] [ ]
d ( )

O

TO
O

O

k T k

p p p p p p
E Z T

p

f p
T T p

p

E Y Q E R
B

   

     







 

  <- approximation
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[ ] [ ]
send rate ( )

[ ] [ ]

( )

TO

E Y Q E R
B p

E A Q E Z

B p




 





1 1
[ ] ( [ ])

1
( )

( [ ] 1) ( [ ])
1O

p
E W Q E W

p p
f p

RTT E X Q E W T
p


 



 



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Throughput of AIMD with TO (3)




1 1
[ ] ( [ ])

1
( )

( )

p
E W Q E W

p p
B p

f p


 


<- Eq. (27) 

more accurate 

2
0

( )
( [ ] 1) ( [ ])

1

1/

2 3
min 1,3 (1 32 )

3 8

1

O

f p
RTT E X Q E W T

p

p

b bp
RTT p T

p

 


   
    

   



more accurate 
version of 
throughput 
formula
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2
0

1

2 3
min 1,3 (1 32 )

3 8
bp bp

RTT p p T


   

    
   

<-Eq. (29) 
most well-
known version 
of throughput 
formula
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Impact of receiver’s rwnd limitation

Full model Eq. (31)

if E[W] <Wmax,





maxCompute [ ].  If [ ] ,  use Eq. (27):

1 1
[ ] ( [ ])

1
( )

( )
( [ ] 1) ( [ ])

1O

E W E W W

p
E W Q E W

p p
B p

f p
RTT E X Q E W T

p




 



 



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otherwise, use Wmax for 
E[W] and recompute 
E[X]
(derivation omitted)





max max

max max
max

1

1 1
( )

1
( )

1 ( )
( 2) ( )
8 1O

p

p
W Q W

p p
B p

b p f p
RTT W Q W T

pW p


 


  




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Impact of receiver’s rwnd 
limitation—approximate  model

Use the well-known Eq. (29) from before,

max

2
0

1
( ) min( , )

2 3
min 1,3 (1 32 )

3 8

W
B p

RTT bp bp
RTT p p T

   
    

   


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which is referred to as Eq. (32)

   

TCP Congestion Control (Simon Lam)
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Summary data from traces (1 hour) 

 Saturated TCP 
sender

 p computed  p computed 
from dividing 
total no. of loss 
indications by 
total number of 
packets sent

 RTT and TO
values are 

59

values are 
averaged over 
entire 1-hour 
trace

TCP Congestion Control (Simon Lam)

Summary data from 100s traces

60

 Each row represents results of 100 traces each of 
100 seconds in duration for same S-D pair

 Totals are cumulative over 100 traces
 RTT and TO are average values over 100 traces for 

same S-D pair TCP Congestion Control (Simon Lam)
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Experimental comparison (1)

61

 Each point represents number of packets in 100s interval of trace
 T0 ~ single TO, T1 ~ at least 1 double TO in trace, etc.
 “TD Only” is analytic model by Mathis et al.
 Note: Wmax is only 6 in Figure 7 TCP Congestion Control (Simon Lam)

Experimental comparison (2)
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Wmax = 33                                           Wmax=44
TCP Congestion Control (Simon Lam)
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Experimental comparison (3)
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Wmax=8                                                Wmax=48

TCP Congestion Control (Simon Lam)

Accuracy of approximate model

64

Figure 18: manic to spiff, with predictions by both full and 
approximate models      (Wmax=32)

TCP Congestion Control (Simon Lam)
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Average errors

65
ave. error

no. of observations

predicted observed

observations observed

N N

N





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Conclusions
 A much more rigorous analysis than the one by 

Mathis et al. 
 Numerous assumptions and approximations used 

but (almost) all of them are explicitly statedbut (almost) all of them are explicitly stated
 Large amount of experimental measurements on 

the Internet to validate accuracy of the full model 
(less for the approximate model)

 Throughput formula accounts for loss indications 
due to TO as well as rwnd restriction

U i  h  f l  i    f 

66

 Using the formula requires accurate measurements of 
loss rate and RTT values (which could be tricky)

 For TCP Reno and drop-tail router
 Accuracy (like beauty) is in the eye of the 

beholder.  What do you think?
TCP Congestion Control (Simon Lam)
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TCP Throughput limited by loss rate
 TCP average throughput (approximate) in 

terms of loss rate, L:
1 22 MSS

 Example: 1500-byte segments, 100ms RTT, 
to get 10 Gbps throughput, loss rate needs 
to be very low

 2 10 10

1.22 MSS

RTT p


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p = 2x10-10

New version of TCP needed for connections 
with high-delay bandwidth product
 addressed in paper by Katabi’s et al

TCP Congestion Control (Simon Lam)

The End
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